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ABSTRACT: The protocol for simple, efficient, and mild synthesis of oxazolyl sulfonyl fluorides was developed through
Rh2(OAc)4-catalyzed annulation of methyl-2-diazo-2-(fluorosulfonyl)acetate (MDF) or its ethyl ester derivative with nitriles. This
practical method provides a general and direct route to a unique class of highly functionalized oxazolyl-decorated sulfonyl fluoride
warheads with great potential in medicinal chemistry, chemical biology, and drug discovery.

Oxazole is an electron-deficient, five-membered N,O-
heterocyclic unit that is widely present in fluorescent

materials,1 polymers,2 organic synthesis intermediates,3 natu-
rally occurring compounds,4 and bioactive small molecules.5

Many oxazolyl-containing molecules such as Oxaprozin (COX-
2 inhibitor), Dalfopristin (streptogramin antibiotic), and
Suvorexant (insomnia drug) have been witnessed as block-
buster drugs in recent decades (Figure 1a).6 Given the great

importance and ubiquitous application of oxazole derivatives in
aforementioned fields, assembly of functionalized oxazole
compound libraries via mild, robust, and facile protocols
continues to be a key focus; therefore, corresponding extensive
advances have been achieved.3,7

On the other hand, sulfur fluoride exchange (SuFEx)
chemistry, a new generation of click chemistry that was

launched in 2014 has triggered burgeoning interest in the
research community, along with numerous successful applica-
tions in various fields.8 Aryl sulfonyl fluorides, which are
privileged members of the SuFEx chemistry family, have been
successfully exploited as deoxyfluorination reagents,9 18F-radio-
labeling agents,10 polysulfonate precursors,11 and also partici-
pated in many other chemical transformations.8d Their unique
features of strong electron-withdrawing nature, stability against
hydrolysis, and resistance to reduction at the S center also
enable them to be renowned as ideal irreversible enzyme
inhibitors and reactive chemical probes (Figure 1b).12 In
addition, the SuFEx reactions based on aryl sulfonyl fluorides
under defined conditions provide feasible access to a wide
variety of sulfonyl functionalized structures of pharmaceutical
significance and over 150 FDA approved sulfur (SVI)-
containing drugs can be obtained in the market to the year
of 2019.13

Considering the prominent medicinal activity of oxazolyl5

and ever-growing research importance of sulfonyl fluorides in
medicinal chemistry and chemical biology,12 we envision that
constructing diverse oxazolyl sulfonyl fluoride compounds is
worthy of great exploration, since it would contribute to
enhance the chances of lead compound discovery and new
drug candidate identification.14 However, a cursory index of
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Figure 1. Representative blockbuster oxazolyl-containing medicines
and biologically active aryl sulfonyl fluoride molecules.
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the literature revealed that the aryl sulfonyl fluorides were
traditionally prepared via Hal-Ex reactions of corresponding
sulfonyl chloride precursors.8a Although sulfonyl chlorides
have been widely used for synthesizing sulfonyl fluorides, their
property of susceptible to nucleophiles (e.g., moisture and
amines) has significantly restricted their utilization and storage
(Scheme 1a, ⟨I⟩). Consequently, several alternative methods

have been explored, including the electrochemical coupling of
thiols with KF,15 oxidation of disulfides with electrophilic
selectfluor,16 fluorosulfonylation of aryldiazonium salts,17 and
fluorination of sulfonyl hydrazides,18 albeit the requisite feed
stocks were not operationally friendly for most of the present
protocols (Scheme 1a, ⟨II⟩). Sulfuryl fluoride (SO2F2) was
used for preparing aryl sulfonyl fluorides from reacting with
Grignard reagents19 or arynes20 (Scheme 1a, ⟨III⟩). In
addition, transition-metal-catalyzed fluorosulfonylation of aryl
bromides, iodides, or boronic acids represents alternative
methods to make aryl sulfonyl fluorides through using DABSO
as “SO2” source and NFSI or selectfluor as an electrophilic
fluorination reagent (Scheme 1a, ⟨IV⟩).21 Despite the breadth
of accessible methods for making aryl sulfonyl fluorides,
oxazolyl sulfonyl fluorides preparation still remains unexplored.
Therefore, the high value and unavailability of this class of
molecules necessitate robust and effective methods for their
synthesis.
Although click chemistry as a synthesis philosophy has

