Borane-Mediated Carbon Dioxide Reduction at Ruthenium: Formation of C₁ and C₂ Compounds**

Sébastien Bontemps, Laure Vendier, and Sylviane Sabo-Etienne*

There is a growing interest in considering the use of carbon dioxide as a carbon source, because it is an abundant, cheap, and nontoxic molecule.^[1] Recently, significant advances have been made towards the production of formic $\operatorname{acid}^{[2]}$ and in promoting the insertion of CO₂ into C–H bonds.^[3] In all of these systems, the OCO unit is maintained, and it is thus desirable to broaden the substrate scope through the abstraction of oxygen atom(s) from carbon dioxide.^[4] Following the report in 2005 by Sadighi and co-workers of the coppercatalyzed reduction of CO₂ into CO,^[5] transformations of CO₂ under mild conditions (1 atm, RT) into C₁ building blocks such as CO, CH₃OH, or CH₄ were mediated by transition-metal catalysis^[5a,6] and organocatalysis,^[7] by using silanes, boranes, or aldehydes as oxygen scavengers.

Ruthenium complexes are known to be efficient catalysts for the conversion of CO₂ into formic acid and formate derivatives.^[8] In our group, we have extensively studied the chemistry of ruthenium polyhydrides such as the bis(dihydrogen) complex [RuH₂(H₂)₂(PCy₃)₂] (1; Cy = cyclohexyl).^[9] The unique properties of the bound dihydrogen as a labile ligand and a hydrogen source have been illustrated in the reactivity of **1** and related complexes toward E–H bonds (E = H, BR₂, SiR₃, CR₃).^[10] We had shown that **1** can reversibly insert CO₂ into the Ru–H bond by simple gas bubbling, thereby affording the formate complex [RuH(κ^2 -CO₂H)(η^2 -H₂)(PCy₃)₂] (**2**; Scheme 1).^[11] Herein we report the catalyzed reduction of CO₂ by **1** with pinacolborane (HBpin) as the

Scheme 1. Reversible insertion of CO_2 into complex **1** affording complex **2**.

- [*] Dr. S. Bontemps, Dr. L. Vendier, Dr. S. Sabo-Etienne CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, 31077 Toulouse (France) and Université de Toulouse, UPS, INPT 31077 Toulouse (France) E-mail: sylviane.sabo@lcc-toulouse.fr Homepage: http://www.lcc-toulouse.fr/lcc/spip.php?article433
- [**] We thank the ANR (Programme blanc "HyBoCat" ANR-09-BLAN-0184), the CNRS for support, and Johnson Matthey plc for the generous gift of hydrated ruthenium trichloride.
 - Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201107352.

activator and oxygen scavenger. A detailed NMR spectroscopy study, using labeled ${}^{13}CO_2$, allows us to disclose an unprecedented reductive coupling of two CO₂ molecules, which leads to the formation of pinBO ${}^{13}CH_2O{}^{13}CHO$. Mechanistic investigation combining in situ monitoring of the catalytic mixture and stoichiometric experiments highlights the role of a series of carbonyl ruthenium species **3–6**.

In an NMR tube, HBpin readily reacts with ${}^{13}CO_2$ (1 atm) in the presence of 10 mol% of complex 1 in C₆D₆ at room temperature. Complete conversion of HBpin was observed after 30 min and multinuclear NMR spectroscopy analyses unambiguously demonstrated the formation of (pinB)₂O (7), pinBO¹³CH₃ (8), and the new compounds pinBO¹³CHO (9), pinBO¹³CH₂OBpin (10), and pinBO¹³CH₂O¹³CHO (11; Scheme 2).

As depicted in Figure 1, a comparison of the ¹H and ${}^{1}H{}^{13}C{}$ NMR spectra provides clear visual proof of the presence of ${}^{13}C{}$ -labeled atoms in the resulting compounds. It is worth mentioning that no reaction occurred in the absence of **1** and that deuterium labeling of HBpin supported the

Scheme 2. Compounds **7–11** obtained from the reaction of HBpin with ${}^{13}CO_2$ (1 atm) using complex **1** (10 mol%) as the catalyst precursor. Relative proportions are given after total consumption of HBpin after 30 min, whereas values in parentheses are obtained after 22 days at room temperature or five hours at 70 °C.

