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ABSTRACT: We discovered that with the promotion of
sulfuryl fluoride, the carbonyl groups of amides performed as
nucleophiles while the hydroxyl groups of alcohols were
activated to functionalize as electrophiles. This study displayed
that the amide C−N bonds could be easily cleaved with delicate
nucleophiles to form the ester C−O bonds at room temperature
without using transition metals. The broad substrate scope and excellent functional group compatibility were proved with 44
examples in up to 99% yields.

The discovery of new reactions for facile construction of
various chemical bonds in molecules to achieve complex-

ity lies at the center of organic chemistry.1 Direct
functionalization of sp3 C−O bonds of aliphatic alcohols
without excessive chemical transformations has been a long-
lasting challenge for organic synthesis, because alcohols are
usually unreactive as electrophiles and the hydroxyl (−OH)
groups in alcoholic molecules cannot be easily replaced by
nucleophilic reagents.2 On the other hand, the electrophilic
carbonyl groups are exceptionally reactive toward nucleophiles;
therefore, scarce endeavors have been geared toward utilizing
carbonyl groups as nucleophiles for chemical manipulations.3

The amide motifs are ubiquitous in synthetic intermediates,
natural products, proteins, and various other molecules of
importance, which profoundly influence the biological and
material properties of molecules.4 To date, numerous methods
for the formation of amide bonds have been extensively
developed, which include the nucleophilic substitution of
carboxylic esters with amines (Scheme 1a).5 However, because
of the high stability and rigidity of the amidic linkages,
surmounting the high kinetic and thermodynamic barriers to
harness amides as synthetic building blocks in C−N bond
cleavage reactions has remained underdeveloped.6 Recently,
the transformation of amides to esters has gained significant

attention (Scheme 1b)7 since the seminal work by the Garg
group.8

Our previous research revealed that under SO2F2 atmos-
phere,9 the hydroxyl groups of alcohols were activated as
leaving groups, and the oxygen anion tautomerized from
sulfur−oxygen double bonds of DMSO served as a nucleophile
to perform substitution reactions (Scheme 2a).9m We envision

that oxygen anion tautomerized from carbon−oxygen double
bonds of amides would also serve as nucleophiles to react with
SO2F2-activated alcohols (Scheme 2b) in the consequence of
breaking the amide C−N bonds with simultaneous formation
of the ester C−O bonds. Herein, we report the exploration of
amide carbonyls to functionalize as nucleophiles and SO2F2-
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Scheme 1. Studies on the Formation of Amides and Esters

Scheme 2. Proposed Esterification of Alcohols Using
Amides
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activated alcohols to perform as electrophiles for the synthesis
of esters from amides.
Our investigation of the esterification feasibility commenced

with testing of reacting 4-biphenylmethanol (1a) with DMF
(2a) under sulfuryl fluoride (SO2F2) atmosphere. Accordingly,
a large variety of conditions were screened, and some
representative examples were collected in Table 1 (see the

Supporting Information for details). Pleasingly, the desired
product ester 3a was achieved in 34% HPLC yield when the
transformation proceeded with the promotion of widely used
organic base DMAP (4-dimethylaminopyridine) at room
temperature for 12 h (Table 1, entry 1). Encouraged by the
initial success, the subsequent screening of various inorganic
bases was conducted because of their salient advantages on the
easy workup and purification compared with organic bases.
Among the examined inorganic bases, Cs2CO3 was found to be
the most suitable base promoting the esterification efficiently
to provide the product 3a in quantitative yield, although good
results were also obtained by using Na2CO3, K2CO3, and KF
(Table 1, entries 2−5). Because solvents can act in a static
sense to change the energies of the reactants and products,10

the influence of the solvents was also assessed, and the research
results indicated that the use of a large excess of amide (DMF)
was essential since performing reactions with 10 equiv of DMF
in other solvents provided the desired ester 3a in moderate
yields (Table 1, entries 6 and 7). Further optimization revealed
that 1.2-fold excess of Cs2CO3 appeared to be crucial, as
reducing the loading of base to 1.0 equiv slightly affected the
efficiency of the esterification process (Table 1, entries 5, 8,
and 9). Elevating the concentration of the reaction from 0.13
to 0.2 M slightly decreased the yield of ester 3a (Table 1, entry
8 vs entry 10). In accordance with our expectation, ester 3a
was observed at an undetectable level without the presence of
base as a promoter (Table 1, entry 11), and the condition of
entry 8 was eventually taken as an optimal one for the substrate

