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ABSTRACT: Deterium-labeled (hetero)aryl bromide is one of the
most widespread applicable motifs to achieve important deuterated
architectures for various scientific applications. Traditionally, these
deterium-labeled (hetero)aryl bromides are commonly prepared via
multistep syntheses. Herein, we disclose a direct H/D exchange
protocol for deuteration of (hetero)aryl bromides using Ag2CO3 as
catalyst and D2O as deuterium source. This protocol is highly
efficient, simply manipulated, and appliable for deuterium-labeling of over 55 (hetero)aryl bromides including bioactive druglike
molecules and key intermediates of functional materials. In addition, this method showed distinguishing site-selectivity toward the
existing transition-metal-catalyzed HIE process, leading to multideuterated (hetero)aryl bromides in one step.

The increasing applications of deuterium-labeled com-
pounds in various scientific fields have recently attracted

increased attention.1 In the pharmaceutical industry, deute-
rium-labeling has been established as a powerful tool to explore
the ADME properties of active pharmaceutical ingredients.2 In
material science, deuterated and nondeuterated optoelectronic
materials could show different behavior in crystallization,
resulting in a great impact on lighting quantum yield and
device efficiency.3 In organic chemistry, the kinetic isotope
effect experiment is commonly applied in the elucidation of
reaction mechanism.4 In chemical analysis, selective deuterated
compounds are ideal standards for mass spectrum analysis of
environmental pollutants and residual pesticides.5

As one of the most important substrates in organic
chemistry, aryl bromides were widely used as synthetic
building blocks enabling quick access to a wide array of
bioactive molecules, organic materials, and polymers via the
versatile cutting-edge transformations of C−Br bond.6 Tradi-
tionally, deuterated aryl bromides were commonly prepared
from bromination of the corresponding deuterated aryl
precursors (Scheme 1A).7 Although a range of deuterated
aryl bromides can be prepared by this method, the high cost,
due to multistep synthetic route beginning from the expensive
deuterated precursors, restricted its broad use. The alternative
way to prepare deuterated aryl bromides relied on a
defunctionalisation-deuteration stratergy.8 However, the pre-
installation of leaving groups disadvantaged further application
of these protocols in deuterium-labeling of complicated
molecules (Scheme 1B). Direct hydrogen isotope exchange
(HIE) is considered to be the most straightforward method for
quick access to deuterated arenes.9 Recently, direct HIE
reactions with transition metals including Ir,10 Pd,11 Ru,12 Pt,13

Fe,14 Ni,15 and Co16 as catalyst have been well explored as a
prevalent method for selective deuterium-labeling of aromatic

rings (Scheme 1C). Despite many efforts on the extension of
substrate scope, the reported transition-metal-catalyzed H/D
exchange protocols still relied on the use of directing groups
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Scheme 1. Methods for Synthesis of Deuterium-Labeled
Aryl Bromide
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containing an N or O atom to assist H/D exchange processes
and to control site-selectivity. Direct H/D exchange of aryl
bromides is still a great challenge, mainly due to their relatively
lower reactivity of C−H bond and fragile nature of C−Br
bond.17 For example, complete debromination was observed in
H/D exchange process with Pd/C as catalyst.18 Although H/D
exchange of bromobenzene with CD3COOD as deuterium
source can be achieved by a cationic ligand coordinated
platinum complex as catalyst,19 direct deuteration of substrates
other than simple bromobenzene was still unexplored.
Therefore, a general method for direct H/D exchange of aryl
bromide with broad substrate scope is still in high demand.
Our group is devoted to developing new methods for

synthesis of deuterated organic compounds.20 Recently, we
have developed a silver salt catalyzed H/D exchange reaction
for deuteration of five-membered heterocycles and fluoroar-
enes.21 However, due to their relatively lower reactivity, the
direct C−H activation of aryl bromides with silver salt as
catalyst is still unknown.22 In this paper, we disclose an
efficient, convenient, and catalytic method for H/D exchange
of aryl bromide with silver salt as catalyst and heavy water as
deuterium source. The reaction showed broad substrate scope,
enabling quick access to many valuable deuterated aryl
bromides, which are commonly complicated to prepare with
other methods.
Our initial efforts toward H/D exchange of aryl bromide

