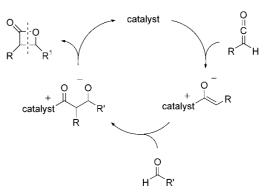
Lactone Synthesis

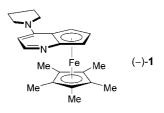
Asymmetric Synthesis of Highly Substituted β-Lactones by Nucleophile-Catalyzed [2+2] Cycloadditions of Disubstituted Ketenes with Aldehydes**

Jonathan E. Wilson and Gregory C. Fu*


The development of effective methods for the asymmetric synthesis of β -lactones is an important challenge for a variety of reasons.^[1] Numerous biologically active β -lactone-containing natural and unnatural products have been described, including Xenical (tetrahydrolipstatin), an anti-obesity drug developed by Roche.^[2,3] Furthermore, β -lactones serve as useful intermediates in an array of fields, including materials science and synthetic organic chemistry.^[1,4] The strain of the four-membered lactone provides an opportunity for a range of functionalizations; for example, nucleophiles can react either at the carbonyl group through an addition–elimination sequence or at a C–O single bond through an S_N2 process. Thus, a number of recent total syntheses, such as those of (–)-laulimalide,^[5] (–)-malyngolide,^[6] and trapoxin B,^[7] have exploited enantiopure β -lactones as intermediates.

One attractive route to β -lactones is the overall [2+2] cycloaddition of a ketene with an aldehyde [Eq. (1)]. Chiral

$$R \xrightarrow{O} H \xrightarrow{O} Catalyst \xrightarrow{O}$$


nucleophiles and chiral Lewis acids have both been shown to catalyze this process, sometimes with outstanding enantioselectivity (the postulated mechanism for the nucleophilecatalyzed cycloaddition is illustrated in Scheme 1).^[8-11] To date, all reports of asymmetric catalysis of this transformation have described reactions of ketene itself (H₂C=C=O) or of *monos*ubstituted ketenes. Expanding the scope of such processes to include *disubstituted* ketenes would furnish access to α,α -disubstituted β -lactones, an important class of synthetic targets.^[12]

- [*] J. E. Wilson, Prof. Dr. G. C. Fu Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
 Fax: (+1) 617-324-3611
 E-mail: gcf@mit.edu
- [**] We thank Ivory D. Hills for X-ray crystallographic studies. Support has been provided by the National Institutes of Health (National Institute of General Medical Sciences: R01-GM57034; National Cancer Institute: training grant CA009112), Merck, and Novartis. Funding for the MIT Department of Chemistry Instrumentation Facility has been furnished in part by NSF CHE-9808061 and NSF DBI-9729592.
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Scheme 1. Proposed pathway for the nucleophile-catalyzed enantiose-lective synthesis of β -lactones from ketenes and aldehydes.

We have been exploring the utility of planar-chiral DMAP and PPY derivatives (for example, **1**) as catalysts for a range of transformations,^[13] including an asymmetric Staudinger synthesis of β -lactams that likely proceeds by a pathway analogous to that depicted in Scheme 1 (DMAP = 4-(dimethylamino)pyridine, PPY = 4-pyrrolidin-1-ylpyridine).^[14]

We were intrigued by the possibility that these nucleophilic catalysts might also be useful for β -lactone synthesis. This sort of an "extension" from reactions of imines to reactions of aldehydes is not as straightforward as may appear; for example, in the case of cinchona alkaloid-based catalysts, an excellent method for enantioselective β -lactam synthesis from monosubstituted ketenes was reported several years ago,^[15] whereas general conditions for β -lactone synthesis from monosubstituted ketenes, which require a Lewis acid co-catalyst, have only been developed very recently.^[16] In this Communication, we demonstrate that PPY derivative **1** serves as an effective catalyst for [2+2] cycloadditions of *di*substituted ketenes with aldehydes to furnish the first catalytic asymmetric route to α, α -disubstituted β -lactones.

In our earlier study, we established that **1** catalyzes a Staudinger-type cycloaddition of ketenes with imines to efficiently afford β -lactams with good enantioselectivity (76–98% yield; 81–98% *ee*).^[14] However, when we apply these conditions to the corresponding reaction of ketenes with aldehydes, we obtain essentially none of the desired β -lactone [Eq. (2)].

$$Et = Et = H = Ph = \frac{10\% (-) - 1}{THF/toluene (1:1)} = Et = Ph = 2\% yield$$
(2)

Interestingly, by lowering the reaction temperature, we can generate the targeted [2+2] cycloaddition product in high yield, and, equally significantly, in high enantiomeric excess (91 % yield, 89 % *ee*; Table 1, entry 1). Furthermore, the two-

Table 1: Catalytic asymmetric cycloaddition of diethylketene with benzaldehyde.

