Journal Pre-proofs

 SO_2F_2 -Mediated Deoxygenative C2-Sulfonylation of Quinoline N-Oxides with Sodium Sulfinates

Chengmei Ai, Xudong Liao, Yi Zhou, Zhaohua Yan, Sen Lin

PII:	S0040-4039(20)31085-6
DOI:	https://doi.org/10.1016/j.tetlet.2020.152586
Reference:	TETL 152586
To appear in:	Tetrahedron Letters
Received Date:	24 August 2020
Revised Date:	10 October 2020
Accepted Date:	18 October 2020

Please cite this article as: Ai, C., Liao, X., Zhou, Y., Yan, Z., Lin, S., SO₂F₂-Mediated Deoxygenative C2-Sulfonylation of Quinoline N-Oxides with Sodium Sulfinates, *Tetrahedron Letters* (2020), doi: https://doi.org/10.1016/j.tetlet.2020.152586

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Tetrahedron Letters

journal homepage: www.elsevier.com

sulfonylquinolines in medium to good yields.

SO₂F₂-Mediated Deoxygenative C2-Sulfonylation of Quinoline N-Oxides with Sodium Sulfinates

Chengmei Ai, Xudong Liao, Yi Zhou, Zhaohua Yan,* Sen Lin*

College of Chemistry, Nanchang University, Nanchang 330031, P. R. China

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Keywords: Sulfuryl fluoride Metal-free Oxidant-free 2-sulfonylquinolines

Introduction

In the past decades, C-H functionalization has become a highly attractive strategy for organic chemists, as it has been proved to be a powerful and versatile tool for installation of a series of functional groups through C-H bond activation.¹ By this approach the derivatization of quinolines at C2 or C8 position regioselectively can be realized in a relatively simple way.² *N*-heteroaromatic compounds with a sulfur moiety at side chain exhibit a broad range of physical, chemical and biological activities, and play important roles in agricultural, industrial and pharmaceutical chemistry (Fig. 1).³ Traditionally, 2-sulfonyl

2020 Elsevier Ltd. All rights reserved.

A mild and efficient method for deoxygenative C2-sulfonylation of quinoline N-Oxides in the presence of a base has been developed employing extremely inexpensive SO₂F₂ as an activator

and sodium sulfinate as nucleophilic sulfonylation source. It is noteworthy that the reaction proceeded well under metal- and oxidant-free conditions to give a variety of 2-

N-heteroaromatic compounds are commonly synthesized by oxidation of corresponding sulfides or by alkylation of sulfinate salts.⁴ Both methods suffer the following flaws: that the basic raw materials are often 2-halopyridines, and that most of which have a terrible odor.

In the past few years, significant achievements have been made for preparation of 2-sulfonylquinolines under transitionmetal catalysis or metal-free conditions.⁵ For instance, in 2015, Zhao and Chen developed a powerful strategy for the synthesis of sulfonylated quinolines from quinoline N-oxides and sulfonyl

1

Tetrahedron

Journal Pre-pro

chlorides via H-phosphonate-mediated C-H activation. [Scheme 1, A, 1)].⁶ In 2016, the Han group reported an efficient and concise methodology to afford sulfonylated quinoline Noxides via copper-catalyzed C-H activation with sodium sulfinate as the sulfonylation reagent [Scheme 1, A, 2)].⁷ Meanwhile, the He group disclosed the hypoiodite-mediated C-H activation of quinoline N-oxides with sulfonyl hydrazides for direct synthesis of 2-sulfonyl quinolines. All the above reported methods are successful in conversion of quinoline N-oxides into the corresponding C2 sulfonylation products.8 However, they still have disadvantages of using metal catalysis and oxidants, and requiring strictly anhydrous reaction conditions. Therefore, it is still a challenging task for chemists to develop mild, metal- and oxidant-free, and water-insensitive approaches C2 for sulfonylation of quinoline N-oxides.

