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Rhodium-Catalyzed Transarylation of Benzamides: C-C Bond vs C-N 
Bond Activation 
Yang Long, Zhishan Su, Yanling Zheng, Shiyu He, Jing Zhong, Haifeng Xiang and Xiangge Zhou* 

College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China 

ABSTRACT: A rhodium-catalyzed transarylation of benzamides via selective C-C bond activation with arylboronic acids was de-
scribed, which was distinct from the conventional metal-catalyzed C-N bond activation. This transformation exhibited good func-
tional group compatibility with yields up to 88%, offering a practical approach for the construction and functionalization of ben-
zamides. Preliminary experimental and computational studies revealed the selectivity of metal insertion into C-C bond or C-N bond 
was greatly affected by substituents on amide’s N atom. 
KEYWORDS: Amide, C-C activation, C-N activation, arylation, rhodium catalysis, DFT 

Transition metal-catalyzed C-C bond activation is one of im-
portant and thorny research areas in organic chemistry over the 
past few decades. Compared with the well-developed C-H bond 
activation, C-C bond activation is facing more difficulties: the 
stability of C-C  bond; the difficulty for a metal to interact with 
a C-C bond that is usually surrounded by more dominant C-H 
bonds; the incompatibility of other functional groups etc.1 How-
ever, C-C bond activation still draws significant attention owing 
to its ubiquitous presence in nature, which may pave more pow-
erful and straightforward pathways to reconstruct molecular 
skeletons. In recent years, transition metal-catalyzed C-C bond 
activation has been reported in succession, especially focusing 
on small ring compounds driven by relief of strain force.2 Mean-
while, ketone, alcohol, amine and nitrile compounds have also 
been employed as unstrained substrates.3 However, other im-
portant scaffolds are still underdeveloped.4 

Amide is one of the most important structural motifs found 
in peptides, pharmaceutically molecules, agrochemicals and 
functional materials.5 Recently, remarkable progress has been 
made in the metal-catalyzed C(O)-N bond activation of amides, 
while the direct C(O)-C bond activation is rarely reported.6 By 
precisely regulating the substituents on N atom, various func-
tionalization of amides via C-N bond activation could be real-
ized.6g Typically, these reactions are divided into two ap-
proaches including non-decarbonylation and decarbonylation 
pathways, wherein the amine group acts as leaving group in 
both (Scheme 1A). Although decarbonylation process could 
fulfill the scission of C(O)-C bond macroscopically, this trans-
formation always results in the inevitable loss of carbonyl unit 
and deconstruction of amide structure, along with the liberation 
of stoichiometric amount of hazardous carbon monoxide. 

On the other hand, to the best of our knowledge, selective 
metal insertion into C(O)-C bond instead of C(O)-N bond with 
the retention of benzamide scaffold has not been reported yet. 
Inspired by the reports about the effects of substituents on am-
ide’s N atom on the selective C-N bond activation, in continua-
tion of our work on C-C and C-H bond activation,7 we herein 
report a general approach for catalytic selective activation of 
C(O)-C(aryl) bond of benzamides by introducing proper direct-
ing and steric groups onto N atom to guide the transition metal 

exclusive insertion into the target C-C bond and exchange aryl 
groups with arylboronic acids (Scheme 1B). 
Scheme 1. Benzamides’ C-N Bond and C-C Bond Activation 
Reactions 

 
Analogous to the transamidation process of amides,8 this re-

action looks like a transarylation process, which not only offers 
a strategy for the less developed amide’s C(O)-C bond activa-
tion reaction, but also complements traditional benzamides’ 
synthetic methods owing to its potential advantages including 
easily available reagents, circumventing the need for protecting 
groups and complex ligands etc.5 Furthermore, similar aryl-ex-
changed reactions of ketones were reported by Wang,9 John-
son10 and coworkers recently by using quinolinyl group as di-
recting group through C-C bond activation. However, in the 
case of amide substrate, there exist several challenges such as: 
(1) selective metal insertion into C(O)-C(aryl) bond is more dif-
ficult, especially in the presence of competitive C-N and C-H 
bonds; (2) undesired decarbonylation after oxidative addition 
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would lose carbonyl unit and deconstruct the amide structure; 
(3) tolerance of various functional groups. 
 

