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Three-Component Reaction for an Efficient Synthesis of
Stable Phosphorus Ylides Using Mercapto Compounds

Zahra Hassani,1,2 Mohammad Reza Islami,1 Arman
Moradi,1 and Moazameh Yazdi Rouh-Alamini1

1Department of Chemistry, Shahid Bahonar University, Kerman, Iran
2Department of Chemistry, Islamic Azad University of Kerman,
Kerman, Iran

Stabilized phosphorus ylides were obtained from the three-component reaction
between dialkyl acetylenedicarboxylate and sulfur compounds such as pyridine-
2-thione, 2-furylmethanethiol, ethanedithioamide, and N-phenyl-1,2,4-triazole-3-
thiol in the presence of triphenylphosphine in excellent yields.

Keywords Acetylenic ester; ethanedithioamide; 2-furylmethanethiol; phosphorus
ylides; pyridine-2-thione; three-component reaction

INTRODUCTION

The development of simple synthetic routes for widely used organic
compounds from readily available reagents is one of the goals in or-
ganic chemistry.1 Organophosphorus compounds are synthetic targets
of interest, because of their applications in a variety of industrial, bio-
logical, and pharmacological activities and chemical synthetic uses.2–8

It has been shown that some of heterocyclic compounds exhibit bioac-
tive properties. For example, 2-furylmethanethiol derivatives are found
to be novel antitumor compounds.9 In addition, volatile compounds
containing sulfur atoms are a major food aroma class found in veg-
etables, cooked meat, and other processed foods. These compounds are
ubiquitous in animals and plants, and mercapto compounds have been
detected in various heated foods.10–13 There are several reports about
furans with a thio group in the literature that possessed meat-like
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Three-Component Synthesis of Phosphorus Ylides 569

aromas, and the corresponding disulfides that were formed by oxida-
tion of furan thiols were also found to have meat-like characteristics
and exceptionally low odor threshold values.14

2-Mercaptopyridine can exist in two isomers. These isomers are
called thione and thiol tautomers. The pyridine-2-thione (HpyS), which
contains the –N(H)-C(=S) chromophore, is a useful model compound
for sulfur-containing analogues of purine and pyrimidine bases, and in
view of its potential biochemical implications, the coordination chem-
istry of HpyS and its derivatives has been investigated, particularly
during the past decade.15,16 On the other hand, pyridine-2-thione is
able to act as an enzyme inhibitor of the polyphenoloxidase, which is re-
sponsible for browning in fruits and vegetables.17,18 This compound has
also been examined as cholesterol biosynthesis inhibitor and studied
as a neurotropic agent. This compound also was examined in routine
neuropharmacological tests to characterize its activity spectrum and
to reveal the influence of the structure on activity, which may indicate
further steps in psychotropic drug design.19 Dithiooxamide, frequently
called rubeanic acid, is well-known as a complexing agent. This com-
pound is theoretically capable of participating in complexing as a ligand
as well as acting as one of the ligand synthons in template synthesis
gelatin-immobilized matrix, and it has been recognized as a reagent for
the photometric analysis of nickel and copper.20–22

In this article, we wish to describe an efficient conversion of sul-
fur compounds to a system containing a ylide moiety along with es-
ter groups using the reaction of dialkyl acetylenedicarboxylate, triph-
enylphosphine, and a desired sulfur compound (Scheme 1).
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570 Z. Hassani et al.
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RESULTS AND DISCUSSION

On the basis of the well-established chemistry of trivalent phosphorus
nucleophiles,23–26 it is reasonable to assume that the reaction starts
with the Michael addition of triphenylphosphine 1 to electron-deficient
acetylenic ester 2 to form the zwitterionic intermediate 3,8,27–29 which
is subsequently protonated by the sulfur compounds (G-H) to give
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Three-Component Synthesis of Phosphorus Ylides 571

vinyltriphenylphosphonium cation 4. Then, the addition of the con-
jugate base of the sulfur compounds produces phosphorus ylides 5a–i.

