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ABSTRACT: Cucurbitacin B (CuB), a highly cytotoxic constituent of the Cucurbitaceae plant, was identified to exhibit potent 
inhibitory activity against human cancer cells as well as normal cells. This disadvantage hampers the possibility of developing this 
compound into an anticancer drug candidate. In this work, several bioreductive prodrugs of CuB were designed to reduce toxicity to 
normal cells while maintaining cytotoxic effect to cancer cells. Embedded with a bioreductive delivery and cleavable system in 
cancer tissues, cucurbitacin B-based prodrugs 1, 2 and 3 were synthesized and evaluated by in vitro and in vivo experiments. 
Compared with the parent CuB, prodrug 1 was found to significantly reduce the toxicity down to 310-fold lower against non-
cancerous cells. LC-MS analyses show that prodrug 1 efficiently releases the parent compound in the reductase-overexpressed 
MCF-7 cells. In addition, prodrug 1 shows satisfactory and comparable effectiveness in controlling tumor growth as that by 
tamoxifen in the 4T1 xenograft mice model.

Development of natural products to new analogues with 
improved properties are highly desired in the drug discovery 
process.1 Targeted prodrug design for anticancer drug is one of 
the interesting strategies in drug discovery.2–5 Many anticancer 
natural products are not target specific, and might also quite 
toxic to normal cells. To lower the toxicity while keeping the 
therapeutic property of active natural products, proper 
structure modification serves as an important and useful tool 
in drug discovery. Prodrug design has been proven one of the 
workable strategies to improve the physicochemical properties 
of a molecule and overcome unacceptable biopharmaceutical 
performance. Embedment of an additional molecular device, 
which is cleavable by a specific enzyme expressed 
predominantly in tumor cells, is a commonly applied manner 
in contemporary drug design and development.6 Bioreductive 
prodrug can be designed to target specific tumor followed by 
in situ release of the therapeutic drugs with the reductase 
(NAD(P)H:quinone oxidoreductase 1, NQO1) over-expressed 
in some tumor cells.7–9 Fortunately, the reductases are often 
reported to be overexpressed in a variety of cancer cells, such 
as breast cancer, ovarian cancer, thyroid cancer, adrenal 
cancer and colon cancer.3,10–13

Trichosanthes cucumerina L. (Cucurbitaceae), distributed in 
many countries of Asia and well known for its bitter taste, is a 
Thai medicinal herb. Cucurbitacins, the main components of 
T. cucumerina,14–17 exhibit a variety of pharmacological 
effects in vitro and in vivo, such as anticancer, 
hepatoprotective, cardiovascular, purgative, antiinflammatory, 
antimicrobial, anthelmintic, CNS effects and antifertility 

activities.18–20 Our previous phytochemical study on T. 
cucumerina revealed that cucurbitacin B (CuB, Figure 1), the 
major constituent of the plant, shows potent inhibitory 
activities on human breast cancer cells (MCF-7, MDA-MB-
231 and SKBR-3)16,21 and colon cancer cells (Caco-2 and 
SW620).22 Unfortunately, CuB is also highly toxic against 
normal cells. This disadvantage hampers the possibility of 
developing this compound into an anticancer drug. Lowering 
cytotoxic effect of CuB against normal cells while maintaining 
the cytotoxic potency to cancer cells keeps as a challenging 
task yet.
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Figure 1. Structure of cucurbitacin B.

In this work, we explored the conversion of CuB into a 
prodrug design to improve the toxicity/safety index between 
breast cancer cells and non-cancerous cells. Such a prodrug 
system is expected to be non-toxic or less toxic against normal 
cells until it reaches the tumor tissue and releases CuB. We 
rationally designed three prodrugs that were composed of a 
variety of linkers and the general quinone delivery system that
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Figure 2. Rational design of CuB-based bioreductive prodrugs 1–3.

has been successfully used in a number of prodrug research-
es.3,12,13,23,24 Presence of the over-expressed reductase in breast 
tumor cells is supposed to trigger the release of CuB and cause 
the death of cancer cells. Three prodrugs 1–3 have been 
synthesized and their crucial properties and biological 
activities were evaluated and compared.