	Et Et O			
Entry	Catalyst	Conditions	Yield $[\%]^{[a]}$	ee [%] ^[a]
1	5% (-)-1	THF/toluene (1:1), -78°C	91	89
2	5% (-)- 1	THF, −78°C	92	91
3	5% quinidine	THF/toluene (1:1), -78 °C \rightarrow RT	< 5	-
4 ^[b]	10% O-TMS-quini- dine, 2 equiv LiClO ₄	THF/CH ₂ Cl ₂ (1:1), -78°C \rightarrow RT	21	<2

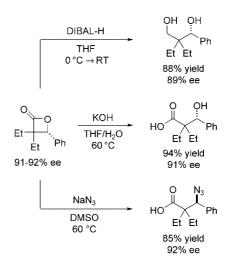
[a] Average of two runs. [b] Because the product β -lactone could not be separated from a side product, the β -lactone was reduced to a 1,3-diol with diisobutylaluminum hydride (DIBAL-H). TMS = trimethylsilyl.

solvent system that we employed for the synthesis of β -lactams is unnecessary—the formation of β -lactones proceeds in very good yield and *ee* in THF alone (entry 2). It is important to note that the alkaloid-based methods that have proved useful for catalytic asymmetric reactions of *mono*substituted ketenes are not effective for the illustrated cycloaddition of a *di*substituted ketene (entries 3^[10b] and 4^[10d]).

Our optimized conditions (Table 1, entry 2) are applicable to a range of [2+2] cycloadditions of disubstituted ketenes with aldehydes (Table 2). Thus, symmetrical ketenes, both acyclic and cyclic, couple with aldehydes with good enantioselectivity (entries 1–7). Cycloadditions of unsymmetrical disubstituted ketenes generate β -lactones that bear two contiguous stereocenters, one quaternary and one tertiary;^[17] we have determined that planar-chiral catalyst **1** preferen-

Table 2: Catalytic asymmetric synthesis of β -lactones by cycloadditions of disubstituted ketenes with aldehydes.

	$R^1 R^2 H$	O ↓	5% (–)- 1 THF, –78 °C	R^{1} R^{2} H	''R ³
Entry	R ¹	R ²	R ³	ee [%] ^[a]	Yield $[\%]^{[a]}$
1	Et	Et	Ph	91	92
2	Et	Et	2-naphthyl	89	77
3	Et	Et	4-(CF ₃)C ₆ H ₄	80	74
4	Et	Et	4-(MeCO)C ₆ H ₄	81	76
5	Et	Et	4-MeC ₆ H₄	89	67
6 ^[b]	Me	Me	Ph	76	68
7	-(CH ₂) ₆ -		Ph	82	71
8 ^[c]	iPr	Me	Ph	91	48
9 ^[c]	cyclopentyl	Me	Ph	88	53


[a] Average of two runs. [b] 7% (-)-1 was used. [c] *cis:trans* selectivity= 4.2-4.6:1. The *ee* value is for the *cis* diastereomer, and the yield is for both diastereomers.

Angew. Chem. Int. Ed. 2004, 43, 6358–6360

www.angewandte.org

tially furnishes the *cis* diastereomer (ca. 4.5:1 selectivity) with very good *ee* (ca. 90%; entries 8 and 9).^[18]

We have established that these sterically demanding α , α disubstituted β -lactones can be derivatized through reactions with nucleophiles (Scheme 2). Reagents such as DIBAL-H

Scheme 2. Derivatization of α , α -disubstituted β -lactones.

and hydroxide add to the carbonyl group to furnish a 1,3-diol and a β -hydroxyacid, respectively. Sodium azide, on the other hand, reacts through an S_N2 process to generate a β -azidoacid.^[19,20] These functionalizations proceed in good to excellent yield with essentially no erosion in enantiomeric excess.^[21]

In conclusion, we have established for the first time that a chiral PPY derivative (1) can serve as an efficient catalyst for the asymmetric synthesis of β -lactones; this is the only catalyst reported to date that is effective for enantioselective cycloadditions of disubstituted ketenes, which generate α , α -disubstituted β -lactones. Furthermore, we have shown that these β -lactones, in addition to being useful structures in their own right, can be transformed into other important families of enantioenriched compounds. Additional studies of catalytic asymmetric reactions of ketenes are underway.

Received: May 18, 2004 Revised: September 10, 2004

Keywords: aldehydes · asymmetric catalysis · cycloaddition · ketenes · lactones

- For a review of the synthesis of optically active β-lactones, see: H. W. Yang, D. Romo, *Tetrahedron* 1999, 55, 6403-6434.
- [2] For reviews of naturally occurring β-lactones, see: a) C. Lowe, J. C. Vederas, Org. Prep. Proced. Int. 1995, 27, 305–346; b) A. Pommier, J.-M. Pons, Synthesis 1995, 729–744.
- [3] For studies of analogues of lactacystin β-lactone (and leading references), see: a) E. J. Corey, W. Li, G. A. Reichard, J. Am. Chem. Soc. 1998, 120, 2330–2336; b) F. Soucy, L. Grenier, M. L. Behnke, A. T. Destree, T. A. McCormack, J. Adams, L. Plamondon, J. Am. Chem. Soc. 1999, 121, 9967–9976.