Scheme 1. 2-functionalization of N-Oxides via C-H Activation

A Current methods for 2-sulfonyl quinoline via C-H activation

The development of C2 functionalization of N-oxide regioselectively can be traced back to 1936, in which M. Henze first achieved the target products with N-phenylbenzimidoyl chlorides as activator⁹ (Scheme 1, B). On the other hand, sulfuryl fluoride gas (SO_2F_2) has been used as fumigant for a long time, and its application in organic synthesis only recently came into our eyes. In 2014, Sharpless revealed a new class of click chemistry based on sulfur(VI) fluoride exchange (SuFEx), which provides a fast and highly efficient way to effect chemical functionalization.¹⁰ Sulfuryl fluoride is a cheap (0.1 US\$ mol⁻¹) and stable reagent (currently, SO_2F_2 gas in a steel cylinder is commercially available in China). Since Sharpless' pioneering

work on SuFEx-based click chemistry, sulfuryl fluoride has been widely used in other chemical conversion.¹¹ Very recently, Qin group reported a variety of SO₂F₂-mediated synthesis of chemical functional groups, including arylnitriles, ethenesulfonyl fluorides, arylcarboxylic acids, alkynes, and amides.12 Meanwhile, our group recently reported an efficient SO₂F₂-mediated epoxidation of olefins with hydrogen peroxide (Scheme 1, C).13 However, to the best of our knowledge, SO₂F₂ as an inexpensive reagent, has not yet been employed as an activator for deoxygenative C2 functionalization of quinoline N-oxides. Therefore, we envisioned that sulfuryl fluoride can serve as an activator and sodium sulfinate as a nucleophilic reagent to implement a onepot synthesis of 2-sulfonyl quinolines. Herein, we report a metaland oxidant-free, and mild SO₂F₂-mediated deoxygenative C2 sulfonylation of quinoline N-oxides.

Results and discussion

Our study started with the reaction of quinoline N-oxide (1a) and sodium benzenesulfinate (2a) under a SO₂F₂ atmosphere. Much to our delight, in the presence of Et₃N as a base, at room temperature for 16 h, the reaction smoothly proceeded to give the desired sulfonylation product 3aa in a moderate yield (Table 1, entry 1). Encouraged by this result, we screened other solvents for the optimal conditions. DMF and dioxane showed negative effects just providing 3aa in 36% and 30% yields, respectively (Table 1, entries 2-3). It is noteworthy that just trace 4sulfonylquinoline was detected in these reactions. Further optimization of various bases was carried out, including Et₃N, DBU, DIPEA, K₂CO₃, Cs₂CO₃ and base-free (Table 1, entries 4-8). Results showed that Et₃N as a base exhibited higher efficiency compared with the others. Meanwhile, the best outcome of the reaction was observed when slightly elevating the reaction temperature to 40°C (Table 1, entry 9) with the formation of 3aa in 82% yield.

Journal Pre-proof

Table 1. Optimization of the reaction conditions^a

$\underbrace{_{\substack{+\\N\\-1}}^{+}}_{1a}$	0 + Ph ^{∕ S} `ONa 2a	SO ₂ F ₂ (balloon) base solvent, temp.	→ () 3a:	N S Ph a O
entry	solvent	base	temp.	yield ^b
1	DMSO	Et ₃ N	RT	60%
2	DMF	Et ₃ N	RT	36%
3	dioxane	Et ₃ N	RT	30%
4	DMSO	—	RT	13%
5	DMSO	DBU	RT	54%
6	DMSO	DIPEA	RT	20%
7	DMSO	Cs ₂ CO ₃	RT	22%
8	DMSO	K ₂ CO ₃	RT	25%
9	DMSO	Et ₃ N	40 °C	82%

^aReaction conditions:**1a** (0.3 mmol), **2a** (0.9 mmol),1.5 mmol of base, 2.5 mL of solvent ,under SO₂F₂ atmosphere (using a balloon combined with syringe needle), at room temperature for 16 h. ^bisolated vield.

With the optimum conditions (Table 1, entry 9) in hand, we subsequently explored the substrate scope. A set of sodium sulfinates including aromatic and aliphatic sulfinates were evaluated in the reactions with quinoline N-oxide (1a). Results are shown in Scheme 2. Reactions of o-methyl, p-methyl, pmethoxy, and p-tert-butyl benzenesulfinates proceeded well to furnish corresponding products (3ab-3ae). That o-substituted sulfinates gave a relatively low yield suggests steric factor has a negative effect on the conversion of starting material. Halogen (-F, -Br, -Cl) on the benzene ring of benzenesulfinates could be tolerated well, all affording targeted products in over 70% yields (3af-3ah). Fortunately, benzenesulfinates containing electronwithdrawing groups were also suitable substrates and produced desired compounds (3ai-3ak) in acceptable yields ranging from 48%-64%. When sodium thiazole sulfonate used, a good yield was received (3kl). In the end, besides the aromatic sulfinates, several aliphatic sulfinates were smoothly converted to desired products in 70%, 65%, and 71% yields, respectively (3am, 3an, **3ao**).

