pseudo Enantiomeric Carbohydrate Olefin Ligands – Case Study and Application in Kinetic Resolution in Rhodium(I)-Catalysed 1,4-Addition

Holger Grugel,^a Fabian Albrecht,^a and Mike M. K. Boysen^{a,*}

^a Institute of Organic Chemistry, Leibniz University of Hannover, Schneiderberg 1B, 30167 Hannover, Germany E-mail: mike.boysen@oci.uni-hannover.de

Received: May 6, 2014; Published online:

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201400459.

Abstract: In order to investigate significant differences in asymmetric induction for *pseudo* enantiomeric carbohydrate olefin ligands in rhodium(I)catalysed 1,4-addition reactions, we designed a set of new olefin ligands differing in relative configuration and pyranoside conformation. With these, we have successfully elucidated structural requirements for metal binding and also identified an improved alternative for one *pseudo* enantiomer. Furthermore, we report the efficient kinetic resolution of a racemic 4-hydroxycyclopentenone derivative by 1,4-addition.

Keywords: asymmetric catalysis; carbohydrates; conjugate addition; kinetic resolution; ligand design

Due to the increasing demand for chiral building blocks in natural product and medicinal chemistry, the design of new chiral ligands for asymmetric metal catalysis is an active research field. Chiral olefin ligands,^[1] introduced independently by Hayashi^[2] and Carreira,^[3] are the ligands of choice for rhodium(I)mediated 1,4-additions of boronic acids to enones.^[4]

Carbohydrates are attractive, inexpensive starting materials for the design of novel ligands.^[5] With gluco-enoPhos (1a, 1aa)^[6] and galacto-enoPhos (psent-1a),^[7] we have introduced a set of *pseudo* enantiomeric^[8] olefin-phosphinite ligands derived from D-glucose and D-galactose (Scheme 1), giving 1,4-addition products in opposite configurations and typically above 90% ee. Significantly lower selectivity was observed for the gluco-ligands 1a and 1aa with bulky arvlboronic and alkenvlboronic acids, while high ees were retained with galacto-ligand ps-ent-1a.^[7] This finding prompted us to investigate the origin of the differing asymmetric induction exerted by 1a and 1aa on the one hand and ps-ent-la on the other hand, as well as to develop an improved alternative to gluco-ligands 1a and 1aa.

An obvious explanation for the different efficiency of the *gluco*-ligands (1a, 1aa) and *galacto*-ligand (*ps*-

Scheme 1. Ligands gluco-enoPhos (1a and 1aa) and galacto-enoPhos (ps-ent-1a): proposed coordination to Rh(I).

Adv. Synth. Catal. **0000**, 000, 0-0

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers! **77**

Scheme 2. Preparation of fuco-enoPhos (1b), bicyclo-gluco-enoPhos (1c) and rhamno-enoPhos (ps-ent-1b).

ent-1a) may lie in the relative configuration of their pyranose scaffolds – 4,5-trans for 1a and 1aa but 4,5cis for ps-ent-1a – which will impact the preferred conformations of the free ligands (cf. Scheme 1). In general, 2,3-unsaturated pyranosides prefer half chair conformations ${}^{0}\mathbf{H}_{5}$ and ${}^{\hat{5}}\mathbf{H}_{0}$, namely.^[9] The ¹H NMR data for free **1a** (4,5-*trans*) prove a ${}^{0}\mathbf{H}_{5}$ conformation $({}^{3}J_{4,5}=9.5 \text{ Hz}, \text{ diaxial H-4 and H-5})$ with equatorial 4phosphinite and 5-trityloxymethyl groups.^[6a] In free ps-ent-1a (4,5-cis) either the trityloxymethyl residue or the phosphinite is in an unfavourable axial position, thus neither ${}^{0}H_{5}$ nor ${}^{5}H_{0}$ is specially favoured. Bidentate coordination to Rh(I) requires proximity of olefin and phosphinite, and we reasoned that only conformers with axial phosphinites will effectively bind to Rh(I). Therefore, we expected a ⁵H₀ conformation for 1a in its rhodium complex with both trityloxymethyl group and phosphinite forced into unfavourable axial positions (Scheme 1). Ligand *ps-ent-1a* with no significant conformational preference in its free state can be expected to adopt a ⁰H₅ conformation in its Rh(I) complex with the bulky trityloxymethyl residue in a favourable equatorial position (Scheme 1). These putative differences in the coordination mode may result in reduced complex stability and efficiency for 1a and 1aa. Bidentate coordination of **1a** was unequivocally established in ¹H and ³¹P NMR studies of its Rh(I) complex,^[6a] but overlapping signals in the ¹H NMR spectrum prevented elucidation of the pyranose conformation, and no single crystals of the complex could be obtained.