commenced with the reaction of 4-bromotoluene and heavy
water employing the combination of silver carbonate and
phosphine ligands as catalyst. After thorough screening of
ligands, cyclohexyldiphenylphosphine (CyPh2P) was found to
be the best to promote the HIE process, providing the product
with 0.77 deuterium incorporation (entries 1−8, Table 1).
Other silver salts were also tested, and none of them gave

better results than silver carbonate, which is consistent with
our previous observations (entries 9−11, Table 1).21a We then
screened the solvents and found toluene is the best choice of
solvent (see table s1). Further investigation of solvent
indicated that concentration played an important role in the
H/D exchange process, and a better result of 1.06 deuterium
incorporation was obtained by using 0.1 mL of toluene as
solvent (entries 12−14, Table 1). Increasing the amount of
heavy water to 20 equiv can obviously improve deuterium
incorporation (entry 15, Table 1). However, continuously
increasing the amount of heavy water never gave better results,
probably due to the poor solubility of substrates in water (see
Table S2). Interestingly, by analyzing the 1H NMR spectrum
of the isolated product, we found that this H/D exchange
reaction showed distinguishing site selectivity with 1.6
deuterium incorporation at the ortho-position and 0.4
deuterium incorporation at the meta-position of the bromide
group. In addition, we found that conducting the reaction at
higher temperature can further increase the level of deuterium
incorporation, affording 3.10 deuterium incorporation at 120
°C (entries 16 and 17, Table 1). Other deuterium sources such
as CDCl3, CD3CN, and CD3OD are demonstrated to be much
less efficient (see Table S2). Therefore, the optimal conditions
were established with Ag2CO3/CyPh2P as catalyst and D2O/
toluene as cosolvent at 120 °C.
With the optimal reaction conditions in hand, we set out to

explore the generality of this method with respect to
functionalized aryl bromide. As shown in Scheme 2, the
para-substituted bromobenzenes showed excellent H/D
exchange efficiency, affording products with deuterium
incorporation from 83% to 92% at the ortho-position (2aa−
2aj). When the para-position of bromobenzene was sub-
stituted by alkyl, phenyl, alkyne, amine or carbonyl groups, the
H/D exchange reaction showed preferential orientation toward
ortho-position over meta-position, affording products with
deuterium incorporation of 14% to 79% at meta-position
(2aa−2af). On the other hand, the bromobenzenes substituted
by an alkoxyl group at para-position showed high level of
deuterium incorporation at both ortho- and meta-positions
(2ag−2aj). These results suggested that deuterium incorpo-
ration at the meta-position could be controlled by steric effects
and/or electronic effects. On the basis of our results and the
reported reference, the selectivity of this H/D exchange
reaction may controlled by the acidity of the C−H bond, in
which H/D exchange occurred more easily adjacent to
electronegative elements. The bromobenzenes with ortho-
substitution were then tested, and we found the H/D exchange
will occur only at the ortho- and meta-position of the bromide
group, affording products with no deuterium incorporation at
the para-position of bromide (2ak−2am). To the best of our
knowledge, the H/D exchange process showing this special
kind of site selectivity has been rarely observed,23 which could
be a complementary strategy for producing valuable multi-
deuterated aryl bromides. We next examined aryl bromides
with meta-substitutions as starting materials, which also
showed a high level of deuterium incorporation at the ortho-
position and a moderate or good level of deuterium
incorporation at the meta-position (2an−2aq). In addition,
brominated polyarenes including 1-bromonaphthalene, 2-
bromonaphthalene, 2-bromonathraquinone, and 2-bromo-9,9-
dimethylfluorene all showed good H/D exchange efficiency
(2ar−2au). The H/D exchange of 9-bromophenanthrene
(2av) was observed selectively at the ortho-position of bromide

Table 1. Reaction Optimization

entrya Ag salt ligand toluene D incorporationb

1 Ag2CO3 Ph3P 1 mL 0.06
2 Ag2CO3 Sphos 1 mL 0.34
3 Ag2CO3 DavePhos 1 mL 0.64
4 Ag2CO3 JohnPhos 1 mL 0.42
5 Ag2CO3 MePhos 1 mL 0.60
6 Ag2CO3 CyPh2P 1 mL 0.77
7 Ag2CO3 Cy3P 1 mL 0.09
8 Ag2CO3 Cy2PhP 1 mL 0.09
9 Ag2O CyPh2P 1 mL 0.09
10 AgOAc CyPh2P 1 mL 0.04
11 CF3COOAg CyPh2P 1 mL 0.12
12 Ag2CO3 CyPh2P 0.5 mL 0.66
13 Ag2CO3 CyPh2P 0.2 mL 0.86
14 Ag2CO3 CyPh2P 0.1 mL 1.06
15c Ag2CO3 CyPh2P 0.1 mL 1.86
16c,d Ag2CO3 CyPh2P 0.1 mL 2.86
17c,e Ag2CO3 CyPh2P 0.1 mL 3.10