The produced structures 5a–i were identified by IR, 1H, and 13C
NMR spectra. The 1H NMR and 13C NMR spectral data of new ylides
5a–i exhibited a mixture of two conformational isomers. The ylide moi-
ety of these compounds is strongly conjugated with the adjacent car-
bonyl group, and the rotation about the partial double bond in E, Z
geometrical isomers is low on the NMR time scale at ambient temper-
ature (Scheme 2). Conformational isomers in phosphoranes have been
previously established and reported in the literature.30–32
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The 1H NMR spectrum of 5a displayed two sharp lines (δ = 3.58 and
3.66 ppm) for the major isomer arising from the methoxy groups, along
with a signal for the methine proton at 5.09 ppm, which appeared as
a doublet (3JPH = 19.9 Hz). The corresponding signals for the minor
isomer appeared at (δ = 3.13 and 3.74 ppm) for the methoxy groups
and at (δ = 5.6 ppm, 3JPH = 20.9 Hz) for the methine proton. The 13C
NMR spectrum of 5a displayed signals in agreement with the mixture
of two geometrical isomers of Z and E. Although the presence of the
31P nucleus has complicated both the 1H and 13C NMR spectra of 5a,
it helps in the assignment of signals by long range spin–spin couplings
with 1H and 13C nuclei (see the Experimental section). The 1H and
13C NMR spectra of compound 5b are similar to those of 5a, except
for the ester groups, which exhibited characteristic resonances with
appropriate chemical shifts. The 1H NMR and 13C NMR spectral data
for compound 5c–i are consistent with the geometrical isomers (see the
Experimental section).

In summary, phosphorus ylides may be prepared by a simple, one-
pot, three-component reaction of acetylenic esters, sulfur compounds,
and triphenylphosphine. The present method carries the advantage
that not only is the reaction performed under neutral conditions, but
also that the substances can be mixed without any activation or modifi-
cation. It seems that the procedure described here may be employed as
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572 Z. Hassani et al.

an acceptable method for the preparation of phosphoranes with vari-
able functionalities.

EXPERIMENTAL

Melting points were obtained on a Gallenkamp melting point apparatus
and are uncorrected. IR spectra were recorded on a Mattson 1000 FT-IR
spectrometer. The 1H and 13C NMR spectra were recorded on a Bruker
DRX-500 Avance (1H at 500 MHz, and 13C at 125.77 MHz). Elemental
analysis for C, H, and N were determined by Tarbiat Moallem Uni-
versity using a Heracus CHN-O-Rapid analyzer. All common reagents
and solvents were used as obtained from commercial suppliers without
further purification. Throughout this section, an asterisk (*) denotes
for two rotamers.

Dimethyl 2-(2-Pyridylsulfanyl)-3-(1,1,1-triphenyl-λ5-
phosphanylidene) Succinate (5a) General Procedure

At ambient temperature, 0.24 mL dimethyl acetylenedicarboxylate (2
mmol) was added dropwise to a stirred solution of 0.53 g triphenylphos-
phine (2 mmol) and 0.22 g pyridine-2-thione (2 mmol) in a mixture of
10 mL hexane-ethyl acetate (1:2). After the addition was complete (ap-
proximately 30 min), the mixture was stirred for an additional 1 h and
was subsequently filtered. The solid collected in the filter was washed
thoroughly with ethyl acetate to give a yellow powder.

