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for additive‑free palladium catalyzed aerobic oxidative coupling 
of arylboronic acids and terminal alkynes
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Abstract 
A highly productive protocol for the synthesis of internal alkynes by the carbon–carbon cross-coupling reactions of electroni-
cally different arylboronic acids with substituted phenylacetylenes was described by employing (E)-N-(pyren-1-ylmethylene)
benzenamine with Pd(OAc)2. The influence of reaction parameters such as solvent, base and reaction temperature in this 
carbon–carbon cross-coupling reaction was also investigated. The substrate scope could be expanded to electron-poor alkynes, 
for which the conventional Sonogashira reaction gives poor yields. Moderate to excellent yield was obtained in the oxidative 
Sonogashira-type coupling reaction.
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Internal alkynes moiety has wide application in daily life and 
is encountered as building blocks in numerous medicines, 
natural products, dendrimers (Agou et al. 2009), macrocy-
cles (Liu et al. 2009), optoelectronic materials (Balsukuri 
et al. 2015), fine chemicals (Dasaradhan et al. 2015; Prabhu 
and Ramesh 2016), etc. Hence, reaction protocols that pro-
vide an efficient access to internal alkynes are greatly desir-
able. Many synthetic protocols are reported for the genera-
tion of diaryl acetylenes. The palladium-catalyzed and CuI 
co-catalyzed coupling reaction of aryl halides and terminal 
acetylenes, also known as the Sonogashira reaction, is com-
petent and unequivocal methodology for the construction of 
C(sp2)–C(sp) bond (Chinchilla and Nájera 2011; Karak et al. 
2014). However, from literature reports it is inferred that the 
use of copper salts which can yield undesired diynes in air 
or  O2 by the Glaser–Hay-type homo-coupling of alkynes. In 
addition, highly sensitive and potentially explosive copper 
acetylides can also form, thereby decreasing the productivity 
of the reaction. Though different ligand systems have been 
used for the palladium-catalyzed Sonogashira reaction under 

copper free conditions (Chinchilla and Nájera 2007; Fort-
man and Nolan 2011; Singh and Verma 2011; Sabounchei 
et al. 2013; Yang et al. 2014; Prabhu and Pal 2015a), some 
of the main drawbacks of these systems include their avail-
ability, high price, laborious and time consuming strate-
gies for synthesis of ligands and corresponding palladium 
complexes, unstability of ligands, use of inert atmosphere 
and Schlenk-line techniques, etc. Further, electron-deficient 
alkynes are not effective substrates in Sonogashira reaction 
as poor yields are generally observed. These enforce the 
researchers to develop new, stable, cost-effective and effi-
cient catalytic systems as modifications of the traditional 
Sonogashira protocol. In recent years, oxidative coupling of 
terminal alkynes with arylboronic acids mediated by tran-
sition metals has transpired as an alternate option for the 
traditional Sonogashira coupling reaction. This oxidative 
cross-coupling reaction offers copious superiority, such as 
mild reaction conditions, carrying out the reaction in the 
absence of inert atmosphere and high functional group toler-
ance, many air- and water-stable boronic acid derivatives are 
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commercial available or can be easily prepared, boron resi-
dues can be easily removed after the reaction, the reagents 
and by-products are generally non-toxic, thus explaining the 
growing attraction in this synthetic methodology. There are 
some interesting reports on the oxidative coupling between 
terminal acetylenes with arylboronic acids catalyzed by iron 
(You et al. 2012), copper (Mao et al. 2008; Pan et al. 2009; 
Rao et al. 2010; Yasukawa et al. 2011; Li et al. 2012) nickel 
(Troung et al. 2014; Prabhu and Lakshmipraba 2017) pal-
ladium (Zou et al. 2003; Mitsudo et al. 2010; Zhou et al. 
2010; Nie et al. 2011; Li et al. 2013; Lu et al. 2014; Xu 
et al. 2016) or gold (Qian and Zhang 2011) as an alternative 
to the traditional Sonogashira reaction. However, in most 
of these reports, additives were required for good yields of 
the desired product. Although compelling results have been 
obtained, the development of a milder protocol for this trans-
formation, especially under additive-free conditions, con-
tinues to be a central goal of current research in chemistry.

