Supplementary Material

Tridentate and Tetradentate Iminophosphorane-Based Ruthenium Complexes in Catalytic Transfer Hydrogenation of Ketones.

Hellen Dyer,[†] Alexandre Picot,[†] Laure Vendier,[†] Audrey Auffrant,[‡] Pascal Le Floch[‡]

and Sylviane Sabo-Etienne.[†]*

[†]CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse, France, Université de Toulouse, UPS, INPT, F-31077 Toulouse, France,

[‡]Laboratoire Hétéroélements et Coordination, Ecole Polytechnique, CNRS, 91128 Palaiseau

Cedex, France.

E-mail: sylviane.sabo@lcc-toulouse.fr

Table of Contents

6.	ONIOM optimisation for 7 and Cartesian coordinates.	6
5.	Complete Gaussian reference	4
pre	catalyst	4
4.	Table S1. Influence of PCy_3 on the catalytic hydrogenation of acetophenone with 6 as	
3.	Figure S3: Schematic representation of a postulated intermediate.	4
2.	Figure S2: Graph of ln(K/T) vs 1/T with 6.	3
tim	e with 6	3
1.	Figure S1: Conversion of acetophenone, expressed as a percentage yield, as a function	of

1. Figure S1: Conversion of acetophenone, expressed as a percentage yield, as a function of time with **6**.

2. Figure S2: Graph of ln(K/T) vs 1/T with **6.**

3. Figure S3: Schematic representation of a postulated intermediate.

In light of the similar kinetics and chemeoselectivity observed for **6** and **3** one could postulate an outer sphere hydride transfer assisted by the ligand, with reformation of the Ru-H facilitated by the presence of the isoproxide anion in solution. Unfortunately evidence of the formation of a P-OⁱPr functionality could not be detected spectroscopically (31 P and 1 H NMR where applicable) at ambient temperature or at 345K upon stoichiometric reaction of **5** and **6** with excess NaOⁱPr in THF-d₈ and in ⁱPrOH.

4. Table S1. Influence of PCy₃ on the catalytic hydrogenation of acetophenone with 6 as precatalyst.

	Conversion (%)				
Entry	20 min	40 min	60 min	80 min	120 min
1 ^a	38	58	68	76	87
2 ^b	32	57	72	81	91

^a Conditions: 100 equiv of acetophenone (146 μ L, 1.25 mmol), 10 equiv Na (2.9 mg, 0.125 mmol), 100 equiv of the internal standard veratrole (160 μ L, 1.25 mmol) and 1 equiv of **6** (0.0125 mmo) in 5 mL of ⁱPrOH at 80 °C.^b Conditions: same as for those for footnote ^a but with the addition of 10 equivalents of PCy₃.

5. Complete Gaussian reference

Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004

6. ONIOM optimisation for 7 and Cartesian coordinates.

In the structure below the MM part is represented with tubes whereas the MQ part with ball and bonds.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 6	10061003	-2.886584	-1.577216	-2.268543
2	1	10011000	-3.816417	-2.163493	-2.323450
3	1	10011000	-2.064937	-2.275796	-2.464517
4	6	10061003	-2.932039	-0.515784	-3.393183
5	6	10061003	-1.614456	0.260513	-3.445888
6	1	10011000	-1.361290	0.701668	-2.456759
7	1	10011000	-1.679373	1.108713	-4.138345
8	1	10011000	-0.776247	-0.377921	-3.737723
9	6	10061003	-3.117897	-1.262701	-4.723135
10	1	10011000	-2.308547	-1.982926	-4.893787
11	1	10011000	-3.125753	-0.561596	-5.566066
12	1	10011000	-4.068251	-1.810655	-4.741246
13	6	10061003	-4.100966	0.450920	-3.181795
14	1	10011000	-5.062862	-0.076692	-3.213556
15	1	10011000	-4.122837	1.215984	-3.966780
16	1	10011000	-4.019672	0.964835	-2.217282
17	6	10061003	3.772237	-2.893573	0.467198
18	1	10011000	4.826557	-2.654728	0.660454
19	1	10011000	3.742415	-3.572948	-0.397780
20	6	10061003	3.196140	-3.625028	1.694672

