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1,2,3-triazoles from arylboronic acids, sodium azide and 3-butyn-2-
ols
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Abstract. Microwave-assisted one-pot quick synthesis to 1-monosubstituted 1,2,3-triazoles was achieved

with good to excellent yields using the widely available arylboronic acids, sodium azide and 3-butyn-2-ols

within 15 min. This method features high efficient and facile as organic azides, acetylene gas and harsh

conditions were avoided.
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1. Introduction

1,2,3-Triazoles are an important kind of heterocyclics

widely applied in many fields such as biological sci-

ence,1 material field,2 medicinal chemistry3 and syn-

thetic methodologies.4 Particularly in recent years,

they have played increasingly important roles in

clinical and commercial drugs such as IDO (in-

doleamine 2,3-dioxygenase) inhibitors,5 antibiotics,6

HDIs (histone deacetylase inhibitors)7 and antiviral

drugs (Figure 1).8

Though 1, 2, 3-triazoles were found more than 100

years ago, efficient strategies for the synthesis have

been explored only in recent decades. The first method

to construct the 1, 2, 3-triazole ring was Huisgen

dipolar cycloaddition through the thermal process,

giving 1,4- and 1,5-disubstituted regioisomers without

regioselectivity.9 At the beginning of this century,

Sharpless10 group achieved a copper-catalyzed 1,3-

dipolar cycloaddition reaction (CuAAC) between ter-

minal alkynes and azides, reaching the regioselective

construction of the 1, 4-disubstituted 1, 2, 3-triazoles.

This method is very vigorous and led to many other

similar approaches subsequently.11 Meanwhile, the

synthesis for 1, 5-disubsituted 1, 2, 3-triazoles were

reported, in which ruthenium, erbium, or base were

usually applied as the catalyst.12 Lately, 1, 4,

5-trisubsituted 1, 2, 3-triazoles13 have been also syn-

thesized mainly through a three-component system.

While 1-monosubstituted 1, 2, 3-triazole derivatives,

another particular branch of this heterocycles show

various high values, mainly owing to its broad bio-

logical activities (Figure 1). Thus, the explorations for

the constructions attract much attention recently.

Acetylene gas is the most acknowledged substrate to

serve as a partner of the CuAAC reaction with organic

azides to generate 1-monosubstituted 1, 2, 3-triazoles,

which was first reported by Liang group.14 Addition-

ally, acetylene derivatives (such as trimethylsily-

lacetylene, ethynyltributyltin, sodium acetylide,

calcium carbide, propiolic acid, and propargyl alcohol)

and vinyl compounds (such as vinyl acetate, vinyl

ethers, vinyl amines, and vinyl sulfoxides) have been

proved to be reliable alternatives to synthesize the

products.15 In most of the above methods, acetylene

gas, volatile toxic organic azides and/or harsh condi-

tions are involved, which leads to some drawbacks of

safety concerns and/or inconvenience in the process of

manipulations.

Enlightened by Jiang’s recent work, in which

2-methyl-3-butyn-2-ol was employed as an excellent

alkyne source for the construction of 1-monosubsti-

tuted 1,2,3-triazoles with organic azides,15i and by the

reports that aryl boronic acid and sodium azide could
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serve to synthesize organic azides,16 we envision these

three starting materials could form the 1-monosubsti-

tuted 1,2,3-triazoles in a more safe and facile one-pot

procedure (Scheme 1).

2. Experimental

2.1 Materials and methods

All commercially available reagents and solvent were

obtained from the commercial providers (Aladdin and

Bokachem, China) and used without further purifica-

tion. All the reactions were conducted using CEM

Discover-SP microwave instrument. NMR spectra

were recorded with a Bruker ACF400 and ARX600 or

500 spectrometer in CDCl3 with TMS as an internal

standard. All reactions were monitored by TLC anal-

ysis with HuanghaiGF 254 silica gel-coated plates.

Column chromatography was conducted using 300 to

400 mesh silica gel at medium pressure.