Cucurbitacin B (CuB, Figure 1) is the major triterpenoid 
isolated from the fruit fibers of T. cucumerina. The 
spectroscopic (IR, 1H NMR, 13C NMR and mass spectra) data 
of CuB are consistent with those reported.25–27 CuB showed 
significant cytotoxic activities against various cancer cells, 
such as breast cancer,16,21 colon cancer,22 human nasopharynx 
carcinoma cells,28 non-small cell lung cancer, human 
hepatocellular cells,29 HeLa cells, and HepG2 cells.30 CuB 
upregulated DNA methyltransferase 1 and heavy methylation 
in the promoters of c-Myc, cyclin D1, and survivin, which 
consequently downregulated the expression of all these 
oncogenes, were observed.31 However, its non-selective 
cytotoxic actions against both cancerous and normal cells 
greatly limited its further development to a potential 
anticancer drug. Conversion of this cytotoxic natural product 
to a safe prodrug is of extreme interest for potential treatment 
of cancers.

For bioreductive prodrug design, quinone delivery systems 
is capable to deliver drugs to target specific tumor and can be 
activated by overexpressed reductases in cancer cells.3,23,32 The 
steric hindrance imparted by the three methyl groups on the 
quinone moiety (the “trimethyl lock”) has been shown to 
induce intramolecular cyclization to release the active drugs 
from the prodrugs in the target sites (Figure 2).24,33 At the 
beginning of the design of the prodrug(s), we found that upon 
acetylation of CuB, the 2-hydroxy group was more readily 

acetylated than the 16-hydroxy group, whereas the 20-hydroxy 
group was relatively inert under normal experimental 
condition. The result indicated that attachment of the 
bioreductive unit at the 16-hydroxy group would need two 
extra synthetic steps: protection and de-protection of the more 
active 2-hydroxy group. We therefore decided to attach the 
bioreductive unit at the 2-hydroxy position. Following such a 
bioreductive prodrug concept, CuB was converted into 
prodrug molecules 1, 2 and 3, in which the quinone system 
was introduced through the carbamate and ester linkages 
(Figure 2).

Scheme 1. Synthetic Procedures for Compounds 5−8a
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aReagents and conditions: (a) 3,3-dimethylacrylic acid, CH3SO3H, 
70 °C; (b) NBS, acetone, water; (c) Boc2O, DCM.

The synthesis of prodrugs 1, 2 and 3 is depicted in Schemes 
1–3. First of all, reaction between trimethylhydroquinone (4) 
and 3,3-dimethylacrylic acid in the presence of dry 
methanesulfonic acid provided 5, which was further treated 
with N-bromosuccinimide (NBS) in aqueous acetone to afford 
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6. The 1,3-diaminopropanes 7a and 7b were treated with di-
tert-butyldicarbonate (Boc2O) in DCM, yielding the mono-

Boc-protected linkers 8a and 8b (Scheme 1).

Scheme 2. Synthesis of Prodrugs 1 and 2a
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aReagents and conditions: (a) 4-nitrophenyl chloroformate, Et3N, DCM, 0 °C; (b) compounds 8a and 8b, Et3N, DCM; (c) 10% TFA, DCM; 
(d) compound 6, EDCI, DMAP, DCM.

Scheme 3. Synthesis of Prodrug 3a
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 aReagents and condition: (a) 6, EDCI, cat. DMAP, DCM.

Connection of the quinone bioreductive unit 6 to CuB is 
summarized in Scheme 2. CuB was treated with 4-nitrophenyl 
chloroformate in DCM in the presence of Et3N to furnish 
compound 9. The attachment of the leaving group at the 2-
position was evident from large down-field shifts of the NMR 
chemical shifts from CuB (H 4.39 and C 71.6) to 9 (H 5.39 
and C 77.7) and was further confirmed by HMBC 
experiments (see Supporting Information). Parallel 
condensation of 9 with the linkers 8a and 8b, respectively, 
provided 10a and 10b. Treatment of 10a and 10b with 10% 
TFA gave amine intermediates 11a and 11b, in parallel. 
Finally, quinone unit 6 was coupled to amines 11a and 11b 
using EDCI and a catalytic amount of DMAP to yield the 
prodrugs 1 and 2, respectively (Scheme 2). Following similar 
procedure, quinone 6 was directly conjugated to CuB to afford 
prodrug 3 (Scheme 3). The purity of the prodrugs 1–3 was 
checked by HPLC (see Figure  S1).

Stability of the prodrug is an important parameter for further 
bioassays in vitro and in vivo. The stability of prodrugs 1, 2 
and 3 was examined in the cell culture medium, DMEM with 
10% FBS for a period of 72 h by using HPLC. The results 
show that all prodrugs were reasonably stable under the 
experiment conditions, and more than 90% of the tested 
molecules remained after 24 h. Chemically, the carbamate 
functionality applied in the prodrug linkage of 1 and 2 is 
expected to be more stable than the corresponding ester 

functionality of prodrug 3 to bind CuB with the quinone 
moiety. The experiment confirmed that prodrugs 1 and 2 were 
more stable than prodrug 3 (see Figure S2). In addition, it was 
also observed that the 1,3-di-N-methylaminopropyl linkage of 
1 showed better stability than the unsubstituted 1,3-
diaminopropyl linker employed in compound 2.