 SO_2F_2 atmosphere (using a balloon combined with syringe needle), for 16 h at 40° C. ^bisolate yields

On the other hand, the compatibility of the functional groups on the quinoline N-oxides were also tested in the reaction. As shown in Scheme 3, using sodium benzenesulfinate (2a) as the model substrate, a wide range of substituted quinoline N-oxides were smoothly transformed to diverse sulfonyl-decorated quinolines. 3-, 4-, 6-, 7-methyl-substituted quinoline N-oxides worked well in the reactions, providing the desired products in medium to good yields. Obviously, the lower yield of 3-methyl quinoline N-oxide might be due to steric hindrance. Halogensubstituted quinoline N-oxides were also tolerated to give the corresponding products (3fa-3ga) in 46% and 77% yields, respectively. Meanwhile, methoxy-substituted quinoline Noxides produced sulfonylated quinolines in medium yields (3ha-3ia). Subsequently, isoquinoline N-oxide 1i was used as a substrate to examine the regioselectivity, and the results demonstrated that the reaction showed no obvious selectivity. Finally, we tried the reaction of N,N-dialkylaniline N-oxide with sodium benzenesulfinate, and a 35% yield of 3ka was obtained.

Tetrahedron

Journal Pre-proofs

In order to demonstrate the practicality of this method, a gramscale reaction was performed under standard conditions. As shown in Scheme 4, 1.25 g of quinoline N-oxide (1a) afforded 2.02 g of 2-sulfonyl quinoline (3aa) in 87% yield, which proved that this method can be applicable in organic synthesis.

Scheme 4. Gram-Scale synthesis of 2-sulfonylquinoline

To explore the reaction mechanism, some control experiments were carried out (Scheme 5). First, a radical trapping reagent (TEMPO) had little influence on the reaction efficiency, proving that the reaction is not involved in free radical intermediate [Scheme 5, (a)]. Subsequently, no sulfonylation occurred between quinoline N-oxide (1a) and sodium benzenesulfinate (2a) without SO_2F_2 indicating SO_2F_2 plays a key role in the reaction [Scheme 5, (b)]. When the reaction was performed in the absence of a base, a low yield was obtained [Scheme 5, (c)]. It confirmed that base greatly promoted the transformation. Finally, treatment of 2-methylquinoline N-oxide under standard reaction conditions could not afford the 2-sulfonylation product and only trace of 4sulfonylation product can be detected, which proved the sulfonylation of quinoline N-oxide regioselectively occurred at C2 position [Scheme, (d)].

On the basis of the mechanism investigation in previous literature¹⁴ and the above experiment observations, a plausible mechanism was proposed as shown in Scheme 6. At first, tautomerization of sulfinate anion I exists in equilibrium Scentered anion II. Meanwhile, SO₂F₂ as an activator was attacked by the oxygen atom of quinoline N-oxide to form intermediate III. Then the C2 of the intermediate III was nucleophilically attacked by sulfonyl anion II and gives an intermediate IV, subsequently suffer rearomatized which to form 2sulfonylquinoline 3.

Conclusions

In conclusion, we have reported the SO_2F_2 -mediated deoxygenative sulfonylation of quinoline N-oxides under metaland oxidant-free conditions with sodium sulfinates via C-H bond activation. SO_2F_2 was used as an activator to promote the synthesis of a variety of substituted 2-sulfonylquinolines. One distinct advantage of this method is that by-products derived from the use of SO_2F_2 is water-soluble anions SO_4^{2-} and F- which can be easily removed by aqueous work-up operation.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21362022) and The Natural Science Foundation of Jiangxi Province (No. 20192BAB203006) for financial support.

Notes and references

[1] (a) J. Liu, G. Chen, Z. Tan, Adv. Synth. Catal. 2016, 358, 1174-1194. (b)
A. H. Sandtorv, Adv. Synth. Catal. 2015, 357, 2403-2435. (c) H. Huang, X. Ji,
W. Wu, H. Jiang, Chem. Soc. Rev. 2015, 44, 1155-1171. (d) J. Yang, Org. Biomol. Chem. 2015, 13, 1930-1941. (e) T. Yamauchi, F. Shibahara, T.
Murai, J. Org. Chem. 2014, 79, 7185-7192. (f) B. J. Li, Z. J. Shi, Chem. Soc. Rev. 2012, 41, 5588-5598. (g) N. Kuhl, M. N. Hopkinson, J. Delord, F.
Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254.