2.2 General synthetic procedure

Arylboronic acid 1 (0.3 mmol), but-3-yn-2-ol 2
(0.36 mmol), sodium azide 3 (0.36 mmol), KOH

(0.9 mmol), CuI (0.015 mmol), NaAsc (0.03 mmol),

and PhMe-H2O (2 mL, 5:1 in volume) were added to a

microwave reaction tube. The mixture was conducted

under microwave at 80 �C for 15 min. After the

reaction completed by TLC analysis, H2O (25 mL)

was added to the mixture and the system was extracted

with EtOAc (3 9 20 mL). The combined organic layer

was washed with brine (3 9 5 mL), dried with

Na2SO4, and concentrated under reduced pressure to

afford the crude product. Purification by column

chromatography on silica gel with EtOAc-PE (1:5)

afforded the desired product 4.

3. Results and Discussion

In our initial study, phenylboronic acid (1a),

2-methylbut-3-yn-2-ol (2a), and sodium azide 3 were

chosen as starting materials for optimization of the

reaction conditions. 35% Yield of product 1-phenyl-

1H-1,2,3-triazole 4a was obtained when the reaction

was catalyzed by CuI (5%)-NaAsc(10%), using KOH

(2 equiv.) as the base, and PhMe-CH3OH (1:3, V:V) as

the solvent under 80 �C (Table 1, entry 1). The com-

ponent ratio of the mixture solvent affected the reac-

tions and PhMe-CH3OH in 3:1 could deliver a yield of

53% (Table 1, entry 3). Replacing CH3OH with H2O

in the solvent mixture could remarkably raise the

yield and excellent yield of 78% was obtained when
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Scheme 1. 1-monosubstituted 1,2,3-triazoles construc-
tions using 3-butyn-2-ols.
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PhMe-H2O in 5:1 was used (Table 1, entries 4–7). We

then explored the loading amount of KOH and found

the reaction preferred to 3 equivalents of KOH, gen-

erating an excellent 82% yield while overmuch base

seemed no obvious effects (Table 1, entries 8–9). To

our delight, the target molecule was remarkably

increased to 89% yield when microwave (MW) was

employed in a 15 min-assisting instead of traditional

heating (Table 1, entries 10). Through microwave, the

reaction temperature also had a distinct influence on

this conversion and 90 �C or 70 �C is unfavorable to

the combination (Table 1, entries 11–12). Bases like

NaOH, CsOH and K2CO3 were also screened to be

much less efficient (Table 1, entries 13–15). Other

kinds of solvents including PhMe, DMSO and DMF

only produced unsatisfactory yields (Table 1, entries

16–18). The sodium ascorbate played a vital role in the

system as an obvious decline of the yield came out

when the reaction was conducted without it (Table 1,

entry 19).