aThe reaction was conducted on 1 mmol of 1a, 10 mmol of D2O, 0.2
mmol of Ag salt, and 0.5 mmol of ligand in toluene at 80 °C, 12 h.
bDetermined by GC−MS. c20 mmol of D2O was used. dAt 100 °C.
eAt 120 °C.
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with deuterium incorporation of 96%. The high ortho-position
selectivity could be explained by its high reactivity toward C−
H activation, which has been well reported previously.24

Moreover, we found 4-chlorotoluene and 4-iodotoluene are
also good substrates for this H/D exchange reaction, providing
the products with the same site-selectivity but less efficiency
than 4-bromotoluene (2aw−2ax).25 With multihalogenated
arenes as starting materials, fully deuterated arenes could be
easily prepared under the optimal condition (2ba−2bh). The
products with deuterium incorporation of 82%−93% at every
position were obtained. To further elaborate the utility of this
transformation, deuteration of key intermediates of drugs and

functional materials as well as natural product derivatives have
been examined. First, introducing deuterium into menthol
derivatives and clotrimazole were successfully achieved (2ca
and 2 cd). Deuterated key intermediates of adapalene and
empagliflozin (2cb and 2cc) were readily synthesized from the
corresponding bromide precursors in excellent level of
deuterium incorporation. Furthermore, the important inter-
mediate for organic/polymeric phosphorescence material, 2,7-
dibromo-9,9-dimethylfluorene,26 was a good substrate for H/D
exchange, leading to fully deuterated product with excellent
level of deuterium incorporation (2ce).
The successful deuteration of aryl bromides promoted us to

investigate deuterium incorporation of heteroaryl bromides.
We first examined the H/D exchange of brominated nitrogen-
containing heteroarenes because nitrogen-containing hetero-
arenes are common structure motifs in functional materials and
bioactive compounds.27 As shown in Scheme 3, monobromi-

nated pyridine derivatives are good substrates for H/D
exchange, leading to products with multiple deuterium
incorporation (3a−3g). In addition, when the methyl group
was substituted at the ortho-position of pyridine, H/D
exchange of the methyl group was also observed (3d and
3g). It could be explained by their relatively higher acidity,28

which was believed to play important role in Ag(I)-catalyzed
H/D exchange reaction. The multihalogenated pyridine
derivatives provided higher reactivity for H/D exchange,
leading to fully deuterated pyridines in most cases (3h−3l).
Brominated isoquinolines are also examined, providing good to
excellent level of deuterium incorporation at multiple positions

Scheme 2. Deuteration of Brominated Arenesa

aThe reaction was conducted with compound 1 (1 mmol), D2O (20
mmol), Ag2CO3 (0.2 mmol), CyPh2P (0.5 mmol) in 0.1 mL of
toluene at 120 °C for 24 h; deuterium incorporation was estimated by
1H NMR spectrum; isolated yield.

Scheme 3. Deuteration of Brominated Heteroarenesa

aThe reaction was conducted with compound 1 (1 mmol), D2O (20
mmol), Ag2CO3 (0.2 mmol), and CyPh2P (0.5 mmol) in 0.1 mL of
toluene at 120 °C for 24 h; deuterium incorporation was estimated by
1H NMR spectrum; isolated yield.
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(3m and 3n). Deuteration of 6-bromoquinoxaline led to
installation of three deuterium atoms in the phenyl ring (3o).
Besides the electro-deficient heteroarenes, H/D exchange of
electron-rich brominated five-membered heterocycles was
further examined. Fully deuterated products with a high level
of deuterium incorporation were easily obtained (3p−3t). In
most cases, this H/D exchange protocol can introduce multiple
deuterium atoms in one step, which may find wide applications
in development of novel functional materials and synthesis of
standards for MS analysis.3,5

