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Asymmetric Yttrium-Catalyzed C(sp3)−H Addition of 2-Methyl 

Azaarenes to Cyclopropenes 

Yong Luo,[a] Huai-Long Teng,[b] Masayoshi Nishiura,[a,b] and Zhaomin Hou*[a,b] 

Abstract: The enantioselective C−H addition to a C=C double bond 

represents the most atom-efficient route for the construction of chiral 

carbon−carbon skeletons, a central research topic in organic 

synthesis. We report here the enantioselective yttrium-catalyzed 

C(sp3)−H bond addition of 2-methyl azaarenes such as 2-methyl 

pyridines to various substituted cyclopropenes and norbornenes. 

This protocol efficiently afforded a new family of chiral pyridylmethyl-

functionalized cyclopropane and norbornane derivatives in high 

yields and high enantioselectivity (up to 97% ee).  

Cyclopropanes have constantly attracted interest in the organic 
chemistry community and related fields, as the unique three-
membered carbocycles are not only important components in a 
large number of biologically active natural products and 
pharmaceuticals,[1] but they can also serve as synthetically 
useful precursors through selective C−C bond cleavage.[2] The 
development of efficient and selective routes for the synthesis of 
enantioenriched cyclopropane derivatives represents a 
persistent challenge in chemical research. Among possible 
approaches to chiral cyclopropane structures,[3] the asymmetric 
addition of nucleophiles to substituted cyclopropenes has 
received much recent attention.[4] In this context, the transition-
metal-catalyzed enantioselective carbozincation,[4e,i] 
carbomagnesation,[4k] and hydroacylation[4d,f] of various 
substituted cyclopropenes have been reported as convenient 
routes for the asymmetric formation of a C−C bond with the 
cyclopropene moieties (Schemes 1a and 1b). In principle, the 
enantioselective C−H addition of an organic compound to 
cyclopropenes may serve as the most atom-efficient method for 
the synthesis of chiral C-substituted cyclopropane derivatives. 
However, such asymmetric C−H bond activation approach has 
remained unexplored to date, except for the hydroacylation 
reactions.[4d,f] This is probably due to the lack of suitable 
catalysts that can not only effectively promote C−H bond 
activation, but also show high activity and enantioselectivity for 
cyclopropene insertion without causing ring-cleavage.[5]  

We have recently found that half-sandwich rare earth alkyl 
complexes can serve as efficient catalysts for the C−H addition 
of heteroatom-containing aromatic compounds such as anisoles, 
pyridines, and N,N-dimethylanilines to various alkenes.[6,7] By 
using some chiral half-sandwich rare-earth catalysts, we have 

also achieved the enantioselective sp2 C−H addition of pyridines 
to 1-alkenes[8] and the enantioselective intermolecular 
hydroamination of cyclopropenes with amines.[4j] These results 
encouraged us to examine whether chiral half-sandwich rare 
earth catalysts could be employed for the asymmetric C−H 
addition of pyridines to cyclopropenes. Pyridine moieties are 
among the most important heterocyclic structural motifs, widely 
existing in natural products, pharmaceuticals, ligands, and 
functional materials.[9] Hence, the efficient synthesis of pyridine-
functionalized chiral cyclopropane derivatives is of great interest 
and importance. 
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Scheme 1. Enantioselective C−C bond forming reactions with cyclopropenes 
leading to chiral cyclopropane derivatives. 
 

 

R = CH2C6H4NMe2-o
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Chart 1. Chiral half-sandwich rare earth dialkyl complexes. 
 

