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ABSTRACT: Axially chiral biaryl scaffolds are essential structural units in chemistry. The asymmetric Pd-catalyzed Suzuki-Miyaura 
cross-coupling reaction has been widely recognized as one of the most practical methods for constructing atropisomers of biaryls. 
However, longstanding challenges remain in this field. For example, substrate scope is often narrow and specialized, functional 
groups and heterocycles can lead to reduced reactivity and selectivity, bulky ortho-substituents are usually needed, and reported 
methods are generally inapplicable to tetra-ortho-substituted biaryls. We have developed an unprecedented highly enantioselective 
N-heterocyclic carbene (NHC)-Pd catalyzed Suzuki-Miyaura cross-coupling reaction for the synthesis of atropisomeric biaryls. These 
reactions enable efficient coupling of aryl halides (Br, Cl) or aryl triflates with various types of aryl boron compounds (B(OH)2, Bpin, 
Bneo, BF3K), tolerate a remarkably broad scope of functional groups and heterocycles (>41 examples), employ low loading of catalyst 
(0.2-2 mol%), and proceed under mild conditions. The protocol provided general and efficient access to various atropisomeric biaryls 
and heterobiaryls in excellent enantioselectivities (up to >99% ee) with no need of using bulky ortho-substituted substrates and was 
effective for the synthesis of tetra-ortho-substituent biaryls. Moreover, the method was successfully applied to the diastereo- and 
enantioselective synthesis of atropisomeric ternaphthalenes. Critical to the success of the reaction is the development and application 
of an extremely bulky C2-symmetric chiral NHC, (R,R,R,R)-DTB-SIPE, as the ligand for palladium. To the best of our knowledge, 
this is the first highly enantioselective (>90% ee) example of a chiral NHC-metal catalyzed C(sp2)-C(sp2) cross-coupling reaction.

 INTRODUCTION
The axially chiral biaryl skeletons represent key structural 

elements found in a wide variety of biologically active natural 
products and drugs.1,2 These include gossypol, korupensamine 
A, and BI-224436, a quinoline-based biaryl serves as the 
allosteric HIV-1 integrase inhibitor.3 Moreover, atropisomeric 
biaryls are widely present in many privileged ligands and 
catalysts such as BINOL, BINAP, and QUINAP, and have 
shown remarkable ability of stereoinduction in tremendous 
asymmetric reactions catalyzed by organometallics and 
organocatalysts (Figure 1).4 
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Figure 1. Examples of natural products and ligands bearing axially 
chiral biaryls.

Accordingly, extensive effort has been devoted to the 
synthesis of the axially chiral biaryl fragments in the past 
decades.5,6 Among these reported methods, the Pd-catalyzed 
Suzuki-Miyaura cross-coupling reaction7,8 has been recognized 
as one of the most practical methods for constructing the 
atropisomers because of the stability to moisture and oxygen 
and easy availability of both organo-boron and aryl halide 

coupling partners. Although Suzuki-Miyaura coupling is one of 
the most frequently utilized reactions in modern medicinal 
chemistry, the atroposelective variant of this Nobel prize-
winning reaction has not been well-developed. In 2000, the 
pioneering studies on Pd-catalyzed asymmetric Suzuki-
Miyaura reactions were disclosed by the groups of Buchwald8a 
and Cammidge8c using KenPhos and a chiral ferrocene ligand, 
respectively (Scheme 1A). Since then, important contributions 
in this realm have been made from the group of Fernandez and 
Lassaletta,8e-f Uozumi,8g,u Suginome,8h Senanayake,8s Tang,8i-j 
Lin,8k and others,8m-t through the development of chiral ligands 
including bishydrazones, a resin-supported phosphine, a 
helically chiral polymeric phosphine, biaryl monophosphines, 
and dienes. However, despite recent achievements, 
longstanding challenges and significant limitations remain in 
the field of enantioselective metal-catalyzed C(sp2)-C(sp2) 
cross-couplings (Scheme 1B). First, the general construction of 
heterobiaryls represents an unmet challenge. The use of 
heterocyclic substrates poses additional challenges due to 
problems associated with their strong coordination ability,9 
weak reactivity or stability of reagents, and the reduced 
configurational stability of the products.6a-d,r Second, a general 
catalyst that allows the synthesis of atropisomeric biaryls with 
a wide array of functional groups and substitution patterns is 
highly desirable and remains unknown. Third, the preparation 
of tetra-ortho-substituted biaryls through an asymmetric 
Suzuki-Miyaura reaction is still challenging.8s Fourth, the high 
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enantioselectivity outcomes commonly relied on the use of 
substrates possessing a bulky ortho-substituent,8 which led to 
limited variations of the ortho-substituents. Furthermore, 
reactions that performed with low catalyst loading under mild 
conditions are still rare. Finally, we noted that only a limited 
range of chiral phosphine ligands provide the products with 
good enantioselectivity, and limits the further development of 
enantioselective coupling reactions.