Figure 1. Configuration of N-substituted benzamides. ORTEP 
representation of 1a (CCDC 1944056) and 5a (CCDC 1944055) 
with thermal ellipsoids at a 30% probability level. H atoms are 
omitted for clarity. 
 

Initially, benzamide substrates bearing primary or phenyl 
substituted amino group failed to afford the desired C-C bond 
activation products, which aroused us to introduce directing 
group, such as pyridyl or pyrimidyl group, onto amide’s N atom. 
N-coordination might make metal closer to the target C-C bond 
and stabilize the five-membered ring intermediate. Considering 
that the secondary amides would favor the trans configuration 
with the directing group being far away from the C(O)-C(aryl) 
bond (Figure 1A),11 the tertiary amides, which might adopt cis 
configuration if installation of proper steric groups on N atom 
and would force the transition metal in close proximity to the 
C(O)-C(aryl) bond, were designed and synthesized (Figure 1B). 
Indeed, the tertiary benzamide substrates 1a and 5a, which con-
tained diisopropylphenyl group and pyridyl or pyrimidyl group 
respectively, were in the desired cis configuration, and their 
structures were confirmed by single crystal X-ray diffraction 
determination (Figure 1C).12 

Then, we began our investigation by evaluating the effects of 
different substituents on the N atom of tertiary benzamides (1a-
8a), together with 4-methoxyphenylboronic acid (1b) as sub-
strate and Rh(acac)(CO)2 as catalyst. Meanwhile, DFT methods 
were also employed to locate the C-C bond and C-N bond in-
sertion transition states in oxidative addition step respectively 
for 1a-8a.13 Their relative activation energy G and activation 
energy differences G listed in Table 1 were adopted to eval-
uate roughly the selectivity of metal in oxidative addition pro-
cess.  

After extensive screening different N-substituents, we were 
delighted to find the judiciously designed N-(2,6-diiso-
propylphenyl)-N-(pyridine-2-yl)benzamide (1a) could fulfil the 
proposed transarylation transformation and gave 84% yield 
without formation of C-N bond activation product (entry 1). 
Computational results indicated that the activation energy G 
of C-C insertion for 1a was 10.8 kcal/mol, 8.0 kcal/mol lower-
ing than that of C-N insertion, which might account for the ex-
clusive selectivity of activation on C-C bond. Steric effect of R2 
group was an important factor affecting the selectivity. When 
replacing R2 group to other less steric groups, including phenyl 
(entry 2), methyl substituted (entry 3) and ethyl substituted (en-
try 4) phenyl groups, the poorer selectivity along with smaller 
G values (1.5 to 4.6 kcal/mol) were obtained, resulting in the  

 
Table 1. Experimental and Computational Study of N-sub-
stituents’ Effect on Selective C-N bond and C-C Bond Acti-
vation.a,b 

Entry -NR1R2 Insertion Gc Gd Yieldse 

1 

 

C-C 10.8 
8.0 

84% (83%)f 

C-N 18.8 0% 

2 
 

C-C 8.6 
1.5 

32% 

C-N 10.1 44% 

3 

 

C-C 13.3 
4.6 

46% 

C-N 17.9 36% 

4 

 

C-C 16.6 
3.0 

45% 

C-N 19.6 34% 

5 

 

C-C 11.8 
4.4 

68% 

C-N 16.2 21% 

6 

 

C-C 12.8 
-1.1 

0% 

C-N 11.7 60% 

7 

 