We report here the enantioselective sp3 C−H addition of 2-
methyl azaarenes such as 2-methyl pyridines to cyclopropenes 
by a chiral half-sandwich yttrium catalyst (Scheme 1c). This 
protocol constitutes a 100% atom-efficient route for the 
synthesis of a series of chiral pyridylmethyl-functionalized 
cyclopropane derivatives in high yields and high 
enantioselectivity. The enantioselective sp3 C−H addition of 2-
methyl pyridines to norbornenes has also been achieved in a 
similar fashion. This work represents the first example of 
asymmetric sp3 C−H addition of an organic compound to a 
cyclopropene moiety as well as the first example of asymmetric 
sp3 C−H addition of a pyridine compound to an alkene.[10]  

At first, we examined the reaction of 2,6-lutidine (1a) with 3-
methyl-3-phenylcyclopropene (2a) as a model reaction by using 
the yttrium complex Ph-Y (Chart 1) as a catalyst. The neutral 
complex Ph-Y alone was not effective for the C−H addition of 1a 
to 2a (Table 1, entry 1), although it showed excellent activity and 
enantioselectivity for the hydroamination of cyclopropenes with 
amines.[4j] In the presence of [Ph3C][B(C6F5)4] as a cocatalyst, 
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Ph-Y showed moderate activity for the sp3 C−H addition of 1a to 
2a, affording the pyridylmethylation product 3a in 76% yield at 
room temperature in 48 h, albeit with poor stereoselectivity 
(1.1:1 dr with 41% and 31% ee, respectively) (Table 1, entry 2). 
When the reaction was carried out at −20°C, the 
enantioselectivity was significantly improved to 86% ee, though 
the diastereoselectivity was still poor (1.3:1 dr) (Table 1, entry 3). 
When the slightly bulkier complex TIPS-Y was used in place of 
Ph-Y, the target product 3a was obtained in 88% yield with high 
enantioselectivity (90% ee) and significantly improved 
diastereoselectivity (7.5:1 dr) (Table 1, entry 4). When the 
reaction was carried out at a further lower temperature (−40 °C), 
the product yield was dropped significantly (40%), while a higher 
stereoselectivity (10:1 dr, 91% ee) was achieved (Table 1, entry 
5). Under the similar conditions, the scandium analogue TIPS-
Sc did not show an activity for the present sp3 C−H addition of 
1a to 2a (Table 1, entry 6), though it exhibited high activity for 
the enantioselective sp2 C−H addition of pyridines to 1-alkenes.[8] 
These results demonstrate that the activity and stereoselectivity 
of the C−H addition reactions are significantly influenced not 
only by the catalyst ancillary ligands and metal ions but also by 
the C−H bond type.[11,12] The use of chlorobenzene or xylene 
instead of toluene as a solvent did not show much influence on 
the reaction (Table 1, entries 4, 8, and 9). 

Table 1. Asymmetric sp3 C−H addition of 2,6-lutidine to 3-methyl-3-
phenylcyclopropene by chiral half-sandwich rare-earth catalysts.[a] 

N [Ln] (5 mol%)
[Ph3C][B(C6F5)4] (5 mol%)

solvent, temp, 48 h

1a 3a

N

+

2a
Me Ph Me Ph

H

 

entry [Ln] solvent temp 
(°C) 

yield 
(%)[b] 

Dr[c] ee 
(%)[d] 

1[e] Ph-Y toluene rt - - - 

2 Ph-Y toluene rt 76 1.1:1 41; 31 

3 Ph-Y toluene −20 84 1.3:1 86; 76 

4 TIPS-Y toluene −20 88 7.5:1 90 

5 TIPS-Y toluene −40 40 10:1 91 

6 TIPS-Sc toluene −20 - - - 

7 TIPS-Y chloroben
zene 

−20 83 8:1 86 

8 TIPS-Y xylene −20 87 7.5:1 89 

[a] Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol), [Ln] (5 mol %), 
[Ph3C][B(C6F5)4] (5 mol %), toluene (1 mL), 48 h, unless otherwise noted. [b] 
Combined isolated yield of both diastereomers. [c] Determined by 1H NMR 
analysis of the crude reaction mixture. [d] Determined by chiral HPLC. [e] 
Without [Ph3C][B(C6F5)4]. 

