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We described here the synthesis and biological evaluation of mGluR5 antagonists containing a quinoline
ring structure. Using intracellular calcium mobilization assay (FDSS assay), we identified compound 5n,
showing high inhibitory activity against mGluR5. In addition, it was found that compound 5n has excel-
lent stability profile. Finally, this compound exhibited favorable analgesic effects in spinal nerve ligation
model of neuropathic pain, which is comparable to gabapentin.

� 2012 Elsevier Ltd. All rights reserved.
Glutamate, the major excitatory neurotransmitter in the mam-
malian central nervous system, is involved in a wide range of phys-
iological functions acting through various glutamatergic
transmission.1 At the synaptic level, its transmission of neuronal
signals is mediated by two main families of glutamate receptors:
ionotropic receptors (iGluRs) and metabotropic glutamate recep-
tors (mGluRs). The iGluRs, known as ligand-gated ion channels,
are classified into three different receptors on the basis of the
interaction with their specific ligands, that is, N-methyl-D-aspartic
acid (NMDA), kainate, and (S)-2-amino-3-(3-hydroxy-5-methyl-4-
isoxazolyl)propionic acid (AMPA). In general, they are responsible
for fast excitatory synaptic transmission and plasticity. On the
other hand, the mGluRs are members of the G-protein-coupled
receptors (GPCRs) and divided into three groups according to their
sequence homology, receptor pharmacology, and signal transduc-
tion pathways.2 Currently, eight distinct mGluR subtypes are dis-
covered. Group I consists of mGluR1 and mGluR5, which are
mainly distributed in postsynaptic regions and positively coupled
to phospholipase C via a Gq protein, whereas group II (mGluR2
and mGluR3) and group III (mGluR4, mGluR6, mGluR7, and
mGluR8) are located in presynaptic regions and inhibit activated
adenylate cyclase activity by coupling to a Gi protein.3 mGluR5 is
highly expressed in brain regions and its modulation represents a
potential therapeutic approach for treatment of a wide range of
CNS-related disorders including pain,4 anxiety,5 Parkinson’s dis-
ease6 and drug dependency.7

There has been a huge study to indentify selective mGluR5
modulators suitable for clinical use (Fig. 1). For example, MPEP,
2-methyl-6-(phenylethynyl)-pyridine8 was first reported as a po-
tent, selective mGluR5 NAM (negative allosteric modulator) show-
ing high efficacies in various preclinical disease models, such as
pain, anxiety, and depression although it did not proceed to clinical
trials due to low pharmacokinetic profile. In addition, different
kinds of mGluR5 NAMs such as fenobam,9 ADX10059,10 and
AFQ05611 have been discovered and known to be effective for Frag-
ile X syndrome, gastro-esophageal reflux disease (GERD), and mi-
graine. Many of mGluR5 antagonists contain an alkyne subunit as
a key structural component. Much effort has focused on synthesis
of compounds bearing acetylene itself or its isostere.12 Despite the
substantial activity of the reported acetylenic analogues, however,
the identification of selective and clinically efficacious mGluR5
antagonists still remains a challenge.

In this context, we report the synthesis and biological evalua-
tion of novel acetylenic quinoline derivatives as selective mGluR5
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Figure 1. Representative mGluR5 antagonists.
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antagonists including in vivo study of a lead compound in animal
models of neuropathic pain.

Considering the previously reported mGluR5 NAMs, we first de-
signed 2-(arylethynyl)quinoline as a potential starting scaffold. We
reasoned that a quinoline group can act as a potential isostere of
heteoaromatic groups existing in most acetylene-based mGluR5
NAMs such as MPEP, MTEP, and AFQ056. It has been reported that
MRZ-867613 having a hydroquinolinone scaffold (Fig. 1) showed a
significant negative modulation against mGluR5 with an IC50 value
of 20 nM, which also supports our idea that the quinoline structure
may be a suitable scaffold for an alternative pharmacophore.
Moreover, we thought that introduction of various substituents
to the quinoline ring system provides a good strategy to lead
optimization through potency improvement or physicochemical
modulation.