CuB and the prodrugs 1, 2 and 3 were evaluated for their 
cytotoxicity against breast cancer (MCF-7) and non-cancerous 
Vero (African green monkey kidney) cells using the MTT 
assay. Tamoxifen (TAM), a well established breast cancer 
drug,34 was used as a positive control. As shown in Table 1, 
CuB exhibited potent activity toward MCF-7 cells (IC50 12.0 
µM) and it was highly toxic toward the noncancerous Vero cells 
(IC50 0.04 µM). The prodrugs 1, 2 and 3 exhibited better 
cytotoxicity over TAM (IC50 22.6 µM) against MCF-7 cells with 
IC50 values of 18.1, 15.4 and 16.6 μM, respectively. Compared 
with CuB, the prodrugs 1, 2 and 3 showed lower cytotoxic 
activity towards the Vero cells, with an IC50 values of 12.4, 
1.87 and 0.07 M, respectively. They are approximately 
310-, 47- and 2-fold less toxic than CuB, respectively. Based 
on the above, significant decrease of the cytotoxic action 
against the normal Vero cells while keeping its cytotoxic 
effect against the cancerous MCF-7 cells mentions that the 
bioreductive prodrug design of CuB works by aid of the 
reductase overexpressed in the cancer cells. To further verify 
the role of NQO1 in the drug release process in the cells, we 
also performed MTT assays for MCF-7 cells pretreated with 
dicoumarol (DIC), an inhibitor of NQO1.35 Upon pretreatment 
with DIC, the cell inhibition decreased significantly (Table 1), 
suggesting that the prodrugs exerted its cytotoxicity depending 
on NQO1 bioreductive activation. We also evaluated whether 
the prodrugs could be efficiently reduced by NQO1 and could 
specifically release CuB3 (see Figure S3).

To get an insight into how the prodrug releases drug (CuB) 
or other active species with the reductases in cancer cells, 
cellular uptake study was performed using MCF-7 cells, a 
typical reductase-overexpressing cancer cells.12 First, MCF-7 
cells were treated with 25 µM prodrugs, and the cells were 
lysed after 24 h incubation. The concentrations of prodrug in 

Page 3 of 7

ACS Paragon Plus Environment

ACS Medicinal Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



the culture medium and cell lysate were determined by HPLC 
with a calibration curve.2 As shown in Figure 3A, the concen 
trations of 1 and 3 in culture medium decreased to 8.39 and 
6.21 μM after 24 h incubation, respectively. However, the 

concentration of 2 in the culture medium was not detected. 
This might be caused by better cell permeability of prodrug 2 
compared with those of prodrugs 1 and 3.

Table 1. In Vitro Cytotoxicity Activity of CuB and Prodrugs

 IC50
a (µM)

Compound
MCF-7 Verob MCF-7+DIC

CIc

CuB

1

2

3

TAM

Ellipticine

12.0 ± 0.4

18.1 ± 0.4

15.4 ± 0.2

16.6 ± 0.9

22.6 ± 0.3

–

0.04 ± 0.02

12.4 ± 0.5

1.87 ± 0.24

0.07 ± 0.02

–

4.06 ± 0.58

9.72 ± 1.08

>100

>100

>100

–

–

–

310

46.8

1.75

–

–

aEach value was reproduced in three experiments. bAfrican green monkey kidney. cCytotoxicity index, IC50 of prodrug in 
Vero compared with IC50 of CuB parent in Vero.

Figure 3. Cellular uptake experiments of prodrugs 1, 2 and 3. (A) Concentration of prodrugs 1 and 3 in cell culture media after 24 h 
incubation. aNot detected by HPLC. ** P < 0.01 (n = 3). (B), (C), (D) HRMS analyses for prodrugs 1, 2 and 3 in cell lysate after 24 h 
incubation, respectively.