Figure 1. ¹H (bottom) and ¹H{¹³C} (top) NMR spectra (C_6D_6) in the downfield region that result from the reaction of HBpin with ¹³CO₂ using **1** as catalyst: formation of the boron compounds **8–11** and of the ruthenium complex **3**.

Angew. Chem. Int. Ed. 2012, 51, 1671-1674

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angewandte Communications

formation of **8–11** from the reduction with the borane reagent.^[12] Particularly diagnostic for the C₂ compound **11** are the ¹H and ¹³C chemical shifts indicative of -O¹³CHO and -O¹³CH₂O- units ($\delta_{\rm H}$ =7.42 ppm, ¹J_{HC}=228.9 Hz and $\delta_{\rm H}$ = 5.39 ppm, ¹J_{HC}=170.4 Hz; $\delta_{\rm C}$ =159.2 and 82.5 ppm, respectively) and the observed coupling constants ³J_{HC} (4.0 and 4.4 Hz, respectively) and ²J_{CC} (2.3 Hz), which support the connectivity between the two units.^[13] Interestingly, after 22 days in the NMR tube at room temperature or five hours at 70 °C, the products **9–11** are cleanly transformed into **7** and **8**.^[12]

Because complexes 1 and 2 were never detected at the end of the catalysis, we sought mechanistic information. Three new complexes 3-5 and the known dicarbonyl complex $[RuH_2(CO)_2(PCy_3)_2]$ (6;^[14] Scheme 3) were found in various proportions depending on the catalyst loading (see below). Complexes 3-5 were synthesized independently and fully

Scheme 3. Complexes 3–6.

characterized by X-ray diffraction and IR and multinuclear NMR spectroscopy.^[12] The signals of the hydride ligands of **3** and **4** are detected at $\delta = -17.76$ and -4.68 ppm, respectively, and the formate protons appear at $\delta = 8.35$ and 8.58 ppm, respectively. The X-ray diffraction structures of **3** and **4** show an octahedral environment with the two PCy₃ ligands in *trans* positions (Figure 2). In complex **3**, the equatorial plane is

Figure 2. X-ray structures of complex 3 (left) and 4 (right; ellipsoids at 30% probability). Selected bond lengths [Å] and angles [°]: (3) Ru–O1 2.2256(16), Ru–O2 2.3409(17), Ru–C2 1.811(2), Ru–Hy1 1.499(19), C1–O1 1.266(2), C1–O2 1.258(2); P1-Ru-P2 165.41(17), O1-Ru-O2 57.71(5), O1-C1-O2 121.91(17). (4) Ru–C2 1.959(4), Ru–Hy1 1.42(3); P1-Ru-P2 166.32(3).

occupied by a κ^2 -formate, a carbonyl, and a hydride ligand. The κ^2 coordination of the formate ligand is also evidenced by a band in the IR spectrum at 1559 cm⁻¹.^[15] In contrast, complex **4** exhibits a second carbonyl ligand, the formate group now adopting a κ^1 coordination mode. The IR spectrum of 4 displays a band at higher frequency (1621 cm^{-1}) , as expected for a κ^1 coordination mode and authenticated by labeling studies.^[15,16] Previous studies have shown that 1 reversibly coordinates HBpin to produce the complex [RuH- $\{(\mu-H)_2Bpin\}(\eta^2-HBpin)(PCy_3)_2\}$, with HBpin incorporated in two different coordination modes, σ-borane and dihydroborate.^[17] When complexes 2 or 3 were used as catalyst precursors (10 mol%), both complexes reacted with HBpin to afford, before the introduction of CO₂, the new dihydroborate complex $[RuH{(\mu-H)_2Bpin}(CO)(PCy_3)_2]$ (5), which was independently isolated by addition of HBpin to the carbonyl complex [RuH₂(H₂)(CO)(PCy₃)₂]. Complex 5 is characterized in the ¹H NMR spectrum by three broad signals at $\delta = -6.68$, -8.67, and -10.04 ppm for the three different hydrides.^[18] The X-ray diffraction analysis shows that the ruthenium center also displays two PCy₃ ligands in trans positions, the equatorial plane being occupied by a hydride, a carbonyl, and a κ^2 -coordinated dihydridopinacolborate ligand with a Ru–B bond distance of 2.231(3) Å (Figure 3).