In order investigate the interplay of relative pyranoside configuration and conformation of our ligands in Rh(I) complexes, we prepared the new olefin ligands shown in Scheme 2. The 4,5-cis configured ligand *fuco*-enoPhos (1b) is closely related to *galacto*ligand ps-ent-1a but lacking the trityloxy group. Ligand bicyclo-gluco-enoPhos (1c) is 4,5-trans configured but permanently locked in a ⁵H₀ conformation with an axial phosphinite. Ligand rhamno-enoPhos (ps-ent-1b) is 4,5-trans configured but has no trityloxy group. Syntheses of the new ligands started from glycals $2^{[10]}$ 3 and $4^{[11]}$ (Scheme 2) which are accessible from L-fucose and L-rhamnose (2, 4) or commercially available (3). Ligands 1b and *ps-ent-*1b were prepared via Ferrier rearrangement, deacetylation and phosphinite introduction, and for the synthesis of bicyclic **1c**, glucal **3** was subjected to 6-*O* deacetylation,^[12] intramolecular Ferrier rearrangement^[13] and phosphinite introduction.

NMR studies on 4,5-trans configured rhamno-eno-Phos (ps-ent-1b) and its rhodium complex gave direct evidence for a major conformational change upon metal binding. After addition of a Rh(I) salt, ps-ent-1b showed all characteristics of bidentate coordination: the H-2/H-3 multiplet experienced an upfield shift in the ¹H NMR, while the ³¹P NMR showed a downfield shift for the phosphinite signal, which was split into a doublet by ³¹P,¹⁰³Rh coupling (Table 1). This is in accordance with our previous findings^[6a] and Rh(I) complexes of other ligands.^[14] The H-5 signal hardly shifted upon complexation, but the vicinal H-5/H-4 coupling changed drastically. Free psent-1b adopts a ${}^{5}H_{0}$ conformation with equatorial orientation of phosphinite and methyl group $({}^{3}J_{4,5} =$ 7.6 Hz), but binding to Rh(I) induced a ring flip to the ⁰H₅ conformer with diaxial orientation of the substituents (${}^{3}J_{4,5} < 1.0 \text{ Hz}$) (Table 1). This finding verifies

2

 $\ensuremath{\mathbb O}$ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

KK These are not the final page numbers!

5H0 Ph2P		$\frac{1}{2}$ $\frac{[Rh(an)]}{2}$	cac)(C ₂ ŀ CDCl ₃		P2P. Rh(acac) SI - O Me 2 H
	ps-ent-1	D		[Rn(ps	s-ent-1b)(acac)]
	δ [ppm]	ps-ent- 1b J [Hz]		[Rh(<i>ps</i> δ [ppm]	<i>-ent-</i> 1b)(acac)] <i>J</i> [Hz]
H-2 ^[a]	5.75– 5.86	n.d.		4.46– 4.55	n.d.
H-3 ^[a]				4.08– 4.15	n.d.
H-5 ^[a]	3.59 (ad)	${}^{3}J_{4,5} = 7.6,$ ${}^{3}L_{5,5} = 6.2$		3.77 (q)	${}^{3}J_{4,5} < 1.0,$ ${}^{3}L_{5,5} = 6.2$
Ph ₂ P ^[b]	(qu) 111.56 (s)	-		157.03 (d)	${}^{1}J_{\rm P,Rh} = 194.9$

Table 1. NMR studies on *ps-ent-*1b and its Rh(I) complex.

^[a] From ¹H NMR (400 MHz).

^[b] From ³¹P NMR (162 MHz).

that complexation will trigger a ring flip to conformers with axial phosphinites, even if this forces other bulky residues into axial positions.