With the optimized reaction conditions in hand, we then 
examined the scope of the pyridine substrates in the reaction 
with 2a by using TIPS-Y/[Ph3C][B(C6F5)4] at −20 ºC in toluene 
(Table 2). Similar to 2,6-lutidine (1a), the reaction of 2,4,6-
trimethylpyridine with 2a gave the ortho sp3 C−H 
cyclopropylation product 3b in high yield (94%) and high 
stereoselectivity (96% ee, 8:1 dr). 4-Bromo-2,6-dimethylpyridine 
also afforded the target product 3c in good yield (80%) and high 
enantioselectivity (88% ee), albeit with a lower 

diastereoselectivity (3:1 dr). Debromination was not observed. In 
the case of 4-isopropoxy-2,6-dimethyl pyridine, the target 
product 3d was obtained in high yield (95%) and high 
stereoselectivity (91% ee, 6:1 dr) at 0 °C. Various substituents 
(both linear and branched) at the 6-position of the 2-
methylpyridne substrates were compatible with the 
enantioselective ortho methyl C−H cyclopropylation, giving the 
desired products such as 3e–3h in high yields (80–89%) and 
excellent enantioselectivity (94–97% ee). The alkenyl (3f) and 
SiMe3 (3g) groups survived the reaction conditions. Substrates 
with a bulky five-, six-, or seven-membered ring in the ortho 
substituents (6 position) all gave the desired products (3i, 3j, 
and 3k) in high yields (90–92%) and excellent enantioselectivity 
(96–97% ee). 2-Methylquinoline was also a suitable substrate, 
affording the desired product 3l in 85% yield and 90% ee.  

Table 2. Asymmetric sp3 C−H addition of various 2-methylpyridines to 3-
methyl-3-phenylcyclopropene by TIPS-Y.[a] 

N

OiPr
Me Ph

3d 95% 

6:1 dr, 91% ee[b]

N

Me Ph

3b 94%
8:1 dr, 96% ee

N

+

TIPS-Y (5 mol%)
[Ph3C][B(C6F5)4] (5 mol%)

toluene, 20 C, 48h
R1

1 2a 3

N

R1

N

Me Ph
3a 88% 

7.5:1 dr, 90% ee

N

Me Ph

3e 83% 
11:1 dr, 96% ee

nC5H11 N

Me Ph

3

3f 87%
7:1 dr, 94% ee

N

Me Ph

Me3Si 3

3g 80% 
7:1 dr, 97% ee

N

Me Ph

3i 91% 
10:1 dr, 97% ee

N

Me Ph

3h 89% 
8:1 dr, 94% ee

N

Me Ph

3j 92% 
8:1, 96% ee

N

Me Ph

3k 90% 
14:1, 97% ee

N

Br
Me Ph

3c 80% 
3:1 dr, 88% ee

N

Me Ph

3l 85%

10:1 dr, 90% ee[b]

Me Ph Me Ph

H

 

[a] Reaction conditions: 1 (0.3 mmol), 2a (0.2 mmol), TIPS-Y (5 mol%), 
[Ph3C][B(C6F5)4] (5 mol%), toluene (1 mL), −20 °C, 48 h, combined isolated 
yield of both diastereomers; dr and ee determined by 1H NMR analysis of the 
crude reaction mixture and chiral HPLC, respectively. [b] 0 °C . 