evolved rapidly with advent of the thiol-addition chemistry,22

SuFEx chemistry,8a and diazotransfer reaction,23 the original
cycloaddition type of click chemistry is still predominating. In
order to achieve clickable cycloaddition, in combination with
SuFEx chemistry, new enabling cyclization SO2F-containing
synthons including BESF24 and SASF25 have been designed to
construct a series of heterocyclic molecules decorated with
sulfonyl fluorides via effective click-cycloadditions (Scheme
1b). Inspired by these seminal works in Scheme 1b, we
assumed the clickable heterocycloaddition methodology would
also be feasible for achieving the goal of oxazolyl sulfonyl
fluorides preparation.

Diazo compounds have been widely applied in various
chemical transformations,26 and nitriles as abundant and
inexpensive feed stocks have also been extensively used for
organic synthesis.27 Accordingly, we designed and synthesized
a new reagent methyl 2-diazo-2-(fluorosulfonyl)acetate
(MDF) bearing both diazo and SO2F functionalities via a
four-step transformation from methyl 2-bromoacetate (I) in
total 46% yield. Moreover, we envision that, in the presence of
transition-metal catalysts, the diazo group of MDF will be
activated to undergo cycloaddition with nitriles, to generate a
family of unprecedented 4-sulfonylfluoride substituted oxazole
derivatives (Scheme 1c).
Our investigation commenced with testing feasibility of the

annulation of 2-diazo-2-(fluorosulfonyl)acetate (MDF) (1,
diazo-SO2F) and benzonitrile (2a) under the catalysis of
Cu(OTf)2 (5 mol %) in anhydrous CHCl3, and a negligible
yield of 5-methoxy-2-phenyloxazole-4-sulfonyl fluoride (3a)
was obtained (Table 1, entry 1). Accordingly, other common

copper catalysts were screened, most of which did not
significantly improve the yield of corresponding desired
oxazole 3a (see the Supporting Information for details).
Elevating the loading of Cu(acac)2 from 5 mol % to 50 mol %
still resulted in unsatisfying yield (Table 1, entries 2 and 3).
Notably, switching the catalyst to Rh2(OAc)4 provided the
desired annulated product 3a in almost-quantitative yield,
indicating that the rhodium catalyst was much more effective
and suitable for this cyclization reaction (Table 1, entry 4).
Subsequent optimization revealed that 2 mol % Rh2(OAc)4
was essential for this transformation since further reducing the
catalyst to 1 mol % led to an obviously decreasing yield of
product 3a (Table 1, entries 5 and 6). Because solvents can act
in a static sense to change the energies of the reactants and
products,28 the evaluation on the influence of solvent was also
conducted, and the halogenated solvents (CHCl3 and DCE)
were found to be suitable for this transformation, while the

Scheme 1. Approaches to (Hetero)Aryl Sulfonyl Fluorides

Table 1. Optimization of the Reaction Conditionsa

entry catalyst solvent yield of 3ab (%)

1 Cu(OTf)2 (5 mol %) CHCl3 <2
2 Cu(acac)2 (5 mol %) CHCl3 5
3 Cu(acac)2 (50 mol %) CHCl3 36
4 Rh2(OAc)4 (5 mol %) CHCl3 99
5 Rh2(OAc)4 (2 mol %) CHCl3 96
6 Rh2(OAc)4 (1 mol %) CHCl3 88
7 Rh2(OAc)4 (2 mol %) DCE 93c

8 Rh2(OAc)4 (2 mol %) MeOH NDd

9 Rh2(OAc)4 (2 mol %) CHCl3 81e

10 Rh2(OAc)4 (2 mol %) CHCl3 70f

11 Rh2(OAc)4 (2 mol %) CHCl3 87g

aReaction conditions: MDF (1, 55 mg, 0.3 mmol, 1.5 equiv) dissolved
in anhydrous solvent (1.0 mL) was added with a syringe dropwise to a
solution of benzonitrile (2a, 21 mg, 0.2 mmol, 1.0 equiv) and catalyst
in anhydrous solvent (1.0 mL) heated under reflux. After the addition
was over, the resulting mixture was stirred at 70 °C for 12 h. bHPLC
yield (tR,3a = 5.904 min, λmax,3a = 272.5 nm; MeOH/H2O = 70:30 (v/
v)). cReacted at 90 °C. dN.D. = not detectable. eRegular undried
CHCl3 was used.