Next, we evaluated the new ligands in 1,4-addition reactions and compared the results to those obtained with gluco- and galacto-enoPhos^[7] (Table 2). In the benchmark reaction with cyclohexenone (5a) and phenylboronic acid (6a), 1b, 1c and ps-ent-1b gave excellent ee values (entries 1, 2, and 4) just like 1a and ps-ent-1a (entries 3 and 5). Therefore, the bulky trityloxy residue of 1a, 1aa and ps-ent-1a, is not a prerequisite for efficient asymmetric induction.^[15] The direction of asymmetric induction is determined by the orientation of the 4-phosphinite relative to the plane of the pyranoside. Ligands with a phosphinite oriented below the pyranoside plane (fuco-ligand 1b, gluco-ligands 1c and 1a) produced R-7aa (entries 1-3), rhamno- and galacto-ligands ps-ent-1b and ps-ent-1a with a phosphinite above the pyranoside plane yielded S-7aa (entries 4 and 5).

Table 2.	1.4-Additions	of boronic acids to	enones in the	presence of 1a-c and	ps-ent-1a. 1b.
Labic 2.	1, 1 I fullions	or boronic actus to	chones in the	presence of in c and	p_{5} cm $\mathbf{1a}$, 10 .

Entry	Ligand	Enone 5			\mathbf{R}^2 in 6		Adduct 7		
	0					No.	Yield [%] ^[a]	ee [%] ^[b]	
1	1b						92	97 R	
2	1c				and the second s		80	98 R	
3 ^[c]	1 a			6a		7aa	80	99 R	
4	ps-ent- 1b						88	98 <i>S</i>	
5 ^[c]	ps-ent- 1a		°,				92	99 S	
6	1b				OMe د ل		96	95 R	
7	1c	50					78	87 R	
8 ^[c]	1 aa	эа		6b	²	7ab	94	60 R	
9	ps-ent- 1b						80	66 S	
10 ^[c]	ps-ent- 1a						96	93 S	
11	1b			6c	~~~	7ac	98	86 (-)	
12 ^[c]	1 a				Tol		54	78 (-)	
13	ps-ent- 1b						88	80 (+)	
14 ^[c]	ps-ent- 1a						90	96 (+)	
15	1b						76	92 (+)	
16 ^[c]	1 a				× 7		37	89 (+)	
17	ps-ent- 1b			6d	,)=(7bd	49	90 (-)	
18 ^[c]	ps-ent- 1a		0		ş—()		77	94 (-)	
19	1b	5b			m		63	92 <i>R</i>	
20 ^[c]	1 a						34	79 R	
21	ps-ent- 1b			6e	<i>«</i> »	7be	30	93 S	
22 ^[c]	ps-ent- 1a						66	92 S	
	-				CF3				

^[a] Isolated yield.

^[b] Determined by GC.

^[c] Results from ref.^[7]

Adv. Synth. Catal. 0000, 000, 0-0

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

3

Table 5. 1,4-710	idition of boronic acte			
		Ph—B(OH)₂ 6a (1.5 equiv.) ligand (3.3 mol%) Rh(I) (3.0 mol%) KOH, H₂O dioxane, 30 °C, 16 h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Entry	Ligand Rh(I) salt		Adduct 9	
-	-		Yield [%] ^[a]	cis/trans ^[b]
1 ^[c]	-	$[Rh(cod)OH]_2$	93	20:80
2	1b	$[RhCl(C_2H_4)_2]_2$	92	95 :5
3 ^[c]	1 a		78	89 :11
4	ps-ent- 1b		79	7: 93
5 ^[c]	ps-ent- 1a		86	6: 94

 Table 3. 1,4-Addition of boronic acid 6a to enone 8.

^[a] Combined yield of *cis*- and *trans*-9.

^[b] Determined by ¹H NMR.

