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ABSTRACT

Azine N-oxides undergo highly regioselective metalation with TMPZnCl 3 LiCl under mild conditions. A palladium-catalyzed Negishi cross-
coupling reaction of the resulting organozinc species with heteroaromatic bromides provides heterobiaryls specifically oxidized at one nitrogen
position in up to 95% yield.

Heterobiaryls containing azines are important structural
components of pharmaceutically relevant small-molecules
and catalysts.1,2 In the context of a researchprogram inour
laboratories, we required access to a number of hetero-
biaryl motifs where one of the azine nitrogens was specifi-
cally oxidized (Figure 1). The lack of stability of 2-pyridyl
organometallics combined with the requirement for a
challenging late-stage site-selective nitrogen oxidation pro-
mpted us to examine the metalation/heteroarylation of
azine N-oxides. This approach would provide a stable or-
ganometallic species and would enable complete control
over the site of nitrogen oxidation. The regioselective
arylationof azines hasbeen achieved throughPd-catalyzed
direct arylation of the corresponding N-oxides and
N-iminopyridinium-ylides.3 Although attractive, direct
arylation methods based on azine N-oxides have been re-
ported to provide unsatisfactory yields of coupling products

with heteroaryl halides.3a Furthermore, reactions performed
on substitutedazineN-oxides can result indiminishedyieldsof
desired arylation products.3b,4 Alternative approaches invol-
ving halogen-metal exchange of 2-bromo-pyridine N-oxides
under cryogenic conditions followed by Pd-catalyzed cross-
coupling have also been reported.5�8 Inspired by the recent
work of Knochel and co-workers, we envisioned that tetra-
methylpiperidinylzinc chloride lithium chloride (TMPZnCl 3
LiCl, TMP = 2,2,6,6-tetramethylpiperidide) could perform
selective metalation of azine N-oxides under mild condi-
tions.9�11 We report herein the regioselective metalation/
heteroarylation of both simple and highly substituted azine
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N-oxides that affords heterobiaryl motifs under mild condi-
tionswith complete control over the site of nitrogenoxidation.
Metalationof representative azineN-oxides 1aand1busing

commercially available TMPZnCl 3LiCl (100�150 mol %)
proceeded cleanly at rt. The resulting organozinc species
were quenched with deuterium chloride in D2O and 1H
NMR analysis of the crude products indicated the forma-
tion of deuterio-1a/1b with >95:5 selectivity for the aro-
matic C�H vs benzylic C�H (Table 1).12 Even upon ex-
tended contact (18�24 h) with excess TMPZnCl 3LiCl, we
found no detectable metalation at the benzylic position in
deuterio-1a.
A Negishi cross-coupling reaction of the organozinc

species proceeded smoothly under mild conditions with
PdCl2(dppf)

13 as catalyst in THF at 60 �C (Scheme 1,
Tables 2�5).14 The compatibility of TMPZnCl 3LiCl with
the reaction components is remarkable since we found no

Table 1. Regioselective Metalation of Azine N-Oxidesa

aConditions: TMPZnCl 3LiCl (100 mol %), THF, rt then quench
with 35 wt % DCl in D2O.

Scheme 1. Metalation/Negishi Cross-coupling

Table 2. Cross-coupling of Pyridine N-Oxidesa

aConditions: (a) Azine N-oxide (150 mol %), TMPZnCl 3LiCl
(150 mol %, heteroaryl bromide (100 mol %), 3.5 mol % PdCl2(dppf) 3
CH2Cl2, THF, rt to 60 �C, 18h. (b) Isolated yields. (c) The corresponding
2,6-diarylation product 10bwas also isolated in 15% yield (see Support-
ing Information).

Figure 1. Target heterobiaryl motifs.
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requirement for a separate metalation step prior to the
cross-coupling.15

Reactions of 3-fluoropyridine N-oxide 1c with 2-
bromopyridines and 2-bromopyrimidine gave the cross-
coupling products 2�4 in 59�83% isolated yield (Table 2,
entries 1�3). In comparison, cross-coupling reactions with
methyl nicotinateN-oxide 1d and 4-cyanopyridineN-oxide
1e proved more challenging and afforded products 5�9 in
moderate yields ranging from 30 to 53%. Cross-coupling of
pyridine N-oxide 1f with 2-bromoquinoline afforded the
desiredheteroarylation product10a in 70%yield alongwith
the corresponding 2,6-diarylation byproduct 10b in 15%
yield. We found that purification of these products was

challengingbecauseof theirhighlypolarnature. Inaddition,
competing diarylation often led to reduced yields of desired
products for simple pyridine N-oxides.

Table 3. Cross-coupling of Picoline N-Oxidesa

aConditions: (a) Azine N-oxide (150 mol %), TMPZnCl 3LiCl
(150 mol%), heteroaryl bromide (100 mol %), 3.5 mol% PdCl2(dppf) 3
CH2Cl2, THF, rt to 60 �C, 18 h. (b) Isolated yields.

Table 4. Cross-coupling of Quinoline N-Oxidesa

aConditions: (a) Azine N-oxide (150 mol %), TMPZnCl 3LiCl (150
mol %), heteroaryl bromide (100 mol %), 3.5 mol % PdCl2(dppf) 3
CH2Cl2, THF, rt to 60 �C, 18 h. (b) Isolated yields. (c) Pd(dba)2 (5mol%)/
Cy3P (10 mol %) as catalyst.