Next, we examined whether the prodrugs could release ther-
apeutic drug CuB in the cells. As shown in Figure 3, prodrugs 

1, 2 and 3 efficiently released CuB in the cell lysate, while the 
intermediates 11a and 11b were also detected in the cell lysate 
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of 1 and 2, respectively. Very interestingly, 1, 2 and 3 in the 
cell lysate were not detected by HPLC. This highly mentions 
that the transformation of prodrugs to CuB is very efficient in 
the cancer cells by aid of the corresponding reductases. 
Furthermore, observation of the anticipated compounds or 
intermediates released from the prodrugs by high resolution 
ESI-TOFMS analysis confirmed such a conclusion. For the 
prodrug 1, the corresponding ions including CuB ([M + Na]+ 
at m/z = 581.3102), 11a ([M + H]+ at m/z = 687.4216) and the 
lactone 5 ([M + H]+ at m/z = 235.1334) were detected (Figure 
3B). In addition, the ions of CuB and the lactone 5 were also 
detected by HRMS for prodrugs 2 and 3 (Figure 3C and 3D, 
respectively). Moreover, the [M + H]+ ion at m/z 659.3896 

indicated the presence of intermediate 11b in the cell lysate of 
2 (Figure 3C). It is noteworthy that the byproducts cyclic ureas 
X and Y (see Figure 2) were undetectable in the cell lysate 
under the HPLC conditions, because they are not UV-
detectable. However, both compounds showed low-intensity 
ion peaks [M + H]+ ion at m/z 129.1025 and [M + H]+ ion at 
m/z 101.0695 in the HRMS analysis (see Figures 3B and 3C, 
respectively). It should also be noted that the ion peaks of the 
prodrugs 1, 2 and 3 at the extended m/z range to 1000 were not 
detected (see Figure S4). The cytotoxicity of  the lactone 5 and 
cyclic ureas X and Y against MCF-7 and Vero cells using the 
MTT assay was evaluated and they were found to be nontoxic 
(see Table S1).

Figure 4. In vivo antitumor activity of prodrug 1 on tumor growth against 4T1 xenograft in BALB/c mice. (A) Growth curves of tumor 
volume and days were plotted. (B) xenografted mice after being sacrificed. (C) Mean tumor weight, and (D) tumor photographs after mice 
were sacrificed. aAll mice died, and the tumor weight of the CuB (3 mg/kg/d) treated group was not determinable. ** P < 0.01, *** P < 
0.001 vs Control group; Student’s t test (n = 6).

The possibility of deactivation of prodrugs by thiol-
containing species36 was also investigated. The prodrugs 1−3 
was treated with glutathione (GSH), but no reaction was 
observed (Supporting Information).

Since the prodrug 1 exhibited significantly decreased 
toxicity against normal cells, it was therefore selected for in 
vivo antitumor study using the BALB/c mice model with 
breast cancer cells (4T1),37,38 and CuB and TAM were used as 
comparison controls. The antitumor efficacy of different 
dosages of the prodrug 1 (3, 5 and 10 mg/kg/d), CuB (3 
mg/kg/d) and TAM (5 mg/kg/d) were tested in the animal 
model. As shown in Figure 4A, all concentrations of 1 showed 

significant inhibitory effects on tumor growth. The tumor 
growth inhibition (TGI) rate of 1 at dose of 5 mg/kg/d was 
53.8%, which was comparable to that of TAM (55.0%, 5 
mg/kg/d) (Table S2). The excised tumors from the control 
animals ranged from 500 to 700 mg, while all concentrations 
of the prodrug 1-treated tumors weighed less than 400 mg 
(Figure 4B, 4C and 4D). In addition, both dosages of 1 (3 and 
5 mg/kg/d) showed increase in body weight (6.46 and 5.27%, 
respectively) compared with the control group (−1.48%) and 
TAM (4.99%). The prodrug 1 at 10 mg/kg/d group exhibited 
significant body weight loss −2.49% (Figure S5 and Table 
S2), which could mainly ascribe to the tumor weight being 
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inhibited. It is noteworthy that, when a dose of 3.0 mg/kg/d of 
CuB was used in vivo, all treated mice died after one day of 
CuB administration for its high in vitro cytotoxicity. These 
data clearly mention that the prodrug 1 is a successful design 
to reduce the in vivo toxicity of CuB, and it might be a 
therapeutically promising and less toxic agent for potential 
cancer treatment.

In summary, we present a new successful example to 
convert a highly toxic natural product into potentially useful 
and less toxic anticancer compounds using cellular degradable 
prodrug design. Three bioreductive prodrugs (1, 2 and 3) were 
synthesized from CuB, the major constituent of T. 
cucumerina. Our study showed that these prodrugs 
significantly reduced toxicity against non-cancerous cells than 
CuB and maintained the original actions against cancer cells. 
The experiments also confirmed that the prodrugs could 
efficiently release CuB in the reductase-overexpressing MCF-
7 cells. Among them, the prodrug 1 exhibited significant 
toxicity reduction in both in vitro and in vivo studies, and 
showed a comparable tumor growth inhibition in the 4T1 
xenograft mice model at a dose of 5 mg/kg/d by comparison 
with tamoxifen (TAM).
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