^[c] Results from ref.^[7]

Striking differences were seen for sterically encumbered 2-methoxyphenylboronic acid (6b), for which gluco-ligand 1aa (4,5-trans) had led to 60% ee. The fuco-ligand 1b (4,5-cis) gave 95% ee, while 4,5-trans configured but conformationally locked gluco-ligand **1c** led to a smaller yet significant improvement (87%) ee) (entries 6-8). On the other hand, rhamno-ligand ps-ent-1b (4.5-trans) turned out to be inferior (66% ee) to 4,5-cis configured galacto-ligand ps-ent-1a (93% ee) (entries 9 and 10). Similar trends were observed with alkenylboronic acid 6c (entries 11-14). 1,4-Addition of boronic acids 6d and 6e to cyclopentenone 5b in the presence of 1a had resulted in modest yields (entries 16 and 20). These were improved using fucoligand **1b** (entries 15 and 19), while *rhamno*-ligand *ps*ent-1b was inferior to ps-ent-1a (entries 17 and 18 as well as 21 and 22).

These results clearly show that *fuco*- and *galacto*-ligands **1b** and *ps-ent*-**1a** with 4,5-*cis* pyranoside scaffolds are superior to 4,5-*trans* configured *gluco*- and *rhamno*-ligands **1a**, **1aa** and *ps-ent*-**1b**. The example of bicyclic **1c** highlights the complex interplay of pyranoside configuration and ligand conformation affecting asymmetric induction. While 4,5-*trans* configured **1a** and *ps-ent*-**1b** have to undergo conformational changes upon complexation, 4,5-*trans* configured **1c** is locked in a favourable conformation for Rh(I) binding. This results in improved stereoselectivity compared to **1a** and *ps-ent*-**1b**. Yet **1c** is inferior to 4,5-*cis* configured **1b** and *ps-ent*-**1a**.

With improved *pseudo* enantiomers **1b** and *ps-ent*-**1a**, we turned to 1,4-additions involving chiral enones. These may either yield diastereomeric products, with stereoselectivity depending on the relative efficiency of substrate and catalyst control or result in kinetic resolution^[16] of racemic enones. Previous studies with racemic 6-alkyl^[17] and 5-TMS^[18] cyclohexenones by others had led to complete conversion of the starting material giving *trans*- and *cis*-configured products in moderate to high *ee*. We started our studies with enantiopure enone $\mathbf{8}$,^[7,19] (Table 3). Under substrate control, the addition of boronic acid **6a** predominantly yielded *trans*-**9** (entry 1). The *fuco*-ligand **1b** as well as *gluco*-ligand **1a** favour formation of *cis*-**9**, leading to a mismatched combination of substrate and catalyst control. Both ligands override substrate control but *fuco*-ligand **1b** proved yet again to be superior by significantly improving the *cis/trans* ratio (entries 2 and 3). Reaction in the presence of *ps*-*ent*-**1a** and *ps*-*ent*-**1b** constitutes a matched combination of reagent and catalyst control. While the *cis/trans* ratio of **9** was almost identical for both ligands, *galacto*-enoPhos (*psent*-**1a**) gave a higher yield (entries 4 and 5).

Next, we investigated *O*-TBS-protected 4-hydroxycyclopentenone (**10**), an attractive material in sustainable chemistry, prepared from furfuryl alcohol,^[20] which is accessible from hemicellulose of agricultural wastes.^[21] Non-racemic **10**, an important building block in the synthesis of many bioactive compounds,^[22] is mainly prepared from *cis*-3,5-dihydroxycyclopentene *via* enzymatic desymmetrisation in six steps.^[23,24] Methods for kinetic resolution of *rac*-**10** by enzymatic and Pd-catalysed processes have recently received attention,^[25] but 1,4-addition has as yet not been explored for this purpose.^[26]

The results on kinetic resolution of *rac*-10 are summarised in Table 4. Reaction with boronic acid **6a** in the presence of an achiral Rh catalyst and CsF as the base yielded exclusively known *trans*-configured compound **11**.^[27] After reacting *rac*-10 with 0.6 equiv. of **6a** in the presence of **1a**, the remaining *R*-10 was isolated in excellent *ee* and 36% yield, while *ps-ent*-1**a** yielded *S*-10 in modest *ee* (entries 1 and 2). Apart from addition products **11**, we observed **12**, formed *via* a Heck-type side reaction.^[28] Using 0.4 equiv. of **6a**, ligands **1a**, and *ps-ent*-1**a** gave products *S*,*R*-11 and

asc.wiley-vch.de

4

 $\ensuremath{\mathbb C}$ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

KK These are not the final page numbers!

Table 4. Kinetic resolution of rac-10 by 1,4-addition.