Scheme 1. Pd-Catalyzed Asymmetric Suzuki-Miyaura 
Cross-Coupling: Synthesis of Atropisomeric Biaryls

 Suppress coordination of heterocyclic substrates

 General catalysts tolerant to various functional groups

 Low catalyst loading and mild reaction conditions

B. Current significant challenges and limitations:

 Tetra-ortho-substituent biaryls

 Bulky ortho-substituents needed

 Limited type of chiral ligands
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In this context, we felt that the development of new chiral 
ligand would be a fundamental strategy to address the 
abovementioned problems. In particular, we envision that the 
use of a highly electron-donating NHC ligand would form a 
robust palladium catalyst10 to facilitate the oxidative addition of 
aryl halides and to suppress the deactivating coordination of 
substrates, thus resulting in the tolerance to various 
heterocycles and functional groups. However, the 
enantiocontrol of NHC-Pd-catalyzed C(sp2)-C(sp2) cross-
coupling is notoriously difficult.8p-r,11 Indeed, the best 
enantioselectivity so far obtained is 80% ee, despite several 
decades of effort from the chemical community to develop more 
selective ligand.8p In this regard, we recently developed a family 
of C2-symmetric chiral NHC,12 namely ANIPE and SIPE type 
ligands (Scheme 1C).13 We envisage that the modular nature of 
our NHCs would allow the introduction of bulky and tunable 
C2-symmetric substituents on nitrogen to enhance the level of 
enantiocontrol. Moreover, the sterically demanding property of 
these NHCs is expected to accelerate the critical elementary 
reductive elimination step. As part of our continuing efforts in 
NHC-metal catalysis, we disclose herein the development of a 

scalable route to a novel bulky chiral NHC ((R,R,R,R)-DTB-
SIPE) and its successful application to a general, efficient, and 
highly enantioselective Pd-catalyzed Suzuki-Miyaura reaction 
for the synthesis of bi- and teraryl atropisomers with remarkably 
broad scope and tolerance for functional groups and 
heterocycles. 

 RESULTS AND DISCUSSION
Reaction Optimization And Ligand Design. We thus 

commenced our study by using 1-bromo-2-
methoxynaphthalene (1a) and naphthalen-1-ylboronic acid (2a) 
as model substrates for the synthesis of axially chiral biaryl (3a) 
in the presence of palladium-NHC pre-catalysts at ambient 
temperature. At first, the use of our previously reported ANIPE 
ligand (L1) gave product 3a in nearly quantitative yield and 
44% ee (Table 1, entry 1). 

Table 1. Reaction Optimizationa 

Br
OMe

B(OH)2

+

1a 2a

OMe

[Pd(NHC)(3-cin)Cl] (0.5 mmol%)
base (2.0 equiv)
solvent (0.2 M)

30 oC, 12 h
3a

1

2

3

4

5

L2

L1

L3

L6

ndchexane

L6

90toluene

L6

ndTHF

L6

97tBuOH

L4 54EtOH

6

L7 40EtOH

13

14

7

L6

94

Entry

11

L6

96tBuOH

12

8

L5 84EtOH

L6 96EtOH

9

L6

97tBuOH

10

L6

ndtBuOH

<2

59

<2

45

98

99

73

72

66

98

<2

9815

16

tBuOH

4499

7489

8070

NHC Solvent Yield (%)b ee (%)c

EtOH

EtOH

EtOH

K2CO3

K2CO3

K2CO3

KOtBu

K2CO3

K2CO3

K2CO3

K2CO3

KOH

NaOH

K2CO3

Base

K2CO3

K2CO3

K2CO3

K3PO4

L6

9776K2CO3

iPrOH

L1 (Ar = Ph), (R,R,R,R)-ANIPE
L2 (Ar = 3,5-Xyl), (R,R,R,R)-DM-ANIPE
L3 (Ar = 3,5-tBu-C6H3), (R,R,R,R)-DTB-ANIPEN

Ar

Ar
Ar

Ar

N

N

Ar

Ar
Ar

Ar

N L4 (Ar = Ph), (R,R,R,R)-SIPE
L5 (Ar = 3,5-Xyl), (R,R,R,R)-DM-SIPE
L6 (Ar = 3,5-tBu-C6H3), (R,R,R,R)-DTB-SIPE

N

Ph

Ph
Ph

Ph

N

L7 (R,R,R,R)-IPE

ANIPE type ligands

SIPE type ligands

aReactions were performed on a 0.1 mmol scale. bDetermined by 
NMR analysis using