Schiff bases draw considerable attention as ligands due 
to their ease in preparation, stability and high coordination 
capacity towards various transition metals (Das and Linert 
2016). Further, the steric and electronic properties of Schiff 
bases could be tuned easily by selecting appropriate sub-
stituents on the aldehyde or amine (Abu-Dief and Mohamed 
2015). In this paper, we report a straightforward and effec-
tual protocol for the aerobic oxidative Sonogashira reaction 
of substituted arylboronic acids and electronically different 
phenylacetylenes by utilizing Pd(OAc)2/(E)-N-(pyren-1-yl-
methylene)benzenamine system in the absence of any silver 
additive. Diverse reaction parameters such as solvent, base 
and reaction temperature were sequentially optimized for 
this C(sp2)–C(sp) coupling reaction before evaluating the 
scope of the coupling partners. Though there are reports on 
the synthesis and characterization of Schiff bases derived 
from 1-pyrenecarboxaldehyde (Shree et al. 2019; Shellaiah 
et al. 2013), our screening on the literature has revealed 
that no attention has been paid to explore the Pd-catalyzed 
synthesis of diaryl acetylenes by the oxidative Sonogashira 
coupling reaction using (E)-N-(pyren-1-ylmethylene)ben-
zenamine (L).

All the chemicals used in this work were of analytical 
grade, available commercially and were used as received. 
Infrared spectra of ligands were recorded as KBr pellets 
on Perkin Elmer Spectrum RX I spectrophotometer. The 
NMR spectra were obtained on a Bruker Avance III NMR 
400 MHz spectrometer operating at room temperature. ESI 

mass spectra were recorded on Elmer Clarus 900 C GC–MS 
spectrometer.

The Schiff base, L, was readily accessible in good yields 
by the condensation of 1-pyrenecarboxaldehyde with aniline 
in ethanol (Scheme 1). FT-IR, NMR (1H and 13C) and MS 
techniques were used to authenticate the purity and identity 
of L.

The FT-IR of free 1-pyrenecarboxaldehyde and aniline 
displayed bands due to the free aldehydic group (1700 cm−1) 
and free –NH2 group (3200 cm−1), respectively. Disappear-
ance of these bands in L indicated the formation of Schiff 
base. This was further confirmed by the appearance of a new 
stretching frequency at 1583 cm−1 in L. In the 1H NMR spec-
tra of L, the sharp singlet resonance at δ 9.65 ppm indicated 
the presence of azomethine proton and formation of the 
Schiff base (Kathiravan et al. 2014, Prabhu and Pal 2015b). 
This was further confirmed by the absence of the aldehy-
dic proton of 1-pyrenecarboxaldehyde and –NH2 protons of 
aniline in the 1H NMR spectrum of L. The chemical shifts 
of the other aromatic protons of L are unexceptional. The 
13C NMR spectrum of L, the resonance at δ 158.97 ppm is 
attributed to the azomethine carbon (Kathiravan et al. 2014). 
Other carbons of the aromatic group resonate at expected 
regions. The GC–MS of L exhibited the molecular ion peak 
at m/z 339.

The unceasing procedure to discover different routes 
has made us interested in searching for a new methodology 
for the silver-free Pd(OAc)2-L mediated aerobic oxidative 
Sonogashira coupling reaction. The generation of catalyst 
in situ is considered to be appealing because it eliminates 
the need for the additional tasks of prior synthesis and sub-
sequent characterization of the corresponding metal-com-
plex. In addition, it also provides the flexibility of selecting 
ligand to partner the available palladium salts based on the 
requirement of a specific cross-coupling catalysis reaction. 
The synthesis of 1-methoxy-4-(phenylethynyl)benzene by 
the coupling between phenylboronic acid and 4-ethynylani-
sole mediated by Pd(OAc)2/L in air and in the absence of 
silver salts was first selected as a model system to establish 
the practical efficacy of the system. The solvent, base and 
reaction temperature were varied sequentially in order to 
determine the best reaction conditions. In order to identify a 
solvent which can enhance the yield of the desired product, 
initial investigation was implemented on the evaluation of 
different solvents (Fig. 1). It was inferred that the extent 
of product formation depended on the solvent used and 

Scheme 1  Preparation of Schiff 
base

O N
NH2

EtOH, AcOH

Reflux, 3 h
+

L



 Chemical Papers

1 3

among the various solvents screened, dimethylformamide 
(DMF) gave better results. When the reaction was carried 
out in other solvents such as dimethylsulphoxide (DMSO), 
N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMA), 
toluene and xylene, relatively low but promising isolated 
yield of the desired internal alkyne was obtained. Therefore, 
DMF was chosen as relevant solvent for further coupling 
reactions.