	Ligand Base		Boronic Acid 6a	Enone 10		Adduct 11		s ^[e]
	C		[equiv.]	Yield [%]	$ee^{[a]}$	Yield [%]	$ee^{[a]}$	
1 ^[b]	1 a	CsF ^[d]	0.6	36	98 R	39	n.d.	_
2 ^[b]	ps-ent- 1a	$CsF^{[d]}$	0.6	37	38 <i>S</i>	20	n.d.	-
3 ^[b]	1 a	$CsF^{[d]}$	0.4	26	n.d.	29	88 S,R	_
4 ^[b]	ps-ent- 1a	$CsF^{[d]}$	0.4	79	n.d.	19	92 R,S	_
5 ^[c]	lb	Et ₃ N	0.6	40	99 R	52	72 S,R	31
6 ^[c]	ps-ent- 1a	Et ₃ N	0.6	40	99 S	55	79 R,S	44
7 ^[c]	1b	Et_3N	0.4	42	86 R	39	86 <i>S</i> , <i>R</i>	57
8 ^[c]	ps-ent- 1a	Et ₃ N	0.4	40	78 <i>S</i>	38	92 R,S	57

^[a] Determined by GC.

^[b] Yields after separation of **10** and **11**.

^[c] Yields determined from the **10/11** ratio in the ¹H NMR spectrum of the product mixture.

^[d] **12** in 4–20% yield.

^[e] Calculation of s value according to ref.^[29]

Experimental Section

Synthesis of Enantioenriched R-10

yields (entries 3 and 4). To overcome low yields and by-product formation, we re-investigated the reaction conditions and substituted ligand **1b** for **1a**. To our delight, Et_3N as a base improved yield and *ee* and suppressed formation of **12**. A yield of 40% and 99% *ee* for *R*-**10** and *S*-**10** were achieved using **1b** and *ps-ent*-**1a** with 0.6 equiv. of **6a** (entries 5 and 6), while decreasing the amount of **6a** to 0.4 equiv. yielded addition products *S*,*R*-**11** and *R*,*S*-**11** in fair *ee* (entries 7 and 8).

R,S-11 respectively in good ee but unsatisfactory

In conclusion, we have elucidated the interplay of pyranoside configuration and conformation in Rh(I) complexes of carbohydrate olefin ligands and its consequences for asymmetric induction in 1,4-additions. During our studies, we have identified *fuco*-ligand **1b** as an improved alternative to **1a**, leading to substantially increased *ee* values. The *pseudo* enantiomeric ligand pair **1b** and *ps-ent-***1a** now gives consistently high *ee* values for both achiral enones and bulky boronic acids and chiral enones. Furthermore, we successfully employed our ligands in the kinetic resolution of a racemic *O*-TBS-protected 4-hydroxycyclopentenone, allowing the recovery of the starting material in excellent *ee*.

In a glove box $[Rh(C_2H_4)_2Cl]_2$ (2.7 mg, 7.1 µmol) and fucoenoPhos (1b) (4.6 mg, 15.5 µmol) were placed into a flamedried Schlenk flask. Under a nitrogen atmosphere, degassed 1,4-dioxane (1 mL) was added and the solution was stirred for 15 min at room temperature. An aqueous solution of Et₃N (65 µL, 471 µmol in 0.5 mL degassed H₂O) was added and the mixture was stirred for additional 15 min. Enone rac-10 (100 mg, 471 µmol, 1.0 equiv.) was added and the reaction mixture was stirred for additional 15 min. Next phenylboronic acid 6a (34.5 mg, 283 µmol, 0.6 equiv.) and degassed 1,4-dioxane (1 mL) were added and the resulting mixture was stirred for 2 h at room temperature. After completion of the reaction Et₂O (10 mL) and H₂O (10 mL) were added and the aqueous layer was extracted with Et_2O (2×, 15 mL). The organic phase was dried over Na₂SO₄, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (PE/ EtOAc, 10:1). The products (113 mg) were isolated in one fraction, comprising enantioenriched enone R-10 and 1,4-addition product S,R-11. The product ratio was determined from the ¹H NMR spectrum: R-10/S, R-11 = 43:57, R-10(188 µmol, 40% yield; S,R-11: 248 µmol, 52% yield). Enantiomeric excesses were determined from the product mixture in a single run: R-10 99% ee; S,R-11 72% ee.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

These are not the final page numbers! **77**

Acknowledgements

Financial support by the DFG (BO 1938/5-1), Rodos BioTarget GmbH and a Heisenberg Fellowship for MMKB (BO 1938/4-1) is gratefully acknowledged. We thank Prof. Oliver Reiser, University of Regensburg, Germany, for donation of the precursor for rac-10.