Table 5. Cross-coupling of Diazine N-Oxidesa

aConditions: (a) AzineN-oxide (150 mol %), TMPZnCl 3LiCl (150
mol %), heteroaryl bromide (100 mol %), 3.5 mol % PdCl2(dppf) 3
CH2Cl2, THF, rt to 60 �C, 18 h. (b) Isolated yields. (c) TMPZnCl 3LiCl
(110 mol %), THF:NMP (1:1). (d) Azine N-oxide (300 mol %)
was used.

(15) Both TMPZnCl 3LiCl and (TMP)2Zn 3LiCl metalated azine N-
oxides but in our hands the subsequentNegishi cross-coupling wasmore
sluggish with the diarylzinc species.
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Next we investigated the metalation and cross-coupling
of picolineN-oxides 1g, 1a and 1h under the same reaction
conditions (Table 3). Consistent with our deuteration
experiments, we observed that metalation and arylation
of the 2-methyl group of picolines was not a competing
pathway under the reaction conditions.16 2-Picoline N-
oxide 1g underwent cross-coupling to furnish 11 in 88%
yield. It is also noteworthy that, in contrast toPd-catalyzed
direct arylation, the present Negishi cross-coupling of
highly substituted picoline N-oxides 1a and 1h proceeded
in consistently high yields to afford highly functionalized
heterobiaryls 12�17 in 81�95% yields.
Cross-coupling of quinolineN-oxide 1bwith both 2- and

3-bromopyridine gave the desired heterobiaryls 18�19 in 74
and73%yield, respectively (Table 4, entries 1�2).Methoxy-
quinolineN-oxide 1i afforded heterobiaryl 20 in 49% yield.

We also found that diazine N-oxides performed well in
the reaction (Table 5). Pyridazine N-oxide 1j underwent
reaction with 2-bromoquinoline to give 21 in 77% yield.
Cross-couplingwith4-bromopyrrolo-[1,2-f][1,2,4]-triazine
gave 22 in 66% yield. Similarly, pyrazine N-oxide 1k and
quinoxaline N-oxide 1l afforded the desired heterobiaryl
products 23�25 in 78�84% yield.17,18

Finally, as demonstrated in Scheme 2, this process is
preparatively useful as the desired cross-coupling product
17 was isolated in 93% yield on multigram scale.19

In summary, we have developed a mild and practical
protocol for the heteroarylation of azineN-oxides via aPd-
catalyzed Negishi cross-coupling using in situ generated
organozinc intermediates. This approach also unambigu-
ously positions the N-oxide group as a handle for further
functionalization.20 Further studies are underway and will
be reported in due course.
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Scheme 2. Multi-gram Scale Reaction

(16) Although it has been reported that picolines are metalated
smoothly with TMPZnCl 3LiCl at rt, the N-oxide group in the present
system appears to direct the deprotonation at the aromatic C�H
selectively. For metalation and benzylic cross-coupling of picolines
under similar conditions, see: Duez, S.; Steib, A. K.; Manolikakes,
S. M.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 7686–7690.

(17) At the present time cross-coupling with 5-membered hetero-
cycles represents a limitation to this method. Cross-coupling ofN-oxide
1hwith 4-bromothiazole and 2-bromothiophene gave the corresponding
products in 30�35% yields (see Supporting Information).

(18) In contrast, pyrimidine N-oxide failed to provide any desired
products and apparent ring-opening byproduct were observed under the
reaction conditions.

(19) Multigram scale procedure: To a solution of 2-methyl-3-me-
thoxy-4-chloropyridine N-oxide 1h (5.21 g, 30 mmol, 150 mol %) and
2-bromo-6-methoxypyridine (2.46mL, 3.76 g, 20mmol) in THF (52mL,
10mL/g) was added TMPZnCl 3LiCl (43mL, 30mmol, 150mol%, 0.69
M in THF) over 2 min. The internal temperature increased from 23.4 to
30.0 �C during the addition. A thin slurry formed after 1�2 min. The
slurry was sparged with N2 bubbles for 5 min and solid dichloro-1,10-[bis-
(diphenylphosphino)ferrocene]palladium 3CH2Cl2 (219 mg, 0.3 mmol,
1 mol %) was added. The resulting tan-orange slurry was then heated
at 60 �C(internal temperature) for 18h.LC-MSanalysis showedcomplete
conversion to 16. The deep red reaction mixture was cooled to rt and
quenchedwith saturated aqueousNH4Cl (100mL) and diluted with 50%
aqueous acetonitrile (50 mL). The solution was extracted with dichlor-
omethane (2 � 100 mL), dried with Na2SO4 and concentrated. The
residue was chromatographed (0�100% EtOAc in hexanes) and the
combined fractions were concentrated to afford the desired product
4-chloro-3-methoxy-6-(6-methoxypyridin-2-yl)-2-methylpyridine1-oxide
17 as a free-flowingwhite solid (5.32 g, 93%yield):mp=117�118 �C; 1H
NMR (CDCl3) δ 8.68 (d, 1H, J= 7.5 Hz), 8.22 (s, 1H), 7.68 (app t, 1H,
J=8.0Hz), 6.79 (d, 1H, J=8.0Hz), 3.98 (s, 3H), 3.90 (s, 3H), 2.56 (s, 3H);
13C NMR (CDCl3) δ 163.3, 151.5, 147.3, 145.7, 144.5, 139.3, 125.9, 124.6,
118.6, 112.4, 61.4, 53.5, 12.5; HRMS calcd for C13H14ClN2O3 [M þ H] =
281.0687, found 281.0695.
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