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Abstract: The Suzuki–Miyaura reaction of N-methyl-2,3-dibro-
moindole with two equivalents of boronic acids gave symmetrical
2,3-diarylindoles. The reaction with one equivalent of arylboronic
acid resulted in site-selective formation of 2-aryl-3-bromoindoles.
The one-pot reaction of 2,3-dibromoindole with two different aryl-
boronic acids afforded unsymmetrical 2,3-diarylindoles containing
two different aryl groups.

Key words: catalysis, palladium, Suzuki–Miyaura reaction, site-
selectivity, indole

2,3-Diarylindoles are of considerable pharmacological
relevance, due to their anti-inflammatory, anti-arthritic,
and antipyretic properties.1 For example, 2,3-bis(4-meth-
oxyphenyl)indole (‘indoxole’) has been shown to possess
a stronger anti-inflammatory activity than common drugs,
such as aspirin and indomethacin.2 Based on these find-
ings, novel COX-2 inhibitors for the treatment of arthritic
pain have recently been developed.3 Classic syntheses of
2,3-diarylindoles include the diaza-Cope rearrangement
of arylhydrazones (Fischer) and the reaction of anilines
with a-halo ketones (Napieralski).1,4 Modern methods to
assemble the indole system include the Fürstner variant of
the McMurry reaction and Pd-catalyzed cross-coupling
reactions.4

An alternative approach to substituted indoles relies on
the functionalization of the indole core structure. In recent
years, a number of site-selective palladium(0)-catalyzed
cross-coupling reactions of polyhalogenated heterocycles
have been developed. The site-selectivity of these reac-
tions is generally influenced by electronic and steric pa-
rameters.5 Recently, we have reported the synthesis of
aryl-substituted thiophenes,6 pyrroles,7 and selenophenes8

by site-selective Suzuki reactions of tetrabromo-
thiophene, tetrabromo-N-methylpyrrole, and tetrabromo-
selenophene, respectively. A number of Suzuki–Miyaura
reactions of monohalogenated indoles have been report-
ed.9 Ohta et al. reported site-selective Suzuki–Miyaura re-
actions of N-TBDS-3,6-dibromoindole.10 The first attack
occurred at carbon atom C-6. Recently, we have reported
Heck reactions of N-methyl-2,3-dibromoindole which
proceed without site-selectivity.11 Gribble and Liu report-

ed the synthesis of symmetrical N-phenylsulfonyl-2,3-di-
arylindoles by twofold Suzuki–Miyaura reactions of 2,3-
dihalo-N-(phenylsulfonyl)indoles.12 The main part of this
study was carried out with N-phenylsulfonyl-2,3-diiodo-
indole, but its 2,3-dibromo-, 2-iodo-3-bromo-, and 2-bro-
mo-3-iodoindole derivatives were also employed. The
reactions were carried out using Pd(OAc)2/P(o-Tol)3 and
K2CO3 in acetone–H2O (2:1) or DMF (70 °C). It is impor-
tant to note that the authors report that all attempts to de-
velop site-selective reactions and to prepare
monocoupling products or unsymmetrical 2,3-diarylin-
doles, containing two different aryl groups, were unsuc-
cessful. In fact, site-selective palladium(0)-catalyzed
cross-coupling reactions of 2,3-dihaloindoles have, to the
best of our knowledge, not yet been reported.

We have earlier observed7 that Suzuki–Miyaura reactions
of N-sulfonyl- and N-acyl-2,3,4,5-tetrabromopyrrole and
of unprotected 2,3,4,5-tetrabromopyrrole gave unsatisfac-
tory results (with regard to yield and site-selectivity). In
contrast, the reactions of N-methyl-2,3,4,5-tetrabromopy-
rrole proceeded in good yields and with excellent site-se-
lectivity. Therefore, we decided to study the use of N-
methyl-2,3-dibromoindole as a substrate in Suzuki–
Miyaura reactions. Gratifyingly, we have found that the
reactions indeed proceed in high yields and with excellent
site-selectivity. The results of our efforts are reported
herein.

N-Methyl-2,3-dibromoindole (1) was prepared as previ-
ously reported.11 The Suzuki–Miyaura reaction of 1 with
various arylboronic acids (2.3 equiv) afforded the sym-
metrical 2,3-diarylindoles 3a–e (Scheme 1, Table 1).13,14

All products were isolated in high yields (79–91%). This
includes derivatives prepared from both electron-rich and
electron-poor arylboronic acids. In contrast, reactions of
N-phenylsulfonyl-2,3-diiodoindole with electron-poor
arylboronic acids were reported to proceed in only moder-
ate yields (44–55%).12

Scheme 1 Synthesis of 3a–e. Reagents and conditions: (i) 1 (1.0
equiv), 2a–e (2.3 equiv), K3PO4 (3.0 equiv), Pd(PPh3)4 (3 mol%), 1,4-
dioxane, 110 °C, 6 h.
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The reaction of 1 with arylboronic acids 2f–j (1.1 equiv)
resulted in site-selective formation of the (rather unstable)
N-methyl-2-aryl-3-bromoindoles 4a–e (Scheme 2,
Table 2).13,15 Excellent yields were again obtained for
products derived from both electron-rich and electron-
poor arylboronic acids.