With the optimized conditions in hand, the one-pot

processes were explored with a range of arylboronic

acids (1) with 2-methylbut-3-yn-2-ol (2a) and sodium

azide (3) in mixture solvent of PhCH3-H2O, generating

1-monosubstituted 1,2,3-triazoles (4) with good to

excellent yields. As shown in Table 2, the reactions of

arylboronic acid substrates containing electron-donat-

ing group (such as –CH3, –OCH3) or electron-with-

drawing group (such as –SO2NH2, –NO2, –F, –Cl, –

Br) could all go smoothly (Table 2, 4a–4o). It is worth

noting that sulfoamido and -Br were well-tolerated in

the system and a good yield was generated (Table 2,

2g, 2o), which affords potential applications of late-

stage modifications. It was observed that electron-do-

nating substituents are beneficial to this one-pot

combination leading higher yields, and electron-

Table 1 Optimization of reaction conditionsa

Entry Base (equiv.) Solvent Temp. Time 4a (%)b

1 KOH (2) Toluene / CH3OH (1:3) 80 �C 12 h 35
2 KOH (2) Toluene / CH3OH (1:1) 80 �C 12 h 43
3 KOH (2) Toluene / CH3OH (3:1) 80 �C 12 h 53
4 KOH (2) Toluene / H2O (3:1) 80 �C 12 h 60
5 KOH (2) Toluene / H2O (4:1) 80 �C 12 h 66
6 KOH (2) Toluene / H2O (5:1) 80 �C 12 h 78
7 KOH (2) Toluene / H2O (6:1) 80 �C 12 h 75
8 KOH (3) Toluene / H2O (5:1) 80 �C 12 h 82
9 KOH (4) Toluene / H2O (5:1) 80 �C-MW 15 min 82
10 KOH (3) Toluene / H2O (5:1) 80 �C-MW 15 min 89
11 KOH (3) Toluene / H2O (5:1) 90 �C-MW 15 min 80
12 KOH (3) Toluene / H2O (5:1) 70 �C-MW 15 min 83
13 NaOH (3) Toluene / H2O (5:1) 80 �C-MW 15 min 63
14 CsOH (3) Toluene / H2O (5:1) 80 �C-MW 15 min 66
15 K2CO3 (3) Toluene / H2O (5:1) 80 �C-MW 15 min 40
16 KOH (3) Toluene 80 �C-MW 15 min –
17 KOH (3) DMSO 80 �C-MW 15 min 42
18 KOH (3) DMF 80 �C-MW 15 min 36
19c KOH (3) Toluene/H2O (5:1) 80 �C-MW 15 min 60

aThe reaction conditions are as follows: phenylboronic acid 1a (0.3 mmol), 2-methylbut-3-yn-
2-ol 2a (0.36 mmol), sodium azide 3 (0.36 mmol), base, CuI (0.015 mmol), NaAsc (0.03
mmol), and solvent (2 mL).
bIsolated yield.
cWithout sodium ascorbate.
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withdrawing groups seemed a bit unfavorable to this

process (Table 2, 4b–4f vs 4g–4o). Moreover, yields

from substrates with a substituent on para-position are

higher than that from other cases (Table 2, 4d vs 4b
and 4c, 4f vs 4e, 4i vs 4h, 4k vs 4j, 4n vs 4l and 4n).

Next, the scope of but-3-yn-2ols was explored as

shown in Table 3. 3-Methylpent-1-yn-3-ol (2b),

3-ethylpent-1-yn-3-ol (2c) and 2-phenylbut-3-yn-2-ol

(2d) could all undergo the transformation smoothly

with phenylboronic acid (1a), delivering correspond-

ing mono-substituted 1,2,3-triazole (4a). Notably,

acetophenone 5 could be isolated when 2-phenylbut-3-

yn-2-ol was employed as the acetylene source

(Table 3, entry 3).

To gain further mechanistic insight into the reac-

tions, some control experiments were carried out

(Scheme 1). Firstly, p-tolylboronic acid 1d and

sodium azide 3 could smoothly combine into 1-azido-

4-methylbenzene 6 with an excellent yield of 93%

under the standard conditions (Scheme 2, Eq. 1).

Meanwhile, the generated intermediate 6 and

2-methylbut-3-yn-2-ol 2 could form the target

Table 2. Substrates scopea,b

aReaction conditions: The reaction conditions are as follows: arylboronic acid 1 (0.3 mmol), 2-methylbut-3-yn-2-ol 2a
(0.36 mmol), sodium azide 3 (0.36 mmol), KOH (0.9 mmol), CuI (0.015 mmol), NaAsc (0.03 mmol), and PhMe-H2O
(2 mL, 5:1 in volume) were mixed and stirred at 80 �C by microwave for 15 min. b Isolated yield.
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molecule 4d in a yield of 90% under the same con-

ditions (Scheme 2, Eq. 2). It was implied that the aryl

azide should generate firstly as the intermediate, which

then undergoes a cycloaddition process to deliver the

monosubstituted 1,2,3-triazole accompanied by

releasing a molecule of ketone as a by-product.

To test the scalability of the current method, the

gram scale reaction of phenylboronic acid 1a
(4.0 mmol, 1.079 g) as the starting materials was

carried out under the standard conditions, and the

product 2a was isolated in 78% yield (Scheme 3).

4. Conclusions

In conclusion, we have demonstrated the microwave-

assisted facile, quick and highly efficient one-pot

synthesis of 1-monosubstituted 1,2,3-triazoles by

using the widely available arylboronic acids, sodium

azide and butyn-2-ols with good to excellent yields.

Supplementary Information (SI)

All the spectra are available at www.ias.ac.in/chemsci.
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