fMDF (1, 0.24 mmol, 1.2 equiv). gReacted at 60 °C.
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protonic solvent MeOH was not effective for this annulation
(Table 1, entries 5 and 7 vs entry 8). It was noteworthy that
the moisture in the solvent can significantly deteriorate the
cyclization efficiency (Table 1, entry 5 vs entry 9). In addition,
other factors such as the stoichiometry of reagents and reaction
temperature were also investigated (Table 1, entries 10 and
11), revealing that 1.5 equiv of MDF and 70 °C were the best
conditions for the desired transformation. Therefore, the
condition of entry 5 in Table 1 was eventually chosen for the
preparative runs described hereafter.
In order to evaluate the functional group tolerance and

substrate scope of this methodology, a large variety of
structurally and electronically diverse aryl nitriles were
examined under the optimized reaction conditions as collected
in Scheme 2. In addition, the research results revealed that

most of the substrates afforded their corresponding cyclization
products in high to excellent yields, regardless of the nitriles
functionalized with electron-donating (methyl, phenyl, and
ether group) or electron-withdrawing (halogen, ester group,
trifluoromethyl, and trifluoromethoxy) substituents on the
aromatic rings. Note that the transformation proceeded
smoothly without any obvious influence caused by electronic
factors (e.g., 3d vs 3k and 3r vs 3s). In addition, this reaction
system provided an effective synthesis of silicon ether and
sulfonyl fluoride simultaneously containing oxazole molecule
(3e), which can be an interesting unit for polymer chemistry.
The halogen substituents were well-accompanied and delivered
expected products with excellent yields (3f−3h, yields of

94%−98%). Notably, the 4-iodobenzonitrile (2i) also ex-
hibited satisfying efficiency when increasing the loading of
MDF (1) to 2.0 equiv. Three versatile synthons of the SuFEx
chemistry resident in the aryl nitriles remained intact during
this annulation reaction, including aryl fluorosulfate (OSO2F,
3l), ethenesulfonyl fluoride (ESF, 3m), and aryl sulfonyl
fluoride (ArSO2F, 3n). Besides, the position of substituents on
the aromatic rings exhibited little influence on the efficiency.
The steric hindered nitrile (2r) accomplished its trans-
formation with comparable yield to its para- or meta-
substituted analogues (3r vs 3b and 3o). To our delight, the
multisubstituted nitriles were also smoothly converted to their
oxazole products under the identical conditions (3t−3w).
Considering the optical ability of polycyclic molecules and
applications of oxazole skeleton in fluorescent materials,1 2-
naphthalene nitrile and 9-anthracene nitrile were also tested
and furnished their final products 3x and 3y with isolated
yields of 81% and 82%, respectively. The heteroaromatic
substrates containing O, S, and N atoms also turned out to be
suitable starting materials, resulting in good to excellent yields
(3z−3ab, 77%−99% yields). The Ts-protected indole moiety
was compatible with this reaction system as well, albeit a
moderate yield of 3ac was obtained. Remarkably, a scale-up
reaction of MDF (1) and benzonitrile (2a) was also conducted
providing 96% isolated yield of target product 3a, which
demonstrated the excellent practicability of our developed
method for construction of 4-sulfonylfluoride-substituted
oxazoles.
The subsequent exploration demonstrated that this catalytic

system was also suitable for cyclizing allylic, propargylic, and
aliphatic nitriles with MDF (1), generating the corresponding
poly-substituted SO2F-functionalized oxazoles (Scheme 3, 5a−

5g) in pleasing yields (76%−97%). The reactions of allylic
nitriles adjacent to long aliphatic chain (4a) or phenyl (4b)
both worked well with 100% retention of E-configuration. In
addition, the 5-methoxy-2-(phenylethynyl)oxazole-4-sulfonyl
fluoride (5c) was readily accessible in quantitative yield by
using propargylic nitrile (4c) as the cyclization partner. As for
alicyclic nitrile 4f, the steric hindrance of cyclohexane structure
frustrated the anticipated transformation obviously, leading to
only a 76% yield of oxazole 5f. Besides, the nitrile 4g
containing two reaction sites was also successfully bifunction-