Figure 3. X-ray structure of complex **5** (ellipsoids at 30% probability). Selected bond lengths [Å] and angles [°]: Ru–Hy1 1.65(2), Ru–Hy2 1.64(3), Ru–Hy3 1.55 (3), B–Hy1 1.37(2), B–Hy2 1.42(3), Ru–C1 1.866(3), C1–O1 1.155(3); P1-Ru-P2 166.45(2).

As shown in Table 1 (entry 1), when 10 mol% of complex 1 were used, complex 3 (see also Figure 1) along with a very small amount of complex 6 (<5%) were detected after 30 min and with total consumption of HBpin. In contrast, when 1 mol% of 1 was used, complexes 3, 5, and 6 were observed in roughly a 1:4:1 ratio after 30 min (Table 1, entry 2). After a longer reaction time (10 h), only complexes 4 and 6 were detected and HBpin conversion stopped at 89% (Table 1, entry 3). Complexes 3–6 feature ¹³C-labeled car-

Table 1: Ruthenium species resulting from the use of 1 as the catalyst precursor under 1 atm of CO_2 .

Entry	1:HBpin ratio	Relative amount of formed complex [%]			
		3	4	5	6
1	1:10 ^[a]	95	0	0	5
2	1:100 ^[a]	17	0	66	17
3	1:100 ^[b]	0	40	0	60

[a] After 30 min. [b] After ten hours.

bonyl ligands, thus indicating that ¹³CO₂ has been decarbonylated during the reaction. Transient formation of formaldehyde is a likely possibility to explain such a decarbonylation,^[19] and it should be noted that free formaldehyde and formic acid were detected after three hours during the slow transformation of compounds 9-11 into 7-8. Control experiments showed that complex 3 exhibits very similar catalyst activity as 1 or 2, whereas complexes 4 and 6 are poorly active. When using complex 3 as catalyst precursor, NMR spectroscopy control prior to the introduction of CO₂ indicates the complete and very clean transformation of 3 into the dihydroborate 5. During the course of the catalysis complexes 3 and 5 coexist, and the activity is maintained until the dicarbonyl complexes 4 and 6 are the only complexes detected in the mixture, thereby causing a drop in catalytic activity.

Stoichiometric experiments were then conducted to gain information on the selectivity (Scheme 4). The reaction of complex **3** with one equivalent of HBpin affords compounds **7** (63%), **8** (24%), and **10** (13%). No trace of **9** or **11** was

Scheme 4. Stoichiometric experiments with complexes 3 and 5.

detected, and the dihydroborate species 5 is the main ruthenium species (>95%). The exposure of complex 5 to one atmosphere of CO_2 affords compounds 7 (29%) and 8 (10%) along with 9 (60%). No trace of 10 and 11 was detected and the formoxy complex 3 is the main ruthenium species (>95%). The precoordination of HBpin to the metal center appears thus a prerequisite for the formation of the formoxy compound 9. When CO₂ inserts into a Ru-H bond, the reaction with HBpin likely gives rise to the formation of a {RuOCH₂OBpin} species, which had been previously suggested.^[6b,c] The observation of the acetal compound **10** is thus an indirect proof of such an intermediate as it likely results from the reaction of the {RuOCH₂OBpin} fragment with a second equivalent of HBpin. The mechanism of the formation of compound 11 remains unclear, but the nature of our ruthenium precursor, which allows the access to two vacant sites, could be a key factor to explain such a coupling.

In summary, the formation of the pinacol compounds **7**, **8**, and **9** is reminiscent of the catechol compounds observed by Guan and co-workers,^[6b] but the activity and selectivity are much more modest. However, our system broadens the panel of compounds accessible from CO₂ reduction.^[20] Indeed, whereas acetals are key structures that have been studied in various CO₂ reduction processes,^[4a-c,6a,7] a species such as **10** has not been reported with boron so far,^[4h] and compound **11**

represents the first direct reductive coupling of two CO_2 units.^[21] Mechanistic investigation shows that borane coordination competes with CO_2 insertion and that decarbonylation is readily achieved, which ultimately results in catalyst deactivation. Studies are ongoing to elucidate the mechanism leading to the C_2 compound and to extend the scope of this system.