Communications

- [4] For an example of an application in material science, see: M. E. Gelbin, J. Kohn, J. Am. Chem. Soc. 1992, 114, 3962–3965.
- [5] S. G. Nelson, W. S. Cheung, A. J. Kassick, M. A. Hilfiker, J. Am. Chem. Soc. 2002, 124, 13654–13655.
- [6] Z. Wan, S. G. Nelson, J. Am. Chem. Soc. 2000, 122, 10470– 10471.
- [7] J. Taunton, J. L. Collins, S. L. Schreiber, J. Am. Chem. Soc. 1996, 118, 10412–10422.
- [8] For leading references to methods for the catalytic asymmetric synthesis of β-lactones, see: C. Schneider, *Angew. Chem.* 2002, 114, 771–772; *Angew. Chem. Int. Ed.* 2002, 41, 744–746.
- [9] For industrial applications of catalytic asymmetric [2+2] cycloadditions of ketenes with aldehydes, see: P. Stutte in *Chirality in Industry* (Eds.: A. N. Collins, G. N. Sheldrake, J. Crosby), Wiley, New York, **1997**, chap. 18.
- [10] For chiral nucleophilic catalysts, see: a) D. Borrmann, R. Wegler, *Chem. Ber.* **1966**, *99*, 1245–1251; D. Borrmann, R. Wegler, *Chem. Ber.* **1966**, *99*, 1575–1579; b) H. Wynberg, E. G. J. Staring, J. Am. Chem. Soc. **1982**, *104*, 166–168; H. Wynberg, E. G. J. Staring, J. Org. Chem. **1985**, *50*, 1977–1979; P. E. F. Ketelaar, H. Wynberg, E. G. J. Staring, Tetrahedron Lett. **1985**, *26*, 4665–4668; c) R. Tennyson, D. Romo, J. Org. Chem. **2000**, *65*, 7248–7252; G. S. Cortez, R. L. Tennyson, D. Romo, J. Am. Chem. Soc. **2001**, *123*, 7945–7946; G. S. Cortez, S. H. Oh, D. Romo, Synthesis **2001**, 1731–1736; d) C. Zhu, X. Shen, S. G. Nelson, J. Am. Chem. Soc. **2004**, *126*, 5352–5353.
- [11] Chiral Lewis acid catalysts: a) for an overview, see: ref. [8];
 b) for leading references, see: S. G. Nelson, C. Zhu, X. Shen, J. Am. Chem. Soc. 2004, 126, 14–15.
- [12] Salinosporamide A and omuralide are two examples of natural products that include an α,α-disubstituted β-lactone. For leading references, see: L. R. Reddy, P. Saravanan, E. J. Corey, *J. Am. Chem. Soc.* **2004**, *126*, 6230–6231.
- [13] a) For an early overview, see: G. C. Fu, Acc. Chem. Res. 2000, 33, 412-420; b) For more recent reports, see: A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 4050-4051; I. D. Hills, G. C. Fu, Angew. Chem. 2003, 115, 4051-4054; Angew. Chem. Int. Ed. 2003, 42, 3921-3924.
- [14] B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 1578-1579.
- [15] A. E. Taggi, A. M. Hafez, H. Wack, B. Young, W. J. Drury III, T. Lectka, J. Am. Chem. Soc. 2000, 122, 7831–7832.
- [16] See ref. [11b]. Examples of cinchona alkaloid-based intramolecular reactions of monosubstituted ketenes had been described earlier (ref. [10c]).
- [17] For reviews of catalytic asymmetric methods that generate quaternary stereocenters, see: E. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 403-415; Angew. Chem. Int. Ed. 1998, 37, 388-401; J. Christoffers, A. Mann, Angew. Chem. 2001, 113, 4725-4732; Angew. Chem. Int. Ed. 2001, 40, 4591-4597; see also: I. Denissova, L. Barriault, Tetrahedron 2003, 59, 10105-10146.
- [18] Notes: a) Under our standard conditions (Table 2), aryl alkyl ketenes, monosubstituted ketenes, very electron-rich aldehydes, and non-aromatic aldehydes are not suitable substrates. b) At the end of a reaction, we can typically recover about 80% of catalyst 1.
- [19] A. Griesbeck, D. Seebach, *Helv. Chim. Acta* 1987, 70, 1326–1332. For a more recent study, see: S. G. Nelson, K. L. Spencer, *Angew. Chem.* 2000, 112, 1379–1381; *Angew. Chem. Int. Ed.* 2000, 39, 1323–1325.
- [20] For a review of the enantioselective synthesis of β-amino acids, see: a) E. Juaristi, *Enantioselective Synthesis of* β-*Amino Acids*, Wiley-VCH, New York, **1997**; b) M. Liu, M. P. Sibi, *Tetrahedron* **2002**, *58*, 7991–8035.
- [21] In preliminary experiments, we have not observed ring-opening upon reaction with RSH, R₂NH, or R₂NLi.