C-C 30.2 
5.5 

0% 

C-N 35.7 0% 

8 
 

C-C 29.3 
-3.9 

0% 

C-N 25.4 0% 

aThe yield of amine (d) was monitored as the yield of C-N bond 
activation. bReactions were carried out under nitrogen atmos-
phere with a (0.1 mmol), 1b (0.25 mmol), Rh(acac)(CO)2 (10 
mol%), Na2CO3 (1.2 equiv) in 1,4-dioxane (1 mL) at 140 C for 
24 h. cRelative Gibbs free energy (kcal/mol) of Rh-complexes 
and the corresponding transition states associated with C-C or 
C-N bond insertion reactions, which was obtained at the 
B3LYP-D3(BJ)/[6-31G*, Lanl2dz](SMD, 1,4-dioxane) theo-
retical level. dRelative Gibbs free energy of the transition state 
in C-C insertion reaction was set to zero. eNMR yields of c and 
d by using CH2Br2 as internal standard. fIsolated yield. 
 
occurrence of competitive C-N bond activation side reactions. 
Moreover, pyridyl group seemed to be more suitable directing 
group for this reaction than pyrimidyl group (entries 5-6), and 
the smaller G values of pyrimidyl group might be caused by 
the greater effects on N atom’s electron deficiency.6 In addition, 
changing the directing group to phenyl group made the activa-
tion energy G for both C-C bond and C-N bond insertions up 
to about 30 kcal/mol, thus retarding the reactions (entries 7-8). 
Above all, from the experimental and computational point of 

Page 3 of 8

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

view, the optimal reaction conditions consist of benzamide (0.1 
mmol), arylboronic acid (0.25 mmol), Rh(acac)(CO)2 (10 
mol%), Na2CO3 (1.2 equiv) in 1,4-dioxane (1 mL) at 140 C for 
24 h under nitrogen atmosphere (see Supporting Information for 
details). 
 
Table 2. Scope of Arylboronic Acids.a,b 

 
aReaction conditions: 1a (0.1 mmol), b (0.25 mmol), 
Rh(acac)(CO)2 (10 mol%), Na2CO3 (1.2 equiv) in 1,4-dioxane 
(1 mL) at 140 C for 24 h under nitrogen atmosphere. bIsolated 
yields. 
 

With the optimized reaction conditions in hand, the scope of 
arylboronic acids was examined as shown in Table 2. In general, 
the transformation exhibited broad substrate scope, good func-
tional group tolerance and selective activation on C(O)-C(aryl) 
bond. For the steric effects, m, p-methoxy group substituted 
phenylboronic acids gave the desired products in good yields 
about 80% (1c, 2c), while o-methoxy substituted product (3c) 
was obtained in a moderate yield 65%, suggesting that steric 
hinderance on phenylboronic acid might have a slight inhibition 
on the yield. Meanwhile, various alkyl-substituted substrates 
were well-tolerated during reaction, affording the correspond-
ing products in good yields up to 88% (4c-9c). Trimethylsilyl 
(10c) and dimethylamino (11c) groups also provided the desir-
able yields 80% and 82% respectively. Substrates with halogen 
atom substituents reacted smoothly in moderate yields ranging 
from 59% to 79%, indicating the feasibility of combining with 
conventional cross-coupling methods (12c-16c). More im-
portantly, arylboronic acids bearing electron-deficient groups, 
such as cyano (17c) and trifluoromethyl (18c) groups, which 
were inactive in quinolinyl ketone’s aryl interconversion reac-
tion,9 resulted in 67% and 54% yields, respectively. It is worth 
noting that neither of the previously reported rhodium insertion 
into the C-H bond of the aldehyde (19c),14 the C-C bond of the 
ketone (20c)3d or the C-O bond of the ester (21c)6g was observed 
in the case of arylboronic acids containing aldehyde, acetyl or 

ester substituents, thus avoiding the installation of protecting 
groups owing to their incompatibility in traditional methods. 
Furthermore, when substrate bearing two different amide units 
was treated (22c), the central metal exclusively inserted into the 
target C(O)-C(aryl) bond, rather than C-N bonds or C(O)-
C(methyl) bond. In addition, coupling with di- and trisubsti-
tuted arylboronic acids delivered the corresponding poly substi-
tuted amides in moderate to good yields (23c-30c). 
 