Scheme 2. Substrate Scope Using Aryl Nitrilesa,b

aReaction conditions: aryl nitrile (2, 0.5 mmol, 1.0 equiv), MDF (1,
137 mg, 0.75 mmol, 1.5 equiv), Rh2(OAc)4 (2 mol %, 4.5 mg) and
anhydrous CHCl3 (4.0 mL), reflux (70 °C), 12 h. bIsolated yields.
cThe reaction was conducted on a 5 mmol scale (2a, 516 mg). dMDF
(1, 182 mg, 1.0 mmol, 2.0 equiv) was used.

Scheme 3. Scope of Converting Allylic, Propargylic, and
Aliphatic Nitriles to Oxazolesa,b

aReaction conditions: nitrile (4, 0.5 mmol, 1.0 equiv), MDF (1, 137
mg, 0.75 mmol, 1.5 equiv), Rh2(OAc)4 (2 mol %, 4.5 mg) and
anhydrous CHCl3 (4.0 mL), reflux (70 °C), 12 h. bIsolated yields.
cMDF (1, 274 mg, 3.0 equiv) and Rh2(OAc)4 (5 mol %, 11 mg) were
used.
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alized when we enhanced the loading of Rh catalyst and MDF
during the operation.
As depicted in Scheme 4a, sartanbiphenyl (OTBN),29 which

is one of the key pharmaceutical precursors for the formal

synthesis of the drugs of Losartan, Valsartan, Irbesartan, and
Olmesartan, can also be transformed to the corresponding
oxazolyl sulfonyl fluoride (6) in almost-quantitative yield after
annulation with MDF (1) under the standard conditions.
Besides, the ethyl ester derivative of MDF (7) prepared via the
similar procedures of MDF (1) was found to be another
excellent cycloaddition partner to generate the corresponding
annulated product (8) in 99% yield through this developed
methodology. Furthermore, viewing the multitudinous appli-
cations of sulfonate in academic research and industrial
production,30 and prominent reactivity of sulfonyl fluoride
for synthesis of sulfonate,8 a TBAF-catalyzed SuFEx reaction of
oxazole-SO2F (3a) with TBS-protected Estrone (9) was also
presented, resulting in a novel estrone sulfonate derivative (10)
for further utilizations (see Scheme 4c).
To compare the SuFEx reactivity of oxazolyl and regular aryl

sulfonyl fluorides with tert-butyldimethylsilyl (TBS) ether of
phenol, an intermolecular competition experiment was
conducted in the presence of 30 mol % TBAF (see Scheme
5). The results indicated that the reactivity of oxazolyl sulfonyl

fluoride (3a) was inferior to that of regular aryl counterpart
(11), as demonstrated by the consumption of starting
materials 3a and 11 (14% and 90%, respectively), while the
generation of their corresponding SuFEx products (12 and 13)
exhibited yields of 12% and 87%, respectively.
On the basis of the experiment results and previous

studies,31 a plausible mechanism for this Rh-catalyzed
annulation reaction was postulated in Scheme 6. The
transformation started with the insertion of RhLn to MDF
(1) to form an electrophilic rhodium carbene complex A as the
key intermediate with concomitant release of N2. The
subsequent nucleophilic attack of nitrile (2 or 4) N atom to

rhodium carbene complex A led to the formation of
intermediate B, and the regenerated RhLn was applied for
the next catalytic cycle process. Afterward, the intramolecular
1,5-dipolar cyclization of intermediate C, a resonance
contributor from intermediate B, finally provided the desired
4-sulfonylfluoride substituted oxazoles (3 or 5).
In conclusion, methyl 2-diazo-2-(fluorosulfonyl)acetate