In carbon–carbon cross-coupling reactions, base is known 
to influence the yield of the product and the effects of vari-
ous bases were then probed. Evident sensitivity to base used 
was noted in DMF. The results from the optimization of 
bases (Fig. 2) revealed that 1,8-diazabicycloundec-7-ene 
(DBU) had ranked the highest yield (99%) of the desired 
internal alkyne and was the best choice among other bases. 

Other organic bases  (Et3N,  Bu3N, pyridine) and inorganic 
bases  (K2CO3,  KHCO3,  K3PO4) were found to less efficient 
in this cross-coupling reaction.

The effect of temperature on the cross-coupling reaction 
was then probed. As the temperature of the reaction was 
decreased from 100 °C to 35 °C, a drop in the isolated yield 
of the product was observed (Fig. 3). At 100 °C, almost quan-
titative yield of the desired product was observed, whereas 
at 35 °C only < 10% of the desired product was obtained. 
Hence, for consequent experiments, DMF–DBU at 100 °C 
was considered to be optimal condition. Controlled experi-
ments were also carried out in DMF at 100 °C. It was ascer-
tained that in the absence of Pd(OAc)2 or base, the desired 
product was not formed. Further, though Pd(OAc)2–DBU 
in DMF could catalyze the oxidative Sonogashira coupling 
reaction in the absence of L, the efficiency was poor with 
only 30% yield of the product indicating that L acts as a pro-
moter in this conversion. It is gratifying to say that under the 
given conditions the homo-coupling by-products of neither 
the internal alkyne nor the arylboronic acid were detected.

After authenticating the optimal reaction conditions 
(DMF, DBU, 100 °C, 3 h, in air), in order to comprehend 
the scope and feasibility of the oxidative Sonogashira reac-
tion, the reaction of phenylboronic acid (as a representa-
tive arylboronic acid derivative) with a wide range of sub-
stituted phenylacetylenes with diverse electronic effects 
were surveyed (Table 1). For the ease of correlation of the 
results, all the coupling reactions were effectuated under 
identical reaction conditions. It was inferred that the proto-
col tolerated different functional groups giving the desired 
internal alkynes in good to excellent isolated yields when 
electron-donating, electron-neutral and electron-with-
drawing substituents were present on the aromatic ring. 

Fig. 1  Effect of solvent on product yield at 100 °C

Fig. 2  Effect of base on product yield in DMF at 100 °C
Fig. 3  Effect of reaction temperature on product yield in DMF at 
100 °C
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Substituted phenylacetylenes bearing electron-donating 
groups (such as 4-methoxy or 4-methyl) reacted effort-
lessly with phenylboronic acid to afford greater iso-
lated yield of the desired product when compared to 

phenylacetylene (entries 1-3). When electron-withdrawing 
groups (such as 4-formyl, 4-acetyl or 4-nitro) were present, 
the conversion is less when compared to that of phenyla-
cetylene (entries 3-6). Utilization of 3-ethynylanisole and 

Table 1  C–C coupling reactions 
of phenylboronic acid with 
substituted phenylacetylene + (HO)2B

Pd(OAc)2, L
DMF, DBU
100 oC, 3hR R

Entry Product Yield (%)a

1 O
H3C

99

2 H3C 97

3 H 94

4

O

H 90

5

O

H3C 87

6 O2N 83

7

OH3C

93

8

O
H

85

9

O
H3C

80

10

O
H

76

Phenylboronic acid (1.0  mmol), arylacetylene (1.2  mmol), Pd(OAc)2 (1  mol%), L (1  mol%), DMF 
(5 mL), DBU (2.0 mmol) at 100 °C in air for 3 h
a Isolated yield after column chromatography (average of two independent runs)
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3-ethynylbenzaldehyde (entries 7,8) as coupling partners, 
afforded the desired products with yields comparable to 
that of the corresponding para substituted derivatives 
(entries 1,4). Ortho substituted derivatives such as 2-ethy-
nylanisole and 2-ethynylbenzaldehyde (entries 9, 10) were 

also compatible in the employed protocol. However, they 
resulted in slightly inferior yields than the corresponding 
para substituted derivatives (entries 1,4) which could be 
due to the steric effects as expected.