scope exploration and functional group compatibility exami-
nation.
Under the optimized reaction conditions, the generality of

this SO2F2-mediated esterification was subsequently inves-
tigated using a large number of structurally and electronically
diverse benzylic alcohols as summarized in Scheme 3. Not

surprisingly, most of the alcohols reacted with DMF smoothly
to deliver their corresponding esters (3a−3v) in good to
excellent yields (76%−99%). Notably, the benzylic alcohols
bearing electron-donating substituents on the aryl rings usually
afforded the corresponding products in slightly higher yields
than their electron-deficient counterparts (e.g., 3b compared to
3h and 3p compared to 3q). Delightfully, the halogen motif
and acetal skeleton on the substrates remained intact in a
standard 2.0 mmol scale (3c−3e, 3l, 3o, and 3r). The
polycyclic benzylic alcohols (1s and 1t) provided their
esterified products (3s and 3t) in nearly quantitative yields.
For alcohol 1u containing two hydroxyl groups, the efficiency
of the desired transformation was not deteriorated when the
stoichiometry of the reagents was adjusted accordingly to
generate 3u in 93% yield. Excitingly, the highly functionalized
alcohol 1v, a precursor to Rosuvastain (CrestorTM, a
blockbuster HMG-CoA reductase inhibitor),11 was also
smoothly converted to its ester derivate 3v in quantitative
yield. Furthermore, secondary benzylic alcohols 1w and 1x
were also smoothly esterified albeit in somewhat lower yields
(3w, 3x compared to 3j), owing to the steric hindrance effect.
The conversion of a tertiary benzylic alcohol 1y to the
corresponding ester 3y was completely hampered. Switching
the amide from DMF to DMA for reacting with secondary
alcohol 1z was also accomplished to provide the corresponding
acetylated derivate 3z in 69% yield.
Subsequent substrate examination revealed that the

developed system was also suitable for preparation of esters
from long-chain aliphatic alcohols in good to excellent yields
(Scheme 4, 5a−5c, 64%−96%). A slightly lower yield of ester

Table 1. Reaction Conditions Optimizationa

entry base (equiv) solvent
conversion
(1a, %)b

yield
(3a, %)b

1 DMAP (2.0) DMF (2a) 100 34
2 Na2CO3 (2.0) DMF (2a) 76 75
3 K2CO3 (2.0) DMF (2a) 84 83
4 KF (2.0) DMF (2a) 92 91
5 Cs2CO3 (2.0) DMF (2a) 100 99
6c Cs2CO3 (2.0) MeCN 97 54
7c Cs2CO3 (2.0) acetone 56 40
8 Cs2CO3 (1.2) DMF (2a) 100 99
9 Cs2CO3 (1.0) DMF (2a) 98 94
10d Cs2CO3 (1.2) DMF (2a) 93 90
11 none DMF (2a) 0 0

aReaction conditions: 4-biphenylmethanol (1a, 0.2 mmol), base,
solvent (1.5 mL), SO2F2 (Toxic by inhalation. Operate in fume hoods.),
r.t., 12 h. bThe yields and conversions were determined by HPLC
using 3a or 1a as the external standards, respectively (t3a = 5.0 min,
λmax = 252 nm; t1a = 3.4 min, λmax = 289 nm; MeOH/H2O = 75:25
(v/v)). cDMF (2a, 2.0 mmol, 10 equiv) was added to the reaction
mixture. dDMF (2a, 0.2 M, 1.0 mL) was used as sole solvent.

Scheme 3. Esterification of Benzylic Alcoholsa,b

aGeneral conditions: benzylic alcohol (1, 2 mmol), Cs2CO3 (782 mg,
2.4 mmol), DMF (2a, 15 mL), and SO2F2 gas (balloon), r.t., 12 h.
bIsolated yields. cCs2CO3 (1.56 g, 4.8 mmol) and DMF (2a, 30 mL)
were used. dN.D. = not detectable. eN,N-Dimethylacetamide (DMA)
was used in the place of DMF.
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5d was observed for the secondary alcohol 4d bearing some
steric hindrance. Pleasingly, the long-chain alcoholic substrates
possessing unsaturated moieties (4e−4i) were also smoothly
converted to their corresponding ester products (5e−5i)
without destroying the double or triple bond scaffolds. More
importantly, the Z-configuration of CC bonds of alcohols
4e−4g remained the same after being converted to their
corresponding esters 5e−5g. Furthermore, propargylic alcohol
4j which is fragile to various reaction conditions was also
smoothly transformed to the corresponding ester 5j under this
condition.
As depicted in Scheme 5, evaluation of various liquid amides