Yellow powder, 0.98 g, mp 152–154◦C yield 95%; IR (KBr) (νmax, cm1)
1741 and 1641(C O). Major isomer (E) (73.25%) 1H NMR (500 MHz,
CDCl3): δ = 3.58 and 3.66 (6H, 2s, 2 CH3), 5.09 (1H, d, 3JPH =19.1 Hz,
P=C-CH), 6.44–7.89 (38H, m, arom)∗ppm; 13C NMR (125 MHz, CDCl3):
δ = 43.71 (d, 1JPC = 134.4 Hz, P=C), 49.08 and 52.58 (2 OCH3), 48.62 (d,
2JPC =15.2 Hz, P=C-CH), 118.38 (CH), 121.24 (CH), 127.02 (d, 1JPC =
89.9 Hz, Cipso), 129.12 (d,3JPC = 12.4 Hz, CHmeta), 131.85 (d, 4JPC =
2.6 Hz, CHpara), 133.78 (d, 2JPC = 9.9 Hz, CHortho), 135.22 (CH), 148.61
(CH), 160.12 (C), 170.57 (d, 2JPC = 13.9 Hz, C=O)∗, 173.26 (d, 3JPC =
9.5 Hz, C=O)∗ppm. Minor isomer (Z) (26.75%) 1H NMR (500 MHz,
CDCl3):δ = 3.13 and 3.74 (6H, 2s, 2 CH3), 5.14 (1H, d, 3JPH = 20.9 Hz,
P=C-CH) ppm; 13C NMR (125 MHz, CDCl3): δ = 42.24 (d, 1JPC = 137.8
Hz, P=C), 49.09 and 50.25 (2 OCH3), 49.30 (d, 2JPC =16.3 Hz, P=C-
CH), 112.48 (CH), 121.60 (CH), 126.29(d, 1JPC = 91.9 Hz, Cipso), 128.62
(d,3JPC = 11.9 Hz, CHmeta), 132.44 (d, 4JPC = 2.8 Hz, CHpara), 133.15
(CH), 133.42 (d, 2JPC = 9.9 Hz, CHortho), 148.60 (CH), 159.74 (C) ppm.
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Three-Component Synthesis of Phosphorus Ylides 573

Diethyl 2-(2-Pyridylsulfanyl)-3-(1,1,1-triphenyl-λ5-
phosphanylidene) Succinate (5b)

Yellow powder, 0.90 g, mp 108–110◦C yield 83%; IR (KBr) (νmax, cm1)
1741 and 1641(C=O). Major isomer (Z) (58.16%) 1H NMR (500 MHz,
CDCl3): δ = 0.43 (3H, t, 3JHH = 7.0 Hz, CH3), 1.17 (3H, t,3JHH=7.0 Hz,
CH3), 3.69–4.29 (8H, m, OCH2)∗, 5.05 (1H, d, 3JPH =19.2 Hz, P=C-
CH), 6.42–7.89 (38H, m, arom)∗ ppm; 13C NMR (125 MHz, CDCl3):
δ = 14.16 and 14.17 (2 CH3), 42.46 (d, 1JPC = 138.2 Hz, P=C), 49.58
(d, 2JPC =14.6 Hz, P=C-CH), 61.17 and 61.43 (2 OCH2), 118.27 (CH),
121.60 (CH), 127.21 (d, 1JPC = 90.6 Hz, Cipso), 129.03 (d, 3JPC = 12.3
Hz, CHmeta), 131.79 (d, 4JPC = 2.5 Hz, CHpara), 133.79 (d, 2JPC = 9.9
Hz, CHortho), 135.15 (CH), 148.46 (CH), 160.39(C), 170.28 (d, 2JPC =
10.0 Hz, C=O)∗, 172.52 (d, 3JPC = 9.5 Hz, C=O)∗ppm. Minor isomer (E)
(41.84%) 1H NMR (500 MHz, CDCl3): δ = 0.48 (3H, t, 3JHH = 6.9 Hz,
CH3), 1.25 (3H, t,3JHH=7.4 Hz, CH3), 5.12 (1H, d, 3JPH =18.0 Hz, P=C-
CH) ppm; 13C NMR (125 MHz, CDCl3): δ = 13.97 and 15.02 (2 CH3),
41.22 (d, 1JPC = 128.8 Hz, P=C), 49.04 (d, 2JPC =13.4 Hz, P=C-CH),
57.54 and 58.28 (2 OCH2), 112.40 (CH), 121.24 (CH), 126.12 (d, 1JPC =
90.9 Hz, Cipso), 128.44 (d,3JPC = 12.7 Hz, CHmeta), 132.36 (d, 4JPC = 2.8
Hz, CHpara), 133.07 (CH), 133.46 (d, 2JPC = 9.8 Hz, CHortho), 148.49
(CH), 160.05 (C) ppm.