The synthesis of 2-(arylethynyl)quinoline derivatives is depicted
in Scheme 1. Starting from 5-substituted quinolines 2, prepared
from alkylation/acylation of 5-hydroxyquinoline 1 or Sandmeyer
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Scheme 1. Reagents and conditions: (a) TMSCHN2, MeOH, rt, 42% or K2CO3, EtI, DMF, 89%
NaNO2, 48% HBr, 0 �C to rt, 35%; (e) mCPBA, DCM, 0 �C to rt; (f) POCl3, CH2Cl2, reflux,
methylbut-3-yn-2-ol, PdCl2(PPh3)2, CuI, Et3N, 80 �C, 52–100%; (i) aryl bromide, KOH, PdCl
93%; (k) K2CO3, CH2Cl2/MeOH, rt, 85%; (l) 2-bromopyrimidine or 5-bromopyrimidine, Pd
reaction of 5-aminoquinoline 3,14 2-chloroquinoline derivatives 4
having different substituents at the 5-postion were synthesized
via N-oxidation followed by chlorination. Installation of arylethynyl
groups was conducted in three different ways. Sonogashira reaction
of 4 with arylethyne15 directly afforded the 5-substituted 2-(aryle-
thynyl)quinolines 5 (method A).16 Alternatively, the 2-arylethynyl
components were introduced by a stepwise procedure. Thus, palla-
dium-catalyzed coupling reaction of 2-chloroquinolines 4 with
2-methylbut-3-yn-2-ol or ethynyltrimethylsilane gave the C-termi-
nal protected ethynyl derivatives 7 and 8. Compound 7 was sub-
jected to another Sonogashira reaction in the presence of
potassium hydroxide to give its corresponding 2-ethynylquinolines
5 or 6 through in situ deprotection of 2-propanol group (method
B).17 Removal of trimethylsilyl group of 8 and subsequent Sono-
gashira reaction produced the desired 2-(arylethynyl)quinolines 6
containing pyridine or pyrimidine rings (method C).

In vitro activities of our synthesized compounds against
mGluR5 were determined by the ability of the compound to inhibit
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Cl2(PPh3)2, CuI, Et3N, 80 �C, 11–32%



Table 2
In vitro inhibitory activity of the synthesized compounds against mGluR5

N

N

X
R2

N

N

N

6a-p 6q

Compounds R2 X % Inhibition (mGluR5)a Methodb

10 lM 1 lM

6a 3-CF3 CH 16.43 9.49 C
6b 3-F CH 55.24 31.31 B
6c 3-Me CH 40.09 18.85 B
6d 4-CF3 CH 58.04 23.26 C
6e 4-CN CH 76.09 35.22 C
6f 4-Me CH 66.48 21.89 B
6g 5-CF3 CH 50.66 12.99 C
6h 5-F CH 63.29 33.87 C
6i 5-Me CH 66.27 29.00 B
6j 6-CF3 CH 28.66 15.77 C
6k 6-CN CH 64.82 32.96 C
6l 6-F CH 46.90 29.59 B
6m 6-MeO CH 48.62 16.60 C
6n H N 28.63 17.08 C
6o 4-CF3 N 15.87 17.34 C
6p 5-F N 15.59 15.96 C
6q 22.45 13.60 C

a Ca2+ flux assay using glutamate as agonist.
b See Scheme 1 for synthetic methods.
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calcium mobilization caused by a high concentration of glutamate
in human mGluR5/HEK293 cells using FDSS6000 system.18 First,
we investigated the effect of substituents at the 5-position of quin-
olines (Table 1). 2-Phenylethynyl or 2-(pyridine-3-ylethynyl)quin-
olines having hydrogen and alkoxy groups at the 5-position (5a, b,
g–i, n) gave good inhibitory activities with higher than 60% and
30% inhibition values at the concentration of 10 and 1 lM,
respectively. On the other hand, most 2-(pyridine-2-yl)quinoline
derivatives maintain the high negative modulation of mGluR5
except R = OH. This result indicated that hydrogen bonding accep-
tors at the 5-postion of quinoline moiety as well as pyridine-2-yl
group on the opposite side are crucial to interact with the mGluR5
receptor.

Based on the SAR of the first series, we then examined a second
set of compounds, which derived from compound 5n, to study the
influence of substituted pyridine-2-yl groups on the potency (Table
2). In general, inhibitory activities of most compounds in this series
against the mGluR5 were not superior or comparable to that of 5n
at 10 lM. Best results were obtained with small substituents such
as nitrile, fluorine, and methyl group at the 4- and 5-positions (6b,
c, e, f, h, i). Although we found that the compound 6e was the most
potent derivative of this set at 10 lM, its potency at 1 lM was two-
fold lower than that of 5n. In addition, replacement of the pyridin-
2-yl group with pyrimidin-2-yl or 5-yl group (6n–q) exhibited low
potency regardless of a substituent character, which also supports
that the position of nitrogen atom in the pyridine fragment of this
series is closely associated with the binding site of the mGluR5
receptor.