(2b−2i) was further conducted to demonstrate good func-

tional group compatibility of this esterification method.
Delightfully, acetyl amides (2b, 2c, and 2d) functionalized
with different substituents on the nitrogen-atom center were all
transformed to [1,1′-biphenyl]-4-ylmethyl acetate 6a in good
to excellent yields (74−93%) after reacting with 4-
biphenylmethanol 1a. It is worth noting that the secondary
amide 2e was also converted to acetate 6a although a lower
yield was obtained compared to its tertiary amide counterparts
(2b, 2c, and 2d). However, the primary amides were not
suitable for synthesizing their corresponding esters using this
developed method. In addition, the examination of the
carbonyl part of amides (2f−2i) was also performed under
optimized reaction conditions, and their corresponding
products (6b−6e) were subsequently furnished in moderate
to good yields (33−81%). Remarkably, the melted solid amide
2j also reacted with 4-biphenylmethanol 1a at 50 °C to afford
the desired ester 6f in 48% yield.
As illustrated in Scheme 6, in order to gain more insight into

the mechanism of this SO2F2-mediated esters formation

process, several investigations were conducted accordingly.
Performing the reaction of alcohol 1a in dry DMF resulted in
the formation of product 3a in 82% yield (Scheme 6a). The
use of 18O-labeled water provided ester in nearly quantitative
yield (99%), in which, 53% was the 18O-labeled ester product
3a′, revealing that a trace amount of H2O also played an
important role in this transformation to facilitate the formation
of ester (Scheme 6b). Bubbling the SO2F2 into DMF at room
temperature for 12 h did not form the intermediate 7, which
excluded the generation of the Vilsmeier-type reagent12 during
this ester formation process (Scheme 6c).
Based on the results of mechanism investigations and

previous studies,9g,j,m,p a plausible mechanism of this SO2F2-
mediated coupling of alcohols with amides for generation of
esters was proposed in Scheme 7. The hydroxyl of alcohol 1
initially proceeded a nucleophilic substitution with sulfuryl
fluoride (SO2F2) in the presence of base to afford the
fluorosulfate A together with releasing of the fluoride ion to
serve as an additional base13 to participate in the following
chemical transformations. The iminium 2′ tautomerized from
amide 2 functionalized as an oxygen nucleophile to undergo a
SN2 type of nucleophilic displacement with fluorosulfate A to
generate the iminium intermediate B. In wet solvent, the
addition of water to iminium B provided the corresponding
adduct C, which was subsequently cleaved to ester 3 with the
promotion of base (Path 1); alternatively, in dry solvent, this
reaction could proceed through Path 2, in which the OSO2F
anion underwent a nucleophilic addition to iminium B to form

Scheme 4. Esterification of Aliphatic and Propargylic
Alcoholsa,b

aGeneral conditions: aliphatic or propargylic alcohol (4, 2 mmol),
Cs2CO3 (782 mg, 2.4 mmol), DMF (2a, 15 mL), and SO2F2 gas
(balloon), r.t., 12 h. bIsolated yields.

Scheme 5. Substrate Scope Examination with Different
Amidesa,b

aGeneral conditions: 4-biphenylmethanol (1a, 2 mmol), Cs2CO3
(782 mg, 2.4 mmol), amide (2, 15 mL), and SO2F2 gas (balloon),
r.t., 12 h. bIsolated yields. cThe reaction was performed at 50 °C using
solid amide (2j, 10 g).

Scheme 6. Mechanism Studies
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the corresponding intermediate D, whose S−O bond was
further cleaved under basic conditions to generate the
corresponding ester 3.
In summary, we have discovered an unusual reaction, in

which, with the assistance of SO2F2, the carbonyls of amides
performed as nucleophiles while the hydroxyl groups of
alcohols were activated to play as electrophiles to break the
amide C−N bonds and form the ester C−O bonds. The
versatility of this reaction feathered with wide substrate scope
(44 examples) and excellent functional group compatibility
provides a new portal to esters construction from readily
available alcohols and amides.
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