References

- [1] a) C. Defieber, H. Grützmacher, E. M. Carreira, Angew. Chem. 2008, 120, 4558; Angew. Chem. Int. Ed. 2008, 47, 4482; b) R. Shintani, T. Hayashi, Aldrichimica Acta 2009, 42, 31.
- [2] T. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc. 2003, 125, 11508.
- [3] C. Defieber, J.-F. Paquin, S. Serna, E. M. Carreira, Org. Lett. 2004, 6, 3873.
- [4] a) T. Hayashi, K. Yamasaki, *Chem. Rev.* 2003, 103, 2829; b) P. Tian, H.-Q. Dong, G.-Q. Lin, *ACS Catal.* 2012, 2, 95.
- [5] a) M. Diéguez, O. Pàmies, C. Claver, Chem. Rev. 2004, 104, 3189; b) M. M. K. Boysen, Chem. Eur. J. 2007, 13, 8648; c) S. Woodward, M. Diéguez, O. Pàmies, Coord. Chem. Rev. 2010, 254, 2007; d) T. Lehnert, G. Özüduru, H. Grugel, F. Albrecht, S. M. Telligmann, M. M. K. Boysen, Synthesis 2011, 2685; e) M. M. K. Boysen, (Ed.), Carbohydrates – Tools for Stereoselective Synthesis, Wiley-VCH, Weinheim, 2013.
- [6] a) T. Minuth, M. M. K. Boysen, Org. Lett. 2009, 11, 4212; b) H. Grugel, T. Minuth, M. M. K. Boysen, Synthesis 2010, 3248.
- [7] H. Grugel, F. Albrecht, T. Minuth, M. M. K. Boysen, Org. Lett. 2012, 14, 3780–3783.
- [8] For a prominent example see: K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeoung, H.-L. Kwong, K. Morikawa, Z. M. Wang, D. Xu, X.-L. Zhang, J. Org. Chem. 1992, 57, 2768.
- [9] a) R. J. Ferrier, G. H. Sankey, J. Chem. Soc. C 1966, 2345; b) R. J. Ferrier, N. Prasad, G. H. Sankey, J. Chem. Soc. C 1969, 587; c) A. H. Franz, Y. Q. Wei, V. V. Samoshin, P. H. Gross, J. Org. Chem. 2002, 67, 7662.
- [10] a) K. Adelhorst, G. M. Whitesides, *Carbohydr. Res.* **1993**, 242, 69; b) B. Ruttens, P. Kovác, *Synthesis* **2004**, 2505; c) G. Baisch, R. Öhrlein, *Bioorg. Med. Chem.* **1997**, 5, 383.
- [11] J. T. Dixon, F. R. van Heerden, C. W. Holzapfel, *Tetra-hedron: Asymmetry* 2005, 16, 393.
- [12] P. Crotti, V. de Bussolo; L. Favero, F. Macchia, M. Pineschi, *Tetrahedron* 2002, 58, 6069.

