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The synthesis and full characterization of [Be2Cl2(µ-Cl)2(PCy3)2], which results from the reaction
of [Pd(PCy3)2] and BeCl2 with concomitant precipitation of elemental palladium, is reported.
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Introduction

Due to the toxicity of beryllium compounds, the
chemistry of beryllium is far less developed than
that of its neighboring elements [1, 2]. As beryllium-
containing materials feature unique properties, most
of the corresponding research is done in material sci-
ences [3]. With regard to its toxicity, additional work
is focused on the coordination chemistry of Be(II)
in aqueous solutions [4, 5]. Thus, tetrahedral four-
coordinate Be species, which result from the coordi-
nation of ligands containing main group substituents,
are well established [6 – 10]. However, the chemistry
of transition metal-beryllium interactions was limited
to cluster compounds, particularily to examples con-
sisting of Zr [11, 12].

Based on previous success with the facile forma-
tion of “metal-only” Lewis pairs between electron-rich
Pt0 complexes and p-block metals, e. g. in the case of
[(Cy3P)2Pt–AlCl3] [13] and [(Cy3P)2Pt–GaCl3] [14],
we sought to extend this rather unusual bonding pattern
to Lewis-base adducts between d- and s-block metals.
BeCl2 as a strong Lewis acid proved to be a promis-
ing starting material, and reaction of [Pt(PCy3)2] with
BeCl2 in benzene resulted in the platinum beryllium
adduct [(Cy3P)2Pt–BeCl2] (1) comprising an unprece-
dented, electron precise bond between beryllium and a
d-block metal [15]. Recent studies showed that related
low-valent palladium complexes also show a propen-
sity to act as metal bases towards metal-coordinate bo-
ryl and borylene ligands, and therefore behave simi-
lar to their platinum congeners [16 – 19]. In the present
paper we report on the reaction of [Pd(PCy3)2] with
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BeCl2, resulting in the formation of a dinuclear beryl-
lium species on a different reaction pathway.

Results and Discussion

The reaction of [Pd(PCy3)2] and BeCl2 was con-
ducted under similar conditions as applied to the
synthesis of 1. Thus, a toluene solution of the pal-
ladium complex was treated with a slight excess
of BeCl2 and heated to 80 ◦C. The reaction was
monitored by 31P NMR spectroscopy, revealing a
new signal at 33.3 ppm, which is slightly highfield
shifted with regard to that of the starting material
(39.2 ppm). Completion of the conversion, though,
required additional BeCl2 – two equivalents in to-
tal – and extended heating to 80 ◦C, after which
a grey solid precipitated from the yellow-green so-
lution, which we assumed to be elemental palla-
dium. 9Be NMR spectroscopy of the new compound
gave a broad signal at 12.7 ppm, which is compara-
ble to three-coordinate beryllium compounds such as
ArBeCl(OEt2) (Ar = C6H3-2,6-Mes2) (12.8 ppm), and
thus more deshielded than corresponding adducts com-
prising beryllium in coordination number four, e. g.
BeCl2(OEt2)2 and Be{[N(SiMe3)]2CPh}2, which ex-
hibit resonances at 2.6 and 5.5 ppm, respectively [20].
It should be noted though, that in case of the corre-
sponding Pt-Be adduct 1 no 9Be NMR signal could
be detected due to unresolved coupling to platinum
and phosphorus nuclei. The aforementioned spectro-
scopic data as well as the required twofold excess of
BeCl2 already indicate that [Pd(PCy3)2] does not form
a Lewis base adduct with BeCl2 in analogy to its plat-
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inum congener. Indeed, after work up, 62 % of a col-
orless, crystalline material was isolated. X-Ray analy-
sis revealed the formation of the dinuclear phosphine
adduct [Be2Cl2(µ-Cl)2(PCy3)2] (2).

In the crystal, 2 displays C2h symmetry, and each
beryllium center is surrounded by a phosphine group,
two bridging and one terminal chloride substitu-
tent, thus exhibiting a distorted tetrahedral geometry
(Fig. 1).

The Be–P bond length in 2 (1.932(2) Å) is signifi-
cantly shorther than in a related bisphosphine complex
of beryllium [BeCl2(Ph2PCH2PPh2)2] (2.206(3) Å),
recently reported by Dehnicke et al. [21]. The P–Be–
Cl1 plane in 2 is orientated almost perpendicular
with respect to the central Be–Cl2–Be a–Cl2 a plane
(88.2◦). As to be expected, the exocyclic Be–Cl1 dis-
tance of 1.932(2) Å is shorter than the endocyclic
Be–Cl separations (Be–Cl2 2.088(2) Å). Compari-
son to the structurally related (Ph4P)2[Be2Cl6] reveals
many similarities [22]. Thus, the terminal (1.952(3) Å)
and the bridging Be–Cl bonds (2.102(3) Å) in the latter
species are only slighthly longer than those in 2. Like-
wise, the central four-membered ring in 2 displays an
angle of 97.13(9)◦ (Cl2–Be–Cl2 a), which resembles

Fig. 1. Molecular structure of [Be2Cl2(µ-Cl)2(PCy3)2] (2).
Displacement ellipsoids are at the 50 % probability level.
Symmetry related positions (−x+1, −y, −z+1) are marked
with a. Selected bond lenghts (Å) and angles (deg): Be–
Cl1 1.932(2), Be–P 2.216(2), Be–Cl2 2.088(2); P–Be–Cl1
114.47(10), P–Be–Cl2 110.54(10), Cl2–Be–Cl2 a 97.13(9).

