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Abstract: Molecular sieves have been found to promote a new fast,
environmentally friendly and experimentally simple multicompo-
nent domino reaction from 1,3-dicarbonyls for the synthesis of pyr-
rolopiperazine and azasteroid-like scaffolds, of potential synthetic
and biological interests.
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In modern organic chemistry, the development of new,
rapid, selective, environmentally friendly,1 step- and
atom-economical2 synthetic routes toward focused librar-
ies of functionalised heterocyclic building blocks is of
great importance to both medicinal and synthetic chem-
ists, and still constitutes a challenge from academic and
industrial points of view.3 Although the ‘ideal synthesis’4

is unlikely to be achieved routinely, multicomponent
reactions5 (MCRs) involving domino processes,6 with at
least three different, simple substrates reacting in a well-
defined manner to form a single compound, emerged as a
powerful tool in target-oriented synthesis.7 In addition,
these transformations can be efficiently mediated by het-
erogeneous catalysts, making this process nearly ideal in
terms of both greenness and simplicity.8 Herein we
present the direct, high-yielding one-pot conversion of
simple 1,3-dicarbonyl compounds9 1 into pyrrolopipera-
zine scaffolds 4 promoted by 4 Å molecular sieves (MS).
The presence of the 1,2,3,4-tetrahydropyrrolo[1,2-a]pyra-
zine core10 is of interest for both biological and synthetic
purposes. Compounds with a related structure are found in
some families of naturally occurring marine alkaloids
which have been the centre of much recent attention.11

Alternatively, related synthetic pyrazine nuclei are known
to present a broad spectrum of biological activities.12

The success of our approach is based on the production,
under heterogeneous catalysis by MS, of functionalised
iminium ions and their selective in situ trapping.13 Fol-
lowing this concept, we have now designed a new domino
reaction forming two C–C bonds from 1,3-dicarbonyl 1, a
Michael acceptor 2 and a functionalised pyrrole 3. As
outlined in Scheme 1, the sequence involves four different
reactions in an ordered manner, i.e. Michael addition,

aldimine formation, nucleophilic addition leading to an
ene–iminium intermediate, and a Pictet–Spengler-type
cyclisation.14 This new operationally simple strategy is
amenable to the highly efficient one-pot construction of
pyrrolopiperazine scaffolds of type 4.

The scope of this novel MCR was examined using various
acyclic and cyclic 1,3-dicarbonyls (1a–i, Figure 1). Ac-
cording to our designed strategy, a range of polyhetero-
cyclic compounds were synthesised in good to excellent
yields (4a–i, Figure 2) by simply heating a toluene solu-
tion of 1,3-dicarbonyl compound 1, acrolein (2) and 1-(2-
aminoethyl)-pyrrole15 (3), in the presence of 4 Å MS.

Scheme 1

Under these neutral heterogeneous conditions, the overall
sequence proved to be of general applicability and prod-
ucts 4 were obtained, by a simple filtration through a short
pad of Celite®, with generally very high chemical purity.16

All the products are highly functionalised scaffolds which
present many synthetic opportunities. Acyclic b-keto-
esters 1a–c or b-diketone 1d led to the formation of tri-
cyclic derivatives 4a–d in very good yields (Figure 2),
and cyclic b-ketoesters 1e–g gave the expected tetracyclic
analogues obtained as a mixture of two diastereomers, in
which prevails a 1,4-trans-relationship between the ester
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function and the proton of the piperazine ring junction.17

In this latter case, the sequence afforded products with a
steroid-like skeleton, bearing two (4f) or three (4h) nitro-
gen atoms starting from six-membered ring b-ketoesters
1f or 1h. Introduction of other heteroatom such as sulfur
was also possible. Indeed, b-ketoester 1g gave tetracyclic
compound 4g in 77% yield as a mixture of two diastereo-
mers in a 2:1 trans:cis ratio. Interestingly enough, piperi-
done 1h gave the expected product 4h as a single 1,4-
trans-diastereomer in 98% yield.18 Although NMR
analysis17 was in agreement with the proposed structure,
we were able to obtain single crystals by slow evaporation
of the solvent, which allowed its study by X-ray diffrac-
tion (Figure 3)19 and unequivocally established the
structural elucidation and the relative 1,4-trans-stereo-
chemistry. Finally, cyclic 1,3-diketone 1i led also to the
expected tetracyclic azasteroid-like product 4i in good
yield.

From a mechanistic point of view, various reaction path-
ways are possible by mixing the three starting materials.
However, based on the successful reactivity of indepen-
dently prepared Michael adduct 5h towards 1-(2-amino-

ethyl)-pyrrole15 (3) under the standard reaction
conditions, we may consider that the first step of the se-
quence is a MS-promoted Michael addition of the 1,3-di-
carbonyl compounds with acrolein to give adducts 5
(Scheme 1).20 Then, the formation of the ene–iminium
intermediate 7 may occur via nucleophilic addition of the
corresponding aldimine 6, followed by the terminal
Pictet–Spengler-type cyclisation to provide, after rearom-
atisation, the final product 4. Thus, the formation of one
single compound is observed during this new multicom-
ponent domino reaction which constitutes the first highly
efficient one-pot route to piperazine scaffolds having an
azasteroid-type21 core. The sequence involves formation
of two new cycles, five new bonds including two C–C
bonds, and up to four stereogenic centres from simple
achiral substrates. Moreover, water is the only byproduct
and is easily trapped in situ by MS, which not only act as
dehydrating agent, but also as heterogeneous catalyst for
the Michael addition.22

In conclusion, we present a novel fast, environmentally
friendly and experimentally simple multicomponent dom-
ino reaction for the synthesis of polyheterocyclic struc-
tures of potential synthetic and biological interests. To our
knowledge, this strategy constitutes the first direct one-
pot access to pyrrolopiperazine and azasteroid-type scaf-
folds, from simple and readily accessible substrates. The
sequence does not require any harmful reagents, and
liberates water as the only byproduct. This novel method-
ology involving heterogeneous catalysis by 4 Å MS
should be a good complement in the field of heterocyclic
chemistry.
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