Next, we selected several compounds with over 60% (10 lM)
and 50% (1 lM) inhibition in the FDSS assay and examined their
IC50 values, hERG inhibition, microsomal stability, and CYP
inhibition. The results are summarized in Table 3. In fact,
most of the compounds showed good IC50 values against
the mGluR5 and low activity against the hERG channel blockade
Table 1
In vitro inhibitory activity of the synthesized compounds against mGluR5

N

X
Y

R1

5

Compounds R1 X Y % Inhibition (mGluR5)a Methodb

10 lM 1 lM

5a H CH CH 67.71 35.88 A
5b MeO CH CH 68.03 63.58 A
5c tBuCO2 CH CH 23.77 24.03 A
5d OH CH CH 24.32 18.01 A
5e Cl CH CH 8.02 11.72 A
5f Br CH CH 20.67 21.09 A
5g H CH N 65.78 43.93 A
5h MeO CH N 67.72 67.68 A
5i EtO CH N 66.63 47.16 A
5j tBuCO2 CH N 28.5 10.56 A
5k OH CH N 17.58 25.22 A
5l Cl CH N 28.35 11.16 A
5m Br CH N 40.07 22.02 A
5n H N CH 76.66 58.81 A
5o tBuCO2 N CH 62.44 17.12 A
5p OH N CH 22.15 17.36 A
5q Cl N CH 64.31 31.02 B
5r Br N CH 77.52 56.73 B

a Ca2+ flux assay using glutamate as agonist.
b See Scheme 1 for synthetic methods.
whereas only the compound 5n displayed excellent
pharmacological properties in terms of microsomal stability
and CYP inhibition.

The pharmacokinetic parameters for compound 5n following
intravenous and oral administration in rats are presented in
Table 4. Despite of high stability in human liver microsomes
and CYP enzymes, compound 5n showed high clearance and
low bioavailability. The considerably high value of the mean
volume of distribution suggests that it tends to bind to tissue
components or plasma proteins. The brain to plasma ratios in
intravenous and oral administration were low and moderate,
which might be due to nonspecific binding in brain or high
clearance.

Given the good in vitro potency and stability along with moder-
ate pharmacokinetic profile in rats, the in vivo efficacy of com-
pound 5n was evaluated in the SNL (spinal nerve ligation)
neuropathic pain model (Fig. 2).19 In this model, a neuropathic pain
state was induced by tight ligation of the L5 spinal nerve at a site
distal to the DRG. Two behavioral tests (mechanical allodynia
and cold allodynia) were performed after 14 days of surgical
manipulation.20 The rats were treated orally with 100 mg/kg of
compound 5n or gabapentin (a positive control). While 5n exhib-
ited high suppression effect on mechanical allodynia at 5 h, high
paw withdrawal response was observed in cold allodynia at 3 h.
This result showed that the efficacy of compound 5n is comparable
to that of Gabapentin in this behavior test. Therefore, it should be
further investigated as a viable mGluR5 antagonist for treatment of
neuropathic pain.

In conclusion, we have synthesized and evaluated 2-(arylethy-
nyl)quinolines 5 and 6 as potential mGluR5 antagonists. The SAR
study of acetylenic quinoline derivatives on the mGluR5 receptor
led to the identification of 5n, a compound showing high inhibitory
activity against mGluR5 and excellent stability profile. Despite rel-
atively low oral bioavailability, 5n was evaluated in animal model
of neuropathic pain and it significantly reduced both mechanical
allodynia and cold allodynia by oral administration, which is com-
parable to gabapentin. Based on the in vitro and in vivo data



Table 3
The results of IC50 (mGluR5 and hERG channel), microsomal stability, and CYP inhibition

Compounds mGluR5 IC50
a (lM) hERG IC50

a (lM) HLM% remaining @ 1 lM after 30 min CYP (% remaining @ 10 lM)

CYP2D6 CYP2C9 CYP3A4

5b 0.41 ± 0.07 61.70 ± 11.20 <1 >99 55 50
5h 0.43 ± 0.02 65.30 ± 17.70 <1 86 >99 29
5n 0.94 ± 0.25 20.30 ± 6.11 88 98 >99 77
5r 0.75 ± 0.17 22.70 ± 7.04 98 78 52 56

a IC50 value(±SD) was obtained from a dose–response curve.

Table 4
Mean pharmacokinetic parameters in rat plasma following intravenous (n = 4) and
oral (n = 3) administration (10 mg/kg) of 5n

Intravenous Oral

Cmax (lg/mL) — 0.43(±0.18)
Tmax (min) — 10 (5–30)a

T1/2 (min) 58.24 (±62.41) 48.53 (±8.06)
CL (ml/min/kg) 84.93 ± 8.98
Vdss (mL/kg) 1269.02 (±158.55) —
B/P ratio at 2 h 0.08 0.35
F (%) — 15.9%

Values are presented as mean (standard deviation in parentheses). Cmax, peak
plasma concentration; Tmax, time to reach Cmax; Vdss, apparent volume of distribu-
tion at steady state; F, bioavailability.

a Median (range) for Tmax.
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generated to date, mGluR5 antagonists such as 5n will be further
optimized as a potential lead compound for the treatment of neu-
ropathic pain.
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