that in [Be2Cl6]2− (95.6(1)◦). Somewhat surprising,
a CCDC search provided no information as to other
structurally characterized beryllium chloride species
of the type trans-(L)ClBe-(µ-Cl)2-BeCl(L) (L = neu-
tral donor), wherein one donating ligand stabilizes a
tetrahedral beryllium center. However, similar struc-
tural motifs are known from d-block metal species
such as the corresponding dinuclear mercury com-
pound [Hg2(Cl)2(µ-Cl)2(PCy3)2] [23] and the palla-
dium complex [Pd2(Cl)2(µ-Cl)2(PCy3)2] [24]. How-
ever, the latter compound displays the expected square-
planar geometry at the palladium centers.

In conclusion, we have shown that the reaction of
[Pd(PCy3)2] with BeCl2 takes a completely different
course than that of the corresponding platinum phos-
phine species. In case of the former, BeCl2 abstracts
the phosphine ligands with formation of a dinuclear,
structurally rare Be-P adduct, without any indication
for the formation of a palladium-beryllium complex.
Presumably, this finding can be ascribed to a decreased
Lewis basicity of Pd in comparison to Pt.

Experimental Section

Safety note: in view of the toxicity of beryllium and its
compounds, all necessary safety measures were undertaken.
All reactions were carried out on a small scale, and for NMR
spectroscopy we used exclusively J. Young NMR tubes. The
glassware was cleaned separately, and all waste was collected
in suitable containers.

General considerations: All manipulations were per-
formed under an inert atmosphere of dry argon using ei-
ther standard Schlenk-line or glovebox techniques. Toluene
was distilled over sodium and stored over molecular sieves
prior to use. C6D6 was dried over molecular sieves and de-
gassed by three freeze-pump-thaw cycles before use. Anhy-
drous BeCl2 was purchased from Aldrich, [Pd(PCy3)2] was
prepared according to known methods [25]. The NMR spec-
tra were recorded on a Bruker Avance 500 (1H: 500.13 MHz;
13C: 125.76 MHz; 31P: 202.45 MHz; 9Be: 70.28 MHz) FT-
NMR spectrometer. 1H and 13C{1H} NMR spectra were
referenced to external TMS via the signal of the residual
protons of the solvent (1H) or via the solvent itself (13C).
31P{1H} NMR spectra were referenced to 85 % H3PO4,
9Be NMR spectra to an aqueous solution of BeCl2.

Di-µ-chloro-trans-dichloro-bis[tricyclohexylphosphine]-
diberyllium (2)

A small excess of BeCl2 (2.8 mg, 0.035 mmol) was
added to a pale-yellow solution of [Pd(PCy3)2] (20 mg,
0.030 mmol) in toluene (0.4 mL). The reaction was heated
for 18 h at 80 ◦C. A second portion of BeCl2 (2.0 mg,
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0.025 mmol) was added, and the reaction mixture was again
heated for 18 h at 80 ◦C to complete the conversion. No
ligand exchange was observed in solution. Palladium pre-
cipitated as a dark-grey solid from the yellow-green solu-
tion, and after filtration the latter was layered with hex-
ane. After slow evaporation in a glovebox at r. t., 2 was
obtained as colorless crystals (13 mg, 62 %). The crystals
were redissolved in C6D6 for spectroscopic characteriza-
tion. – 1H NMR (500.13 MHz, C6D6): δ = 1.26 (br s, 18H,
Cy), 1.75 – 1.61 (m, 30H, Cy), 2.11 – 2.05 (m, 18H, Cy). –
13C NMR (125.76 MHz, C6D6): δ = 26.55 (s, C4, Cy), 27.81
(virtual triplet, N [26] = 11 Hz, C2, C6, Cy), 31.45 (s, C3,
C5, Cy), 34.14 (virtual triplet, N [27] = 18 Hz, C1, Cy). –
31P{1H} NMR (202.46 MHz, C6D6): δ = 33.25. – 9Be NMR
(70.28 MHz, C6D6): δ = 12.72 (br s). – C36H66Be2Cl4P2
(720.70): calcd. C 60.00, H 9.23; found C 59.19, H 8.58.

X-Ray structure determination

The crystal data of 2 were collected on a Bruker
APEX diffractometer with CCD area detector and graphite-

monochromatized MoKα radiation. The structure was solved
using Direct Methods, expanded using Fourier techniques
and refined with the SHELX software package [28]. All
non-hydrogen atoms were refined anisotropically. Hydro-
gen atoms were assigned idealized positions and were in-
cluded in structure factor calculations. Crystal data for 2:
C42H72Be2Cl4P2, Mr = 798.76, colorless block, 0.28×0.1×
0.1 mm3, monoclinic space group P21/c, a = 15.583(1),
b = 8.2539(6), c = 18.4827(13) Å, β = 112.999(1)◦ ,
V = 2188.3(3) Å3, Z = 2, ρcalcd = 1.21 g cm−3,
µ = 0.4 mm−1, F(000) = 860 e, T = 168(2) K, R1 = 0.0441,
wR2 = 0.0911 for 4281 independent reflections [2θ ≤
52.02◦] and 226 refined parameters, ∆ρ (max / min) =
0.495 / −0.363 e Å−3.

CCDC 795511 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data request/cif.
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