21	6	10061003	3.967756	-4.949877	1.802022
22	1	10011000	3.620703	-5.521023	2.670290
23	1	10011000	5.045046	-4.781907	1.927574
24	1	10011000	3.821548	-5.576523	0.913681
25	6	10061003	1.704996	-3.913204	1.492152
26	1	10011000	1.518123	-4.472918	0.567723
27	1	10011000	1.108429	-2.993984	1.456893
28	1	10011000	1.332184	-4.514068	2.329590
29	6	10061003	3.393538	-2.813398	2.979413
30	1	10011000	2.868929	-1.854161	2,933333
31	1	10011000	4,455546	-2.623154	3.180412
32	1	10011000	2,993590	-3.365585	3.837549
32	÷	10061000	-5 315854	-1 764889	-0 160087
34	6	10061000	-6 226533	-0.815601	-0 651479
35	1	10011000	-5 953935	0 226239	-0 741980
36	6	10011000	-7 501355	-1 219961	-1 053373
37	1	10001000	-8 208550	_0 /9/188	_1 /33/2/
38	6	10011000	-7 854545	-2 568660	_0 969599
30	1	10011000	_ 8 830723	-2 891040	_1 280932
39	L G	10011000	6 020712	2 50/10/	-1.200952
40	1	10001000	-0.920712	-3.304104	-0.492030
41	Ĺ	10011000	-7.203000	-4.549050	-0.441330
42	0	10061000	-5.700096	-3.110927	-0.103666
43	1 C	10011000	-5.006739	-3.8/2/86	0.242002
44	6	10061000	-3.026909	-2.53/449	1.446555
45	6	10061000	-2.063844	-3.454513	1.002/07
46	l	10011000	-1.653693	-3.382378	0.004303
4 /	6	10061000	-1.646148	-4.494960	1.842/02
48	1	10011000	-0.919958	-5.212012	1.483373
49	6	10061000	-2.144402	-4.617289	3.084608
50	1	10011000	-1.807596	-5.424823	3.722066
51	6	10061000	-3.108697	-3.718526	3.557307
52	1	10011000	-3.515123	-3.835120	4.553558
53	6	10061000	-3.563413	-2.684561	2.733574
54	1	10011000	-4.338594	-2.021109	3.092600
55	6	10061000	-2.855856	2.802224	0.263107
56	6	10061000	-2.618356	3.252007	-1.040814
57	1	10011000	-1.999570	2.683371	-1.711321
58	6	10061000	-3.185949	4.451076	-1.490628
59	1	10011000	-2.986533	4.790429	-2.499172
60	6	10061000	-3.973195	5.181614	-0.683604
61	1	10011000	-4.403504	6.106821	-1.045107
62	6	10061000	-4.249055	4.752655	0.620480
63	1	10011000	-4.892132	5.342914	1.260310
64	6	10061000	-3.698717	3.557613	1.093310
65	1	10011000	-3.926028	3.225059	2.098105
66	6	10061000	-1.454831	1.580955	2.491715
67	6	10061000	-1.055322	2.880069	2.848244
68	1	10011000	-1.154851	3.702537	2.156619
69	6	10061000	-0.523443	3.132096	4.116285
70	1	10011000	-0.216647	4.134864	4.383787
71	6	10061000	-0.388706	2.092485	5.039356
72	1	10011000	0.024203	2.289356	6.020081
73	6	10061000	-0.775413	0.796292	4.691208
74	1	10011000	-0.659556	-0.011966	5.401484
75	6	10061000	-1.298690	0.539558	3.420903
76	1	10011000	-1.576071	-0.473467	3.161411
77	÷ 6	10061000	0.787981	2.827010	-1.229846
78	6	10061000	0.699660	2.954019	-2.624670
79	1	10011000	0.848413	2.099510	-3.270568
80	÷ 6	10061000	0.401463	4.199645	-3,193012
81	ĩ	10011000	0.337638	4.293956	-4.269527