To further demonstrate the usefulness of this Ag2CO3-
catalyzed H/D exchange protocol, we conducted the trans-
formation of the C−Br bond to build up other useful
deuterated building blocks (Scheme 4). Deuteration of 1ag

(1.86 g, 10 mmol) afforded 2ag in 90% yield and 92%
deuterium incorporation at both the ortho- and meta-positions,
suggesting this H/D exchange protocol is readily scalable. As
shown in Scheme 4, the C−Br bond can be converted to
functional groups such as ester, amine, and boronic ester. The
cross-coupling of C−Br with different partners can introduce
aryl, heteroaryl and alkyne groups into the original deuterated
phenyl ring. In addition, nearly no loss of deuterium
incorporation was observed in these transformations.
With the attempt to gain more insight into the reaction

mechanism, a series of control experiments have been
performed (Scheme 5). First, a mechanism involving free
radicals should be ruled out, due to no negative effect with
radical inhibitor TEMPO as additive. Second, the one-pot
competitive reaction showed 4-bromobenzophenone is more
reactive than 4-bromotoluene toward H/D exchange, which
suggested the reaction may not follow an SEAr pathway
(Scheme 5a). Third, the one-pot competitive reaction between

9-phenylcarbazole and 2,7-dibromo-9-phenylcarbazole showed
a significant reactive difference, which indicated that bromide
group is essential for this H/D exchange process (Scheme 5b).
On the basis of these experiments, we proposed a mechanistic
pathway as follows. The phosphine ligand coordinated silver
salt promoted C−H bond cleavage of 1al, which was followed
by H/D exchange between intermediate T2 and heavy water to
produce deuterated intermediate T3. Finally, deuterated aryl
bromide (2al) will generate from transformation of deuterium
to aryl ring and release of silver salt.
In summary, a convenient approach for direct incorporation

of deuterium into brominated (hetero)arenes with Ag2CO3 as
catalyst has been disclosed. A good range of (hetero)arenes,
including brominated benzene, pyridine, quinoline, isoquino-
line, indole, benzothiophine, benzofuran, and benzoimizole,
have been demonstrated to be good substrates. The
distinguishing site-selectivity of this H/D exchange reaction
allowed this method to prepare multideuterated organic
compounds, which is extremely important in preparation of
standards for MS analysis. In addition, although aryl bromide
has been widely applied in synthesis of functional material and
drug molecules, the direct C−H activation of aryl bromide is
rarely reported. Our result demonstrated that C−H bond
cleavage of brominated (hetero)arenes by the assistant of silver
salt is feasible, which paves the way to functionalize
brominated arenes via the direct C−H bond activation route.
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Scheme 4. Transformation of C−Br Bond

aThe reaction was conducted with 2ag (0.5 mmol), potassium oxalate
(0.75 mmol), PdCl2 (0.02 mmol), and dppp (0.03 mmol) in NMP (1
mL) at 150 °C under N2.

bThe reaction was conducted with 2ag (1
mmol), 4- ethynyltoluene (1.5 mmol), Pd(OAc)2 (0.02 mmol), PPh3
(0.2 mmol), and K2CO3 (1.5 mmol) in DMSO (5 mL) at 80 °C
under N2.

cThe reaction was conducted with 2ag (1 mmol), N-
methylaniline (1.2 mmol), Pd(OAc)2 (0.01 mmol), Ruphos (0.2
mmol), and NaOtBu(1.5 mmol) at 110 °C under N2.

dThe reaction
was conducted with 2ag (1 mmol), bis(pinacolato)diboron (1.2
mmol), Pd(dppf)Cl2 (0.02 mmol), and KOAc (3 mmol) in DMSO (5
mL) at 80 °C under N2.

eThe reaction was conducted with 2ag (1.5
mmol), benzothiophene (1 mmol), Pd2(dba)3 (0.005 mmol), Sphos
(0.01 mmol), and NaOtBu (3 mmol) in o-xylene (2 mL) at 140 °C
under N2.

fThe reaction was conducted with 2ag (1.0 mmol), 4-
cyanobenzoic acid (1.5 mmol), Pd(PPh)4 (0.05 mmol), and KOAc (5
mmol) in toluene/H2O (4/2 mL) at 140 °C under N2.

Scheme 5. Control Experiments and Proposed Mechanism
of Ag2CO3-Catalyzed HIE
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