[2] (a) J. B. Liu, X. H. Sheng, C. Z. Sun, F. Huang, D. Z. Chen, ACS Catal.
2016, 6. 2452-2461. (b) B. Wang, C. Li, H. Liu, Adv. Synth. Catal. 2017, 359, 3029-3034. (c) H. Sahoo, M. K. Reddy, I. Ramakrishna, M. Baidya, Chem. Eur. J. 2016, 22, 1592-1596. (d) D. E. Stephens, J. Lakey-Beitia, A. C. Atesin, T. A. Ateşin, G. Chavez, H. D. Arman, O. V. Larionov, ACS Catal.
2015, 5, 167-175. (e) D. E. Stephens, J. Lakey-Beitia, G. Chavez, C. Ilie, H. D Arman, O. V. Chem. Commun. 2015, 51, 9507-9510. (f) D. E. Stephens, O. V. Tetrahedron. 2015, 71, 8683. (g) W. Z. Bi, K. Sun, C. Qu, X. L. Chen, L. B. S. H. Qu, Zhu, Y. F. A. Zhao, Org. Chem. Front. 2017, 4, 1595-1600. (h) H. Wang, X. Cui, Y. Pei, Q. Zhang, J. Bai, D. Wei, Y. Wu, Chem. Commun. 2014, 50, 14409-14411. (i) M. Jiang, Y. Yuan, T. Wang, Y. Xiong, J. Li, H. Guo, A. Lei, Chem. Commun. 2019, 55, 13852-13855.

[3] (a) H. Y. Lee, C. Y. Chang, C. J. Su, H. L. Huang, S. Mehndiratta, Y. H. Chao, C. M. Hsu, S. Kumar, T. Y. Sung, Y. Z. Huang, Y. H. Li, C. R. Yang, J. P. Liou, *Eur. J. Med. Chem.* 2016, 122, 92-101. (b) M. Bartholow, *Pharmacy Times.* 2011, 77, 52. (c) K. A. Scott, J. T. Njardarson, *Top Curr. Chem.* 2018, 376, 5. (d) J. Drews, *Science.* 2000, 287, 1960-1964. (e) Z. Z. Chen, S. Liu, W. J. Hao, G. Xu, S. Wu, J. N. Miao, G. Li, *Chem. Sci.* 2015, 6, 6654-6658. (f) G. F. Zha, Q. H. Zheng, J. Leng, P. Wu, H. L. Qin, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2017, 56, 4849-4852.

[4] (a) K. J. Liu, J. H. Deng, J. Yang, S. F. Gong, Y. W. Lin, J. Y. He, W. M. He, *Green Chem.* 2020, 22, 433-438. (b) M. Jereb, *Green Chem.* 2012, 14, 3047-3052. (c) Z. Cheng, P. Sun, A. Tang, W. Jin, C. Liu, *Org. Lett.* 2019, 21, 8925-8929.

[5] (a) N. W. Liu, S. Liang, Synthesis. 2016, 48, 1939-1973. (b) L. Y. Xie, Y. J. Li, J. Qu, Y. Duan, J. Hu, K. J. Liu, W. M. He, Green Chem. 2017, 19, 5642-5646. (c) L. Y. Xie, S. Peng, J. X. Tan, R. X. Sun, X. Yu, N. N. Dai, W. M. He, ACS Sustain. Chem. Eng. 2018, 6, 16976-16981. (d) L. Y. Xie, S. Peng, F. Liu, G. R. Chen, W. Xia, X. Yu, W. M. He, Org. Chem. Front. 2018, 5, 2604-2609. (e) R. Wang, Z. Zeng, C. Chen, N. Yi, J. Jiang, Z. Cao, J. Xiang, Org. Biomol. Chem. 2016, 14, 5317-5321. (f) H. Y. Yu, P. Chao, Y, Wang, X. L. Cui, Y. J. Wu, Chin. J. Org. Chem. 2018, 38, 124-130. (h) W-K. Fu, K. Sun, C. Qu, X-L. Chen, L-B. Qu, W-Z. Bi, Y-F. Zhao, Asian J. Org. Chem. 2017, 6, 492–495.

[6] (a) K. Sun, X. L. Chen, X. Li, L. B. Qu, W. Z. Bi, X. Chen, C. J. Li, *Chem. Commun.* **2015**, 51, 12111-12114.

[7] B. Du, P. Qian, Y. Wang, H. Mei, J. Han, Y. Pan, Org. Lett. 2016, 18, 4144-4147.

[8] Y. Su, X. Zhou, C. He, W. Zhang, X. Ling, X. Xiao, J. Org. Chem. 2016, 81, 4981-4987.