(MDF), as an enabling cycloaddition fluorosulfonylation
partner, was designed and synthesized. In addition, a Rh-
catalyzed 1,5-dipolar annulation of MDF with nitriles was
accomplished in mild, practical, and robust manners for a
clickable assembly of a class of unprecedented oxazolyl sulfonyl
fluorides. Further studies on the biological activity of these
resultant sulfonyl fluoride-containing oxazoles and chemical
transformations of MDF or its other ester derivatives are
underway in our laboratory.
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600. (d) Cleḿenco̧n, I. F.; Ganem, B. Tandem multicomponent/click
reactions: synthesis of functionalized oxazoles and tetrazoles from acyl
cyanides. Tetrahedron 2007, 63, 8665−8669. (e) Ibrar, A.; Khan, I.;
Abbas, N.; Farooq, U.; Khan, A. Transition-metal-free synthesis of
oxazoles: valuable structural fragments in drug discovery. RSC Adv.
2016, 6, 93016−93047. (f) He, W.; Li, C.; Zhang, L. An Efficient [2 +
2+1] Synthesis of 2,5-Disubstituted Oxazoles via Gold-Catalyzed
Intermolecular Alkyne Oxidation. J. Am. Chem. Soc. 2011, 133, 8482−
8485. (g) Davies, P. W.; Cremonesi, A.; Dumitrescu, L.
Intermolecular and Selective Synthesis of 2,4,5-Trisubstituted
Oxazoles by a Gold-Catalyzed Formal [3 + 2] Cycloaddition.
Angew. Chem., Int. Ed. 2011, 50, 8931−8935. (h) Xu, Z.; Zhang,

C.; Jiao, N. Synthesis of Oxazoles through Copper-Mediated Aerobic
Oxidative Dehydrogenative Annulation and Oxygenation of Alde-
hydes and Amines. Angew. Chem., Int. Ed. 2012, 51, 11367−11370.
(i) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Phosphine-
Catalyzed Remote β-C-H Functionalization of Amine Triggered by
Trifluoromethylation of Alkene: One-Pot Synthesis of Bistrifluor-
omethylated Enamides and Oxazoles. Angew. Chem., Int. Ed. 2015, 54,
4041−4045. (j) Zhang, D.; Song, H.; Cheng, N.; Liao, W.-W.
Synthesis of 2,4,5-Trisubstituted Oxazoles via Pd-Catalyzed C-H
Addition to Nitriles/Cyclization Sequences. Org. Lett. 2019, 21,
2745−2749. (k) Xu, Y.; Wang, Q.; Wu, Y.; Zeng, Z.; Rudolph, M.;
Hashmi, A. S. K. Gold-Catalyzed Synthesis of 2,5-Disubstituted
Oxazoles from Carboxamides and Propynals. Adv. Synth. Catal. 2019,
361, 2309−2314.
(8) (a) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B.
Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for
Click Chemistry. Angew. Chem., Int. Ed. 2014, 53, 9430−9448.
(b) Chinthakindi, P. K.; Arvidsson, P. I. Sulfonyl Fluorides (SFs):
More Than Click Reagents? Eur. J. Org. Chem. 2018, 2018, 3648−
3666. (c) Abdul Fattah, T.; Saeed, A.; Albericio, F. Recent advances
towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J.
Fluorine Chem. 2018, 213, 87−112. (d) Barrow, A. S.; Smedley, C. J.;
Zheng, Q.; Li, S.; Dong, J.; Moses, J. E. The growing applications of
SuFEx click chemistry. Chem. Soc. Rev. 2019, 48, 4731−4758. (e) Ball,
N. D. Properties and Applications of S(VI) Fluorides. In Emerging
Fluorinated Motifs. Properties, Synthesis and Applications; Ma, J.-A.,
Cahard, D., Eds.; Wiley−VCH Verlag GmbH & Co.: Weinheim,
Germany, 2020; pp 621−674.
(9) (a) Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. PyFluor: A
Low-Cost, Stable, and Selective Deoxyfluorination Reagent. J. Am.
Chem. Soc. 2015, 137, 9571−9574. (b) Nielsen, M. K.; Ahneman, D.
T.; Riera, O.; Doyle, A. G. Deoxyfluorination with Sulfonyl Fluorides:
Navigating Reaction Space with Machine Learning. J. Am. Chem. Soc.
2018, 140, 5004−5008.
(10) (a) Inkster, J. A. H.; Liu, K.; Ait-Mohand, S.; Schaffer, P.;
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