To examine the scope of the cyclopropene substrates, 2,4,6-
trimethylpyridine (1b) was used to react with various substituted 
cyclopropenes (Table 3). In a series of 3-methyl-3-phenyl-
disubstitued cyclopropenes, the substrates containing either 
electron-donating (such as OMe) or electron-withdrawing (such 
as F and Cl) groups at either the para or meta or ortho position 
of the phenyl substituent all afforded the desired products (such 
as 3m–3r) in good yields (78−86%) and excellent 
enantioselectivity (92−97% ee). A heterocycle (such as 
thiophene)-substituted cyclopropene compound was also 
suitable, giving the desired product 3s in 69% yield and 95% ee. 
The spirocycle-containing cyclopropenes (3t and 3u) showed 
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remarkably high diastereoselectivity (>20:1) and excellent 
enantioselectivity (95−96% ee), probably due to the influence of 
the rigid spiro structure. In the case of 3-methyl-3-
benzylcyclopropene and 3-isopropyl-3-phenylcyclopropene, the 
target products 3v and 3w were obtained in a relatively lower 
diastereoselectivity (2:1) probably because of the smaller 
difference in steric hindrance between the two substituents, but 
the enantioselectivity remained high (90−95% ee). In the case of 
3,3-diphenylcyclopropene, the single-stereoceneter-containing 
target product 3x was isolated in 61% yield and 92% ee. The 
absolute configuration of 3t was determined by the X-ray 
diffraction analysis of a single crystal of the anilinium salt 3t·HBr 
prepared by treatment of 3t with HBr (see supporting 
information). It was confirmed that the predominant configuration 
was formed by addition of the 2-pyridylmethyl unit syn to the 
smaller substituent in the cyclopropene skeleton through a re-
face (vide infra). 

Table 3. Asymmetric sp3 C−H addition of 2,4,6-trimethylpyridine to various 
substituted cyclopropenes by TIPS-Y.[a] 

N

Me

Me

N

Me

Cl

N

N

Me
Ph

3m 82% 
6:1 dr, 96% ee

3r 86% 
5:1 dr, 96% ee

3t 77% 
> 20:1 dr, 96% ee

3v 77% 
2:1 dr, 94% ee; 95% ee

N

Me

Br

N

Me

N

Ph

N

Ph Ph

S

3o 85% 
7:1 dr, 92% ee

3s 69% 
4:1 dr, 95% ee

3w 57% 
2:1 dr, 86% ee; 90% ee

3x 61% 
92% ee

N

Me

OMe

N

Me

F

N

Me Cl

N

3n 81%
5:1 dr, 95% ee

3p 78%
6:1 dr, 94% ee

3q 84%
8:1 dr, 97% ee

3u 87%
> 20:1 dr, 95% ee

N

+

1b 2 3

N

R1 R2
R1 R2

HTIPS-Y (5 mol%)
[Ph3C][B(C6F5)4] (5 mol%)

toluene, 20 C, 48 h

 

[a] Reaction conditions: 1 (0.3 mmol), 2 (0.2 mmol), TIPS-Y (5 mol%), 
[Ph3C][B(C6F5)4] (5 mol%), toluene (1 mL), −20 °C, 48 h,  combined isolated 
yield of both diastereomers; dr and ee determined by 1H NMR analysis of 
crude reaction mixture and chiral HPLC, respectively. 

The combination of TIPS-Y and [Ph3C][B(C6F5)4] also served 
as an efficient catalyst for the enantioselective sp3 C−H addition 
of various 2-methylpyridines to norbonenes, affording the 
corresponding pyridylmethyl-functionalized norbornane 
derivatives such as 5a–5e with high enantioselectivity (90−97% 
ee) and moderate to high yields at room temperature (Table 4). 
The chiral pyridylmethyl-functionalized norbornene compound 5f, 

which contains a reactive C=C double bond that may allow 
further functionalizations,[13] was selectively obtained in high 
enantioselectivity (90% ee) by reaction with norbornadiene 
under appropriate conditions. Pyridylmethyl-functionalized 
norbornane moieties were known to serve as a core structure of 
useful chiral ligands.[14] 

Table 4. Asymmetric sp3 C−H addition of 2-methylpyridines to norbornenes by 
TIPS-Y.[a] 

NEt

5a 81%
97% ee, 96 h

N
3

5b 60% 
92% ee, 36 h

N
Me3Si 3

5c 87% 
95% ee, 24 h

N

5d 77% 
90% ee, 96 h

N

5e 48%[b]