[9] (a) Y. Wang and L. Zhang, *Synthesis*. 2015, 47, 289-305. (b) W. Z. Bi, K. Sun, C. Qu, X. L. Chen, L. B. Qu, S. H. Zhu, Y. F. Zhao, *Org. Chem. Front*. 2017, 4, 1595-1600.

[10] (a) J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2014, 53, 9430-9448. (b) H. C. Kolb, M. G Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2001, 40, 2004-2021. (c) H. C. Kolb, K. B. Sharpless, *Drug Discov. Today*, 2003, 8, 1128-1137. (d) W. G. Lewis, L. G. Green, F. Grynszpan, W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radić, P. R. Carlier, P. Taylor, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2002, 41, 1053-1057. (e) H. C. Kolb, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2001, 113, 2056-2075. (f) G. Meng, T. Guo, T. Ma, J. Zhang, Y. Shen, K. B. Sharpless, J. Dong, *Nature*, 2019, 574, 86-89.

[11] (a) C. Ma, C. Q. Zhao, X. T. Z. M. Xu, Li, X. Y. Wang, K. Zhang, T. S. Mei, *Org. Lett.* 2019, 21, 2464-2467. (b) P. J. Foth, F. Gu, T. G. Bolduc, S. S. Kanani, G. M. Sammis, *Chem. Sci.* 2019, 10, 10331-10335. (c) S. D. Schimler, M. A. Cismesia, P. S. Hanley, R. D. Froese, M. J. Jansma, D. C. Bland, M. S. Sanford, *J. Am. Chem. Soc.* 2017, 139, 1452-1455. (d) C. Lee, N. D. Ball, G. M. Sammis, *Chem. Commun.* 2019, 55, 14753-14756.

[12] (a) G. F. Zha, W. Y. Fang, Y. G. Li, H. L. Qin, J. Am. Chem. Soc. 2018, 140, 17666-17673. (b) W. Y. Fang, G. F. Zha, C. Zhao, H. L. Qin, Chem. Commun. 2019, 55, 6273-6276. (c) X. Zhang, K. P. Rakesh, H. L. Qin, Chem. Commun. 2019, 55, 2845-2848. (d) R. Lekkala, B. Moku, H. L. Qin, Org. Chem. Front. 2019, 6, 3490-3516. (e) H. Liu, B. Moku, F. Li, J. Ran, J. Han, S. Long, G. F Zha, H. L. Qin, Adv. Synth. Catal. 2019, 361, 1-7 (f) C. Zhao, W. Y. Fang, K. P. Rakesh, H. L. Qin, Org. Chem. Front. 2019, 5, 1835-1839. (g) R. Lekkala, R. Lekkala, B. Moku, H. L. Qin, Org. Chem. Front. 2019, 6, 796-800. (h) W. Y. Fang, G. F. Zha, H. L. Qin, Org. Lett. 2019, 21, 8657-8661.

[13] C. Ai, F. Zhu, Y. Wang, Z. Yan, S. Lin, J. Org. Chem. 2019, 84, 11928-11934.

[14] S. E. Wengryniuk, A. Weickgenannt, C. Reiher, N. A. Strotman, K. Chen, M. D. Eastgate, P. S. Baran, *Org. Lett.* **2013**, 15, 792-795.

[15] A. Ivachtchenko, E. Golovina, M. Kadieva, O. Mitkin, S. Tkachenko, I. Okun, *Bioorg. Med. Chem.* 2013, 21, 4614-4627.

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and Pre-pr

submitted along with the manuscript and graphic files to the appropriate editorial office.

High lights

1. SO_2F_2 was used as an efficient activator for C-2 sulfonylation of quinoline *N*-oxides.

2. Low-cost (around 1 US dollar/kg) and environmentally benign SO_2F_2 was used.

3. The method possesses broad substrate scope.

4. Metal- and Oxidant-free conditions are the other two advantages.

Click here to remove instruction text...

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or alt

High lights

5. SO_2F_2 was used as an efficient activator for C-2

Leave this area blank for abstract info.

SO₂F₂-Mediated Deoxygenative C2-Sulfonylation of Quinoline N-Oxides with Sodium Sulfinates

Chengmei Ai, Xudong Liao, Yi Zhou, Zhaohua Yan*, Sen Lin*

SO₂F₂ inexpensive and aboundant reagent mild conditions metal-free oxidant-free

sulfonylation of quinoline N-oxides.

- 6. Low-cost (around 1 US dollar/kg) and environmentally benign SO_2F_2 was used.
- 7. The method possesses broad substrate scope.

8. Metal- and Oxidant-free conditions are the other two advantages.