Scheme 2. Synthetic Applications 

 
 

The utility of this transarylation reaction was further exam-
ined. Firstly, a scaled-up reaction was carried out, affording 1c 
in 68% yield, indicating its feasibility on a more synthetically 
useful scale (Scheme 2A). Subsequent reduction of transaryla-
tion product could deliver tertiary amine (Scheme 2B).15 In ad-
dition, replacing arylboronic acid to arylboronates with 5 equiv 
water could also afford the desired product 15c in 69% yield, 
illustrating the compatibility of the system with water and aryl-
boronates (Scheme 2C), and the bromo atom of the product 15c 
enabled the reaction to be further concatenated with other cou-
pling reactions for late-stage functionalization (Scheme 2D). 
More importantly, the combination of this transarylation pro-
cess and transamidation process could realize the complete mu-
tual conversion of amide units within two steps. For example, 
the reaction between 1a and commercially available aryl-
boronic acid 31b smoothly provided the transarylation product 
31c, which could be further converted to 1f,12 an important an-
titumor agent, through a transamidation process with 4-chlo-
roaniline (Scheme 2E).8e 

At last, in order to gain insight into the possible reaction path-
way, a series of control experiments were carried out as shown 
in Scheme 3. Initially, no reaction occurred when secondary 
amides (9a or 10a) were treated as substrates, convincing the 
importance of chelation and steric effect of substituents on N 
atom (Scheme 3A). Meanwhile, the biaryl product (1g) was not 
detected in this transformation, which illustrated that C-C bond 
oxidative addition might occur prior to transmetalation process 
(Scheme 3B).9-10 In addition, the fate of the leaving phenyl 
group of substrate was also investigated. GC-MS analysis of the 
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Figure. 2. DFT-computed pathway for transarylation of benzamides and DFT calculations was obtained at the B3LYP-D3(BJ)/[6-
31G*, Lanl2dz](SMD, 1,4-dioxane) theoretical level. 
 
the reaction mixture revealed that benzene (1h) was obtained in 
73% yield, which was in 0.88 molar ratio to transarylation prod-
uct 1c, indicating that -aryl elimination16 might be involved in 
transmetalation process (Scheme 3C). According to Hartwig’s 
work,16a the H source of benzene would be from the hydroxyl 
hydrogen of boronic acid, and our deuterium-labeling experi-
ments further convinced that. Following treatment of 11c with 
PhB(OD)2 and 1,4-dioxane-D8 respectively, the deuterated ra-
tios of the corresponding hydrogen of 2h were approximately 
81% and 0%, respectively, providing the evidence for the pro-
ton exchange between phenyl group and arylboronic acid rather 
than solvent (Scheme 3D). 
 
Scheme 3. Control Experiments 

 
 

Based on our work and literatures,1-3,9-10,16 DFT calculations 
were performed to further probe the mechanism of this trans-
formation, and the plausible reaction pathway was shown in 
Figure 2. The reaction started from ligand exchange between 
IM6 and substrate 1a to give catalyst-substrate complex 1a-
COM, which directly facilitated the C(O)-C(aryl) bond oxida-
tive addition to generate IM1 via 1a-TS-a. Then ligand substi-
tution converted IM1 to IM2, and IM2 underwent proton ex-
change to deliver IM3 via TS2 and release benzene. The proton 

exchange process was exergonic by 2.1 kcal mol-1. Subse-
quently, -aryl elimination of IM3 via TS3 gave IM4,16 and 
IM4 recombined with CO ligand to give IM5. The final reduc-
tive elimination, which required an activation energy of 28.4 
kcal mol-1, afforded IM6 (via TS4) and closed the catalytic cy-
cle. 

In conclusion, we developed an example of Rh-catalyzed 
transarylation of benzamides to afford the aryl exchanged ben-
zamides with arylboronic acids. Screening of the amide N-sub-
stituents experimentally and computationally made Rh(I) cata-
lyst exclusively insert into C(O)-C(aryl) bond rather than con-
ventional C(O)-N bond. In addition, this transformation pro-
vided a novel and practical methodology to construct amides, 
with broad substrate scope, good functional group tolerance and 
high selectivity. Further studies on amide’s functionalization 
are ongoing in our research group. 
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