Received: October 18, 2011 Revised: November 28, 2011 Published online: January 12, 2012

Keywords: boranes · carbon dioxide · catalysis · hydride ligands · ruthenium

- a) S. N. Riduan, Y. Zhang, *Dalton Trans.* 2010, *39*, 3347; b) C. Federsel, R. Jackstell, M. Beller, *Angew. Chem.* 2010, *122*, 6392; *Angew. Chem. Int. Ed.* 2010, *49*, 6254; c) G. Centi, S. Perathoner, *Catal. Today* 2009, *148*, 191; d) T. Sakakura, J.-C. Choi, H. Yasuda, *Chem. Rev.* 2007, *107*, 2365; e) M. Aresta, A. Dibenedetto, *Dalton Trans.* 2007, 2975; f) P. G. Jessop, F. Joo, C.-C. Tai, *Coord. Chem. Rev.* 2004, *248*, 2425; g) T. J. Marks et al., *Chem. Rev.* 2001, *101*, 953, see the Supporting Information.
- [2] a) R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14168; b) C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. 2010, 122, 9971; Angew. Chem. Int. Ed. 2010, 49, 9777; c) R. Langer, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon, Y. Ben-David, D. Milstein, Angew. Chem. 2011, 123, 10122; Angew. Chem. Int. Ed. 2011, 50, 9948; d) A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733.
- [3] a) I. I. F. Boogaerts, S. P. Nolan, J. Am. Chem. Soc. 2010, 132, 8858; b) I. I. F. Boogaerts, G. C. Fortman, M. R. L. Furst, C. S. J. Cazin, S. P. Nolan, Angew. Chem. 2010, 122, 8856; Angew. Chem. Int. Ed. 2010, 49, 8674; c) L. Zhang, J. Cheng, T. Ohishi, Z. Hou, Angew. Chem. 2010, 122, 8852; Angew. Chem. Int. Ed. 2010, 49, 8670.
- [4] a) M. A. Rankin, C. C. Cummins, J. Am. Chem. Soc. 2010, 132, 10021; b) O. Tardif, D. Hashizume, Z. Hou, J. Am. Chem. Soc. 2004, 126, 8080; c) N. E. Schlörer, E. J. Cabrita, S. Berger, Angew. Chem. 2002, 114, 114; Angew. Chem. Int. Ed. 2002, 41, 107; d) M. T. Whited, R. H. Grubbs, J. Am. Chem. Soc. 2008, 130, 5874; e) N. J. Brookes, A. Ariafard, R. Stranger, B. F. Yates, J. Am. Chem. Soc. 2009, 131, 5800; f) X. Zhao, D. W. Stephan, Chem. Commun. 2011, 47, 1833; g) G. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796; h) A. E. Ashley, A. L. Thompson, D. O'Hare, Angew. Chem. 2009, 121, 10023; Angew. Chem. Int. Ed. 2009, 48, 9839.
- [5] a) D. S. Laitar, P. Mueller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127, 17196; b) H. Zhao, Z. Lin, T. B. Marder, J. Am. Chem. Soc. 2006, 128, 15637.
- [6] a) T. Matsuo, H. Kawaguchi, J. Am. Chem. Soc. 2006, 128, 12362;
 b) S. Chakraborty, J. Zhang, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2010, 132, 8872; c) F. Huang, C. Zhang, J. Jiang, Z.-X. Wang, H. Guan, Inorg. Chem. 2011, 50, 3816.
- [7] a) S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. Chem. 2009, 121, 3372; Angew. Chem. Int. Ed. 2009, 48, 3322; b) L. Gu, Y. Zhang, J. Am. Chem. Soc. 2009, 132, 914; c) A. Berkefeld, W. E. Piers, M. Parvez, J. Am. Chem. Soc. 2010, 132, 10660.
- [8] a) P. G. Jessop, T. Ikarlya, R. Noyori, *Nature* **1994**, *368*, 231; b) S.-I. Murahashi, Editor, *Ruthenium in Organic Synthesis*, Wiley-VCH, Weinheim, **2004**; c) Y. Y. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato, S. Sakaki, *J. Am. Chem. Soc.* **2005**, *127*, 4021.