Dimethyl 2-[(2-Furylmethyl)sulfanyl)]-3-(1,1,1-triphenyl-λ5-
phosphanylidene) Succinate (5c)

White powder, 0.93 g, mp 159–161◦C yield 90%; IR (KBr) (νmax, cm1)
1741 and 1641(C=O). Major isomer (Z) (53%) 1H NMR (500 MHz,
CDCl3): δ = 2.90 and 3.55 (6H, 2s, 2 CH3), 3.74–3.83 (2H, m, CH2)∗,
5.88 (1H, d, 3JPH =11.8 Hz, P=C-CH)∗, 6.20–7.60 (36H, m, arom)∗ppm;
13C NMR (125 MHz, CDCl3): δ = 29.10 (CH2), 40.92 (d, 1JPC = 117.9 Hz,
P=C), 48.33 (d, 2JPC =16.0 Hz, P=C-CH∗, 49.04 and 52.34 (2 OCH3),
106.75 (CH)∗, 110.12 (CH)∗, 126.31 (d, 1JPC = 88.0 Hz, Cipso), 128.62
(d,3JPC = 11.2 Hz, CHmeta)∗, 131.93 (d, 4JPC = 2.6 Hz, CHpara)∗, 133.72
(d, 2JPC = 9.8 Hz, CHortho)∗, 141.52 (CH)∗, 152.44 (C)∗, 170.31 (d, 2JPC =
13.9 Hz, C=O)∗, 173.13 (d, 3JPC = 9.5 Hz, C=O)∗ppm. Minor isomer (E)
(47%) 1H NMR (500 MHz, CDCl3):δ = 3.37 and 3.57 (6H, 2s, 2 CH3)
ppm; 13C NMR (125 MHz, CDCl3): δ = 29.42 (CH2), 42.92 (d, 1JPC =
130.6 Hz, P=C), 49.03 and 50.31 (2 OCH3), 127.02 (d, 1JPC = 89.7 Hz,
Cipso) ppm.
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574 Z. Hassani et al.

Diethyl 2-[(2-Furylmethyl)sulfanyl)]-3-(1,1,1-triphenyl-λ5-
phosphanylidene) Succinate (5d)

White powder, 0.89 g, mp 178–181◦C yield 82%; IR (KBr) (νmax, cm1)
1741 and 1641(C=O). Major isomer (Z) (54.75%) 1H NMR (500 MHz,
CDCl3): δ = 0.30 (3H, t, 3JHH = 7.0 Hz, CH3), 1.20 (3H, t,3JHH=7.0 Hz,
CH3), 3.46–3.62 (4H, m, OCH2)∗, 3.72–3.85 (2H, m, CH2)∗, 3.89–4.01
(4H, m, OCH2)∗, 5.87 (1H, d, 3JPH =19.2 Hz, P=C-CH)∗, 6.21–7.62 (36H,
m, arom)∗ ppm; 13C NMR (125 MHz, CDCl3): δ = 14.02 and 14.11 (2
CH3), 28.92 (CH2)∗, 40.59 (d, 1JPC = 127.2 Hz, P=C), 49.95 (d, 2JPC =9.2
Hz, P=C-CH), 60.76 and 61.06 (2 OCH2), 106.63 (CH), 110.12 (CH),
127.26 (d, 1JPC = 93.2 Hz, Cipso), 128.45 (d,3JPC = 7.02 Hz, CHmeta),
131.80 (d, 4JPC = 2.52 Hz, CHpara), 133.78 (d, 2JPC = 9.9 Hz, CHortho),
141.38 (CH), 152.62 (C), 168.71 (d, 2JPC = 10.0 Hz, C=O)∗, 172.51 (d,
3JPC = 9.5 Hz, C=O)∗ppm. Minor isomer (E) (45.25%) 1H NMR (500
MHz, CDCl3): δ = 1.06 (3H, t, 3JHH = 6.9 Hz, CH3), 1.22 (3H, t,3JHH=7.0
Hz, CH3) ppm; 13C NMR (125 MHz, CDCl3): δ =13.88 and 14.07 (2 CH3),
42.03 (d, 1JPC = 143.78 Hz, P=C), 48.53 (d, 2JPC =10.1 Hz, P=C-CH),
61.06 and 62.36 (2 OCH2), 108.33 (CH), 110.50 (CH), 126.56 (d, 1JPC =
84.84 Hz, Cipso), 128.58 (d,3JPC = 12.7 Hz, CHmeta), 131.86 (d, 4JPC = 2.8
Hz, CHpara), 133.82 (d, 2JPC = 9.8 Hz, CHortho), 142.39 (CH), 150.36 (C)
ppm.