91% ee, 96 h

N

5f 74%[c] 

90% ee, 24 h

iPr

N

+

TIPS-Y (5 mol%)
[Ph3C][B(C6F5)4] (5 mol%)

toluene, rt
R1

1 4 5

N

R1

H

[a] Reaction conditions: 1 (0.2 mmol), 4 (0.3 mmol), TIPS-Y (5 mol%), 
[Ph3C][B(C6F5)4] (5 mol%), toluene (1 mL),  rt, isolated yield, ee determined by 
chiral HPLC. [b] 1 (0.3 mmol), 4 (0.2 mmol). [c] 1 (0.2 mmol), 4 (0.4 mmol). 

CpchiralYR2 + [Ph3C][B(C6F5)4] CpchiralYR

N Y Cpchiral
N

Y
Cpchiral

N
H HR

Si

Si

Y

N

Si

Si

Y

N
Me

Ph

Me
Ph

vs

favored disfavored

Me
Ph N

Me Ph

Ph3C R

1a

Me
Ph

2a

3a

Me2N

R =

1a
A

B

C-1 C-2

D

Si = OSi( iPr)3

H

 

Scheme 2. Proposed mechanism for the enantioselective sp3 C−H addition of 
1a to 2a. 

A possible reaction mechanism for the enantioselective 
C(sp3)−H bond addition of 2,6-dimethyllutidine (1a) to 3-methyl-
3-phenylcyclopropene (2a) is shown in Scheme 2. The cationic 
chiral yttrium alkyl species A generated from the reaction of the 
dialkyl precursor TIPS-Y with [Ph3C][B(C6F5)4] may undergo 
deprotonative C(sp3)−H activation of 1a to give intermediate B 
with the assistance of interaction between the metal center and 
the pyridine nitrogen atom.[7c] The coordination of the 
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cyclopropene unit in 2a to the metal center in B could afford two 
possible transition states C-1 and C-2, in which C-1 is favored 
as it has less steric repulsion between the substituents of the 
cyclopropene skeleton in 2a and the catalyst ligand. The 
insertion of the cyclopropene unit into the pyridylmethyl−Y bond 
in C-1 would give D, which after deprotonation of another 
molecule of 1a by the cyclopropyl−Y bond affords the final 
product 3a and regenerates the active species B. The kinetic 
isotope effect (KIE) studies suggest that C(sp3)−H bond 
cleavage is involved in the rate-determining step (see supporting 
information). 

In summary, we have achieved for the first time the 
enantioselective C(sp3)−H bond addition of 2-methyl azaarenes 
to various cyclopropenes and norbornenes by using a chiral half-
sandwich rare-earth metal catalyst such as TIPS-Y. This 
protocol has afforded a series of chiral pyridylmethyl-
functionalized cyclopropane and norbornane derivatives in high 
yields and excellent enantioselectivity in a 100% atom-efficient 
manner. Functional groups such as SiMe3, linear alkenyl, and 
aryl halides are compatible. This unique catalytic transformation 
could be ascribed to the strong heteroatom affinity of the rare-
earth metal ions and the high activity of the cationic rare-earth 
metal alkyl species towards both C–H activation and C=C 
double bond insertion, as well as to the well-defined chiral Cp 
ligand environment. Studies on the synthesis and application of 
chiral half-sandwich rare-earth alkyl catalysts for asymmetric C–
H transformations and related reactions can be fruitfully 
prospected. 
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The enantioselective C(sp3)−H bond addition of 2-methyl azaarenes such as 2-
methylpyridines to various substituted cyclopropenes and norbornenes has been 
achieved for the first time by using a chiral half-sandwich yttrium catalyst. This 
protocol afforded a series of chiral pyridylmethyl-functionalized cyclopropane and 
norbornane derivatives in high yields, high enantioselectivity, and 100% atom-
efficiency. 
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