Angewandte Communications

- [9] G. Alcaraz, M. Grellier, S. Sabo-Etienne, Acc. Chem. Res. 2009, 42, 1640.
- [10] a) R. Reguillo, M. Grellier, N. Vautravers, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2010, 132, 7854; b) G. Alcaraz, L. Vendier, E. Clot, S. Sabo-Etienne, Angew. Chem. 2010, 122, 930; Angew. Chem. Int. Ed. 2010, 49, 918; c) S. Lachaize, L. Vendier, S. Sabo-Etienne, Dalton Trans. 2010, 39, 8492; d) A. Toner, J. Matthes, S. Gruendemann, H.-H. Limbach, B. Chaudret, E. Clot, S. Sabo-Etienne, Proc. Natl. Acad. Sci. USA 2007, 104, 6945; e) R. N. Perutz, S. Sabo-Etienne, Angew. Chem. 2007, 119, 2630; Angew. Chem. Int. Ed. 2007, 46, 2578.
- [11] M. L. Christ, S. Sabo-Etienne, G. Chung, B. Chaudret, *Inorg. Chem.* **1994**, *33*, 5316.
- [12] For experimental details, see the Supporting Information.
- [13] ROESY experiments indicate the spatial connectivity of the methyl groups of the pinacol backbone with the ¹³CH₂ and ¹³CH₃ of **10**, **11**, or **8**. For the formoxy compound **9**, the carbon resonance and the large ¹J_{HC} coupling constant ($\delta_{\rm H}$ =8.21 ppm; $\delta_{\rm C}$ =159.7 ppm, ¹J_{HC}=227.3 Hz) compare well to the related values reported for the analogous CatBOCHO compound ($\delta_{\rm C}$ 162.1, ¹J_{HC}=214.0 Hz; Cat = catechol).^[6b] The methylene ¹H and ¹³C signals of compound **10** in the NMR spectra ($\delta_{\rm H}$ =5.49 ppm, ¹J_{HC}=167.2 Hz and $\delta_{\rm C}$ =85.4 ppm) compare well to those reported for the related silicon product CH₂(OSiEt₃)₂ ($\delta_{\rm H}$ = 5.01 ppm, ¹J_{HC}=161.4 Hz and $\delta_{\rm C}$ =84.2 ppm).^[7c]
- [14] M. L. Christ, S. Sabo-Etienne, B. Chaudret, *Organometallics* **1994**, *13*, 3800.
- [15] S. Burling, G. Kociok-Köhn, M. F. Mahon, M. K. Whittlesey, J. M. J. Williams, Organometallics 2005, 24, 5868.

- [16] a) M. K. Whittlesey, R. N. Perutz, M. H. Moore, Organometallics 1996, 15, 5166; b) R. F. R. Jazzar, P. H. Bhatia, M. F. Mahon, M. K. Whittlesey, Organometallics 2003, 22, 670.
- [17] a) V. Montiel-Palma, M. Lumbierres, B. Donnadieu, S. Sabo-Etienne, B. Chaudret, *J. Am. Chem. Soc.* 2002, *124*, 5624; b) S. Lachaize, K. Essalah, V. Montiel-Palma, L. Vendier, B. Chaudret, J.-C. Barthelat, S. Sabo-Etienne, *Organometallics* 2005, *24*, 2935.
- [18] For a borohydride(carbonyl)ruthenium complex, see: H. Werner, M. A. Esteruelas, U. Meyer, B. Wrackmeyer, *Chem. Ber.* **1987**, *120*, 11.
- [19] a) J. P. Lee, K. A. Pittard, N. J. DeYonker, T. R. Cundari, T. B. Gunnoe, J. L. Petersen, *Organometallics* 2006, 25, 1500; b) W. Baratta, A. Del Zotto, G. Esposito, A. Sechi, M. Toniutti, E. Zangrando, P. Rigo, *Organometallics* 2004, 23, 6264; c) B. N. Chaudret, D. J. Cole-Hamilton, R. S. Nohr, G. Wilkinson, J. Chem. Soc. Dalton Trans. 1977, 1546.
- [20] C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M. Ephritikhine, T. Cantat, Angew. Chem. 2012, 124, 191; Angew. Chem. Int. Ed. 2012, 51, 187.
- [21] a) For electrocatalytic conversion of CO₂ into oxalate see: R. Angamuthu, P. Byers, M. Lutz, A. L. Spek, E. Bouwman, *Science* **2010**, *327*, 313; b) it has been mentioned that methane and ethane were produced from the reaction of a nickel hydride-(methyl)complex with CO₂, but without any information on the origin of the gases: D. J. Darensbourg, M. Y. Darensbourg, L. Y. Goh, M. Ludvig, P. Wiegreffe, J. Am. Chem. Soc. **1987**, *109*, 7539.