Table 2  C–C coupling reactions 
of arylboronic acids with 
phenylacetylene (HO)2B+

R R

Pd(OAc)2, L
DMF, DBU
100 oC, 3h

Entry Product Yield (%)a

1 NO2
96

2

CH3

O 92

3

H

O 90

4 H 86

5 CH3
82

6 O
CH3

78

7

H
O

76

8

O
H3C

72

9

O
H

70

10

O
CH3

64

Arylboronic acid (1.0  mmol), phenylacetylene (1.2  mmol), Pd(OAc)2 (1  mol%), L (1  mol%), DMF 
(5 mL), DBU (2.0 mmol) at 100 °C in air for 3 h
a Isolated yield after column chromatography (average of two independent runs)
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Additional coupling reactions were then effectuated 
in an inverted manner: i.e., with functionalized arylbo-
ronic acids and phenylacetylene (as a representative ter-
minal acetylene derivative) to determine the generality 
of this catalytic method towards different arylboronic 
acids (Table 2). All the coupling reactions were carried 
out under identical reaction conditions for the ease of 
comparison of results. It was inferred that the substituted 
arylboronic acids reacted smoothly with phenylacetylene 
to furnish the corresponding internal alkynes in good 
to excellent yields, when electron-withdrawing (such as 
4-nitro, 4-acetyl or 4-formyl), electron neutral and elec-
tron-donating (such as 4-methyl or 4-methoxy) substitu-
ents were present on the arylboronic acids. Fabulously, 
aryl boronic acids bearing electron-withdrawing groups 
afforded superior isolated yield of the desired product (up 
to 96%) when compared with those having electron donat-
ing groups. Utilization of 3-formylphenylboronic acid and 
3-methoxyphenylboronic acid as coupling partners (entries 
7,8) in this reaction resulted in the formation of the cor-
responding desired products in good yields. However, 
employment of 2-formylphenylboronic acid and 2-meth-
oxyphenylboronic acid (entries 9,10) resulted in slightly 
reduced yields than for the corresponding para derivatives 
(entries 1,5) which may be due to steric effects.

The salient features of this protocol include simple and 
convenient reaction procedure, insensitivity towards air and 
moisture, non-necessity of any inert atmosphere, absence of 
silver additive, ease of handling of the reagents, lower reac-
tion time, broad substrate scope and simple workup proce-
dure. Though we have not carried out any mechanistic inves-
tigation, it is likely that L binds to the Pd-centre resulting in 
a cyclometallated complex which acts as the actual catalyst 
in this cross-coupling reaction (Han et al. 2011; Rao and Pal 
2014). Further, though there are a few reports on the Pd-cat-
alyzed oxidative Sonogashira reactions, a direct comparison 
of the present catalytic system with those reported earlier 
is difficult due to the differences in the reaction conditions 
such as solvent, base, temperature, reaction time and catalyst 
loading. However, in terms of isolated yields, the catalytic 
efficiency of the present protocol is found to be comparable 
or even slightly superior to some of the previously reports 
on oxidative Sonogashira cross-coupling reaction (Zou et al., 
2003; Yang and Wu 2007; Lu et al. 2014).

Conclusions

In conclusion, a new facile protocol was developed using 
(E)-N-(pyren-1-ylmethylene)benzenamine as promoter for 
the silver-free palladium-catalyzed synthesis of internal 
alkynes by the C(sp2)–C(sp) coupling reactions between 

arylboronic acids with substituted phenylacetylenes under 
aerobic conditions. The substrate scope could be extended 
to electron-neutral, electron-rich as well as electron-poor 
arylboronic acids and substituted phenylacetylenes to yield 
the desired products in satisfactory to excellent isolated 
yields. The substrate scope can include electron-deficient 
alkynes for which the traditional Sonogashira reaction does 
not proceed. This protocol provides the first examples of (E)-
N-(pyren-1-ylmethylene)benzenamine as effective ligand for 
this palladium-catalyzed cross-coupling reaction. Further, 
such a strategy minimizes preparation and characterization 
of a metal complex which generally require specific condi-
tions, laborious and time-consuming methods of synthesis. 
The scope, mechanism and synthetic applications of this 
catalytic reaction are under investigation in our laboratory.
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