Scheme 2 Synthesis of 4a–e. Reagents and conditions: (i) 1 (1.0
equiv), 2f–j (1.1 equiv), K3PO4 (1.5 equiv), Pd(PPh3)4 (3 mol%), 1,4-
dioxane, 70 °C, 6 h.

Our next target was to prepare unsymmetrical 2,3-di-
arylindoles containing two different aryl groups. Due to
the unstable nature of the monocoupling products 4, we
developed a one-pot protocol. The Suzuki–Miyaura reac-
tion of N-methyl-2,3-dibromoindole with two different
arylboronic acids afforded the unsymmetrical 2,3-di-
arylindoles 5a–e in good yields (Scheme 3, Table 3).16,17

In all reactions, the best yields were obtained when
Pd(PPh3)4 was used as the catalyst (3–4 mol%). The use
of Pd(OAc)2 in the presence of XPhos18 or SPhos18 gave
similar results in terms of yield. However, the employ-
ment of Pd(PPh3)4 is significantly cheaper. For the mono-
coupling (synthesis of 4a–e and the first step of the one-
pot synthesis of 5a–e) it proved to be important to carry
out the reaction at 70 °C in order to achieve a good site-
selectivity. In contrast, the synthesis of 3a–e and the sec-

ond step of the one-pot synthesis of 5a–e were carried out
at 110 °C. Potassium phosphate was employed as the
base. The structures are established by 2D NMR experi-
ments and X-ray structural analyses.

Scheme 3 Synthesis of 5a–e. Reagents and conditions: (i) 1) 1 (1.0
equiv), 2k (1.1 equiv), K3PO4 (1.5 equiv), Pd(PPh3)4 (4 mol%), 1,4-
dioxane, 70 °C, 6 h; 2) 2a,e,f,j,l (1.2 equiv), K3PO4 (1.5 equiv), 110
°C, 8 h.

The oxidative addition of palladium usually occurs first at
the most electron-deficient carbon atom.5 The site-selec-
tive formation of 4a–e and 5a–e can be explained by the
fact that carbon atom C-2 is more electron-deficient than
C-3 (Scheme 4). The nitrogen protective group seems to
play an important role. Gribble and Liu reported12 that the
reaction of N-phenylsulfonyl-protected 2,3-diiodo-, 2,3-
dibromo-, 2-iodo-3-bromo-, and 2-bromo-3-iodoindole
with one equivalent of (4-methylphenyl)boronic acid re-
sulted in the formation of mixtures of the 2,3-diarylin-
doles and of the starting material instead of the

Table 1 Synthesis of Symmetrical N-Methyl-2,3-diarylindoles 3a–e

2, 3 Ar Yield of 3 (%)a

a Ph 91

b 4-MeC6H4 90

c 4-EtC6H4 86

d 4-t-BuC6H4 79

e 4-ClC6H4 83

a Yields of isolated products.

Table 2 Synthesis of 2-Aryl-3-bromoindoles 4a–e

2 4 Ar Yield of 4 (%)a

f a 3,5-Me2C6H3 86

g b 2-MeOC6H4 71

h c 2-EtOC6H4 73

i d 3,4-(MeO)2C6H3 79

j e 4-F3CC6H4 84

a Yields of isolated products.
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Table 3 Synthesis of Unsymmetrical 2,3-Diarylindoles 5a–e

2 5 Ar1 Ar2 Yield of 5 (%)a

k,a a 2,5-(MeO)2C6H3 Ph 69

k,f b 2,5-(MeO)2C6H3 3,5-Me2C6H3 67

k,e c 2,5-(MeO)2C6H3 4-ClC6H4 59

k,l d 2,5-(MeO)2C6H3 4-FC6H4 71

k,j e 2,5-(MeO)2C6H3 4-F3CC6H4 63

a Yields of isolated products.
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Scheme 4 Possible explanation for the site-selectivity of the Suzuki–
Miyaura reactions of 1
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monocoupling product. This might be explained by the
strong electron-withdrawing effect of the sulfonyl group
which results in an increased reactivity of both carbon C-
2 and C-3 of the indole moiety and a less pronounced dif-
ference between their electronic character. In case of N-
methyl-2,3-dibromoindole (1) the electronic character of
C-2 and C-3 appears to be sufficiently different because
site-selective transformations are observed.

In conclusion, we have reported the synthesis of symmet-
rical and unsymmetrical 2,3-diarylindoles by Suzuki–
Miyaura reactions of N-methyl-2,3-dibromoindole. The
nitrogen protective groups play an important role for the
site-selectivity.
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