82	6	10061000	0.186764	5.276092	-2.413507
83	1	10011000	-0.045678	6.228274	-2.873679
84	6	10061000	0.243607	5.186700	-1.071474
85	1	10011000	0.053008	6.063190	-0.465396
86	6	10061000	0.532308	3.965269	-0.448616
87	1	10011000	0.548689	3.917733	0.628258
88	6	10061000	1.940813	1.597031	1.112238
89	6	10061000	1.770575	0.775471	2.234548
90	1	10011000	1.144063	-0.099508	2.187883
91	6	10061000	2.440916	1.061799	3.431431
92	1	10011000	2.291013	0.423728	4.292934
93	6	10061000	3.271942	2.112681	3.518188
94	1	10011000	3.783114	2.319423	4.449602
9.5	6	10061000	3.507542	2.925661	2.404163
96	1	10011000	4.206214	3.749240	2.472834
97	6	10061000	2.864220	2.653911	1,193622
98	1	10011000	3 093397	3 260513	0 327879
99	6	10061003	2 639591	0 704377	-1 506785
100	1	10011000	2 224787	0 330719	-2 446654
101	1	10011000	3 235267	1 597815	_1 728285
102	6	10011000	5 070399	0 350791	0 012379
102	6	10061000	5 276667	0.16/295	1 386878
100	1	10011000	1 663063	-0 515699	1 953627
105	1	10011000	6 276102	0.913033	2 042640
106	1	10001000	6 424007	0.092340	2.042040
107	1 G	10011000	0.434007	1 771200	1 250000
100	1	10001000	7.020970	2 225156	1 072520
100	Ĺ	10011000	6 02/726	2.333130	1.0/JJJ0
110	0	10001000	0.024/20	1.900034	-0.014/15
111	Ĺ	10011000	7.430740 E 074044	2.000921	-0.550106
110	0	10001000	J.0/4244 E 72E0E2	1 445212	-0.070007
112	Ĺ	10011000	J.755035 4 E00212	1 205021	-1./31911
111	0	10061000	4.590312	-1.393931	-2.239764
115	0	10061000	3.93/33Z	-1./1/550	-2.207049
110	Ĺ	10011000	6.557195	-1.4000/4	-1.340021
117	0	10001000	0.002009 7 610051	-2.402439	-3.200093
110		10011000	7.010ZJ1	-2.03//3/	-3.219979
110	0	10061000	J.843634	-2.770143	-4.341670
120		10011000	0.32/331 4.47C00E	-3.307225	-3.132688
120	0	10061000	4.4/6085	-2.496025	-4.41000Z
121		10011000	3.904315	-2.815372	-3.271025
100	0	10061000	3.844016	-1.813480	-3.3/1835
123		10011000	2.781287	-1.631085	-3.433420
124	6	10061003	-3./45002	0.297518	1.290127
125	1	10011000	-3.842633	0.138588	2.366649
107	1	10011000	-4.623126	0.865543	0.976417
127	/	10071002	-2.701919	-0.994628	-0.934/8/
128	/	100/1002	3.054876	-1.63988/	0.1189/3
129	1	10011000	2.083384	-1.811978	-0.20/3/4
130	15	10151004	-3.646850	-1.261559	0.329725
131 120	15	10151003	-2.162110	1.2092/4	0.844259
132	15	10151003	1.11//28	1.182692	-0.4/8216
133 194	15	10151004	3./84806	-0.551833	-0.874198
134 195	44	10441006	-0.825568	-0.012391	-0.496998
135	17	101/1000	0.427201	-1./98886	-1.639504
136 1	1	T00T1000	-0.458465	-0./36840	0.831078