- [13] H. B. Mereyala, K. C. Venkataramanaiah, V. S. Dalvoy, *Carbohydr. Res.* 1992, 225, 151.
- [14] a) R. Shintani, W.-L. Duan, T. Nagano, A. Okada, T. Hayashi, *Angew. Chem.* 2005, *117*, 4687; *Angew. Chem. Int. Ed.* 2005, *44*, 4611; b) E. Piras, F. Läng, H. Rüegger, D. Stein, M. Wörle, H. Grützmacher, *Chem. Eur. J.* 2006, *12*, 5849.
- [15] Notably, an arabinose-derived ligand without any 5substituent gave only 76% *ee* (*cf.* ref.^[6b]).
- [16] a) H. B. Kagan, J. C. Fiaud, *Top. Stereochem.* 1988, *18*, 249; b) H. Pellissier, *Adv. Synth. Catal.* 2011, *353*, 1613.
- [17] a) L. Mediavilla Urbaneja, N. Krause, *Tetrahedron: Asymmetry* 2006, 17, 494; b) Q. Chen, T. Soeta, M. Kuriyama, K. Yamada, K. Tomioka, *Adv. Synth. Catal.* 2006, 348, 2604; c) R. Mariz, X. Luan, M. Gatti, A. Linden, R. Dorta, *J. Am. Chem. Soc.* 2008, 130, 2173.
- [18] a) Q. Chen, M. Kuriyama, T. Soeta, X. Hao, K. Yamada, K. Tomioka, Org. Lett. 2005, 7, 4439; b) K. Tomioka, Pure Appl. Chem. 2006, 78, 2029.
- [19] Z. Benko, B. Fraser-Reid, P. S. Mariano, A. L. Beckwith, J. Org. Chem. 1988, 53, 2066.
- [20] a) T. T. Curran, D. A. Hay, C. P. Koegel, *Tetrahedron* 1997, 53, 1983; b) K. Ulbrich, P. Kreitmeier, O. Reiser, *Synlett* 2010, 2037.
- [21] H. E. Hoydonckx, W. M. van Rhijn, W. van Rhijn, D. E. De Vos, P. A. Jacobs, in: *Ullmann's Encyclopedia* of Industrial Chemistry, Wiley-VCH, Weinheim, 2007, Vol. 16, p 285.
- [22] a) M. Harre, P. Raddatz, R. Walenta, E. Winterfeldt, Angew. Chem. 1982, 94, 496; Angew. Chem. Int. Ed. Engl. 1982, 21, 480; b) S. P. Roche, D. J. Aitken, Eur. J. Org. Chem. 2010, 5339.
- [23] D. R. Deardorff, C. Q. Windham, C. L. Craney, Org. Synth. 1996, 73, 25.
- [24] a) S-10: L. A. Paquette, T. M. Heidelbaugh, Org. Synth. 1996, 73, 44; b) R-10: L. A. Paquette, M. J. Earle, G. F. Smith, Org. Synth. 1996, 73, 36.
- [25] a) T. Kumaraguru, N. W. Fadnavis, *Tetrahedron: Asymmetry* 2012, 23, 775; b) K. Ulbrich, P. Kreitmeier, T. Vilaivan, O. Reiser, J. Org. Chem. 2013, 78, 4202.
- [26] Addition to enantiopure 4-hydroxycyclopentenones: G. de La Herrán, M. Mba, M. C. Murcia, J. Plumet, A. G. Csáky, Org. Lett. 2005, 7, 1669.
- [27] K. Takahashi, M. Shiro, M. Kishi, J. Org. Chem. 1988, 53, 3098.
- [28] G. Zou, J. Guo, Z. Wang, W. Huang, J. Tang, *Dalton Trans.* 2007, 3055.
- [29] Calculation of selectivity factor s: conversion $C = ee_{10}/(ee_{10}+ee_{11});$ s = ln[(1-C)(1- ee_{10})]/ln[(1-C)(1+ ee_{10})] = ln[1-C(1+ ee_{11})]/ln[1-C(1- ee_{11})]; see a) Ref.^[16a]; b) S. J. Roseblade, A. Pfaltz, *Synthesis* **2007**, 3751.

Adv. Synth. Catal. 0000, 000, 0-0

FF These are not the final page numbers!

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

COMMUNICATIONS

pseudo Enantiomeric Carbohydrate Olefin Ligands – Case Study and Application in Kinetic Resolution in Rhodium(I)-Catalysed 1,4-Addition

Adv. Synth. Catal. 2014, 356, 1-7

Holger Grugel, Fabian Albrecht, Mike M. K. Boysen*

OTr 7 Ph₂PC Ph_P(OPPh₂ fuco-enoPhos gluco-enoPhos galacto-enoPhos rhamno-enoPhos 4,5-*cis* 4,5-trans 4,5-*cis* 4,5-trans Ph-B(OH)₂ ligand/Rh(l) Et₃N, H₂O, dioxane 3 4 OTBS OTBS OTBS Ph rac fuco: 99% ee (4R) 86% ee (3S,4R) galacto: 99% ee (4S) 92% ee (3*S*,4*R*)

7