Dimethyl 2-[(1-Phenyl-1H-1,2,4-triazol-5-yl)sulfanyl]-3-(1,1,1-
triphenyl-λ5-phosphanylidene) Succinate (5e)

White powder, 1.10 g, mp 110–113◦C yield 95%; IR (KBr) (νmax, cm−1):
1741 and 1641 (C=O). Major isomer (Z) (56.3%) 1H NMR (500 MHz,
CDCl3): δ = 3.22 and 3.79 (6H, 2s, 2 CH3), 5.53 (1H, d, 3JPH =15.8
Hz, P=C-CH), 7.42–8.00 (42H, m, arom)∗ppm. 13C NMR (125 MHz,
CDCl3): δ = 39.75 (d, 1JPC = 132.9 Hz, P=C), 49.44 and 52.98 (2 OCH3),
63.13 (d, 2JPC =17.7 Hz, P=C-CH), 123.30 (CH)∗, 125.44 (d, 1JPC =
80.5 Hz, Cipso), 128.48 (CH), 129.21 (d, 3JPC = 17.7 Hz, CHmeta)∗, 131.98
(CH), 132.00 (CH), 132.42 (CHpara)∗, 133.60 (d, 2JPC = 9.2 Hz, CHortho)∗,
135.17 (C)∗, 162.72 (C)∗, 169.18 (d, 2JPC = 12.2 Hz, C=O)∗, 169.65
(C=O)ppm. Minor Isomer (E) (43.7%) 1H NMR (500 MHz, CDCl3):δ =
3.65 and 3.76 (6H, 2s, 2 CH3), 5.65 (1H, d, 3JPH = 16.4 Hz, P=C-CH)
ppm. 13C NMR (125 MHz, CDCl3): δ = 40.70 (d, 1JPC = 137.9 Hz, P=C),
50.56 and 52.84 (2 OCH3), 62.46 (d, 2JPC =17.0 Hz, P=C-CH), 126.17
(d, 1JPC = 80.5 Hz, Cipso), 128.57 (CH), 132.07 (CH), 132.15 (CH), 169.70
(C=O) ppm.
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Three-Component Synthesis of Phosphorus Ylides 575

Diethyl 2-[(1-Phenyl-1H-1,2,4-triazol-5-yl)sulfanyl]-3-(1,1,1-
triphenyl-λ5-phosphanylidene) Succinate (5f)

White powder, 1.20 g, mp 102–104◦C yield 98%; IR (KBr) (νmax, cm−1):
1741 and 1641 (C=O). Major isomer (Z) (55.3%) 1H NMR (500 MHz,
CDCl3): δ = 0.50 (3H, t, 3JHH = 7.0 Hz, CH3), 1.28 (3H, t,3JHH=7.2 Hz,
CH3), 3.78–4.30 (8H, m, OCH2)∗, 5.53 (1H, d, 3JPH =14.7 Hz, P=C-CH),
7.34–8.00 (42H, m, arom)∗ ppm. 13C NMR (125 MHz, CDCl3): δ = 14.13
and 14.20 (2 CH3), 58.47 (d, 1JPC = 98.2 Hz, P=C)∗, 61.83 (2 OCH2),
63.20 (d, 2JPC =16.7 Hz, P=C-CH)∗, 123.37 (CH)∗, 126.38 (d, 1JPC =
90.9 Hz, Cipso), 128.48 (CH), 128.99 (d,3JPC = 10.9 Hz, CHmeta)∗, 131.99
(CH), 132.09 (CH), 132.33 (CHpara)∗, 133.65 (d, 2JPC = 9.2 Hz, CHortho)∗,
135.23 (C)∗, 162.83 (C)∗, 169.50 (d, 2JPC = 11.9 Hz, C=O)∗, 169.25 (d,
2JPC = 6.5 Hz C=O)∗ppm. Minor isomer (E) (44.7%) 1H NMR (500 MHz,
CDCl3): δ = 1.23 (3H, t, 3JHH = 7.2 Hz, CH3), 1.33 (3H, t,3JHH=7.0 Hz,
CH3), 5.50 (1H, d, 3JPH =14.05 Hz, P=C-CH) ppm. 13C NMR (125 MHz,
CDCl3): δ = 13.90 and 14.74 (2 CH3), 61.28 (2 OCH2), 125.69 (d, 1JPC =
82.4 Hz, Cipso), 128.58 (CH), 132.0 (CH), 132.17 (CH) ppm.

Dimethyl 2-[(2-Amino-2-thioxoethanthioyl)amino]-3-(1,1,1-
triphenyl-λ5-phosphanylidene) Succinate (5g)

Yellow powder, 0.99 g, mp 162–164◦C yield 95%; IR (KBr) (νmax, cm−1):
3400, 3227 (NH2, NH), 1753 and 1636 (C=O), 1519, 1518 (C=S). Major
isomer, (E) (54.0%) 1H NMR (500 MHz, CDCl3): δ = 3.60 and 3.74 (6H,
2s, 2 CH3), 4.98–5.06 (1H, m, P=C-CH)∗, 7.47–7.75 (30H, m, arom)∗,
10.93 (2H, brs, NH2)∗, 11.06 (1H, brs, NH)∗ ppm. 13C NMR (125 MHz,
CDCl3): δ = 43.33 (d, 1JPC = 135.6 Hz, P=C), 50.37 and 52.42 (2 OCH3),
59.89 (d, 2JPC =17.6 Hz, P=C-CH), 126.28 (d, 1JPC = 91.0 Hz, Cipso),
128.84 (d,3JPC = 12.1 Hz, CHmeta)∗, 132.16 (CHpara)∗, 133.88 (CHortho)∗,
170.04 (d, 2JPC = 13.3 Hz, C=O)∗, 171.72 (C=O)∗, 183.09 and 183.59
(C=S)∗ppm. Minor isomer, (Z) (46.0%) 1H NMR (500 MHz, CDCl3): δ =
3.18 and 3.75 (6H, 2s, 2 CH3) ppm. 13C NMR (125 MHz, CDCl3): δ =
42.12 (d, 1JPC = 123.0 Hz, P=C), 49.29 and 52.43 (2 OCH3), 58.92 (d,
2JPC =15.3 Hz, P=C-CH), 125.65 (d, 1JPC = 92.8 Hz, Cipso) ppm.

Diethyl 2-[(2-Amino-2-thioxoethanthioyl)amino]-3-(1,1,1-
triphenyl-λ5-phosphanylidene) Succinate (5h)

Yellow powder, 0.99 g, mp 170–172◦C, yield 90%; IR (KBr) (νmax, cm−1):
3400, 3227 (NH2, NH), 1753 and 1636 (C=O), 1519 and 1518 (C=S).
Major isomer, (E) (61.4%)1H NMR (500 MHz, CDCl3): δ = 1.25 (9H,
t,3JHH=6.7 Hz, 3 CH3)∗, 3.71–4.22 (8H, m, OCH2)∗, 4.98–5.03 (1H, m,
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P=C-CH)∗, 7.26–7.75 (30H, m, arom)∗, 10.97 (2H, brs, NH2)∗, 11.08
(1H, brs, NH)∗ ppm. 13C NMR (125 MHz, CDCl3): δ = 14.23 and 14.96 (2
CH3), 42.99 (d, 1JPC = 135.6 Hz, P=C)∗, 58.53 and 61.13 (2 OCH2), 59.82
(d, 2JPC =16.1 Hz, P=C-CH), 126.55 (d, 1JPC = 91.4 Hz, Cipso), 128.72
(d,3JPC = 11.9 Hz, CHmeta)∗, 132.03 (d, 4JPC = 2.4 Hz, CHpara)∗, 133.91
(d, 2JPC = 9.7 Hz, CHortho)∗, 169.83 (d, 2JPC = 17.1 Hz, C=O)∗, 171.07
(C=O)∗, 183.19 and 183.64 (C=S)∗ppm. Minor isomer (Z) (38.6%)1H
NMR (500 MHz, CDCl3): δ = 0.45 (3H, t, 3JHH = 6.1 Hz, CH3) ppm. 13C
NMR (125 MHz, CDCl3): δ = 13.91 and 14.24 (2 CH3), 41.86 (d, 1JPC =
138.3 Hz, P=C), 57.79 and 61.12 (2 OCH2), 58.89 (d, 2JPC =16.0 Hz,
P=C-CH), 125.92 (d, 1JPC = 91.6 Hz, Cipso), 169.64 (d, 2JPC = 17.4 Hz,
C=O) ppm.

Dimethyl 2-[[Ethylanilino)carbothioyl](1-naphtyl)amino]-3-
(1,1,1-triphenyl-λ5-phosphanylidene) Succinate (5i)

White powder. 0.81 g, mp 153–155◦C, yield 76%; IR (KBr) (νmax, cm−1):
1741 and 1641 (C=O). Major isomer (Z) (71%) 1H NMR (500 MHz,
CDCl3): δ = (3H, t,3 JHH =7.0 Hz, CH3), 3.42–3.48 (4H, m, 2CH2) ∗,
2.68 and 4.00 (6H, 2s, 2 OCH3), 4.04 (1H, d, 3JPH = 13.8 Hz, P=C-
CH)∗, 6.17–7.76 (54 H, m, arm)∗.13C NMR (125 MHz, CDCl3): δ = 12.84
(CH3), 42.66 (d, 1JPC = 136.0Hz, P=C), 48.54 (CH2), 51.48 and 52.21
(2 OCH3), 68.22 (d, 2JPC = 19.5 Hz, P=C-CH) ,124.53–145.94 (carbons
of aromatic rings)*, 169.11 (d, 2JPC = 13.4 Hz, C=O), 173.92 (d, 3JPC =
14.2 Hz, C=O ), 188.81 (C=S). Minor isomer (E) (29%), 1H NMR (500
MHz, CDCl3): δ = 1.26 (3H, t, 3JHH = 7.1 Hz,CH3), 3.37 and 3.93 (6H,
2S, 2 OCH3) . 13C NMR (125 MHz, CDCl3): δ = 12.89 (CH3) , 42.66 (d,
1JPC = 136.9 Hz, P=C), 49.60 (CH2), 51.69 and 52.09 (2 OCH3), 67.20 (d,
2JPC = 20.1 Hz, P=C-CH), 169.97 (d, 2JPC = 17.7 Hz, C=O), 173.93(d,
3JPC = 14.1 Hz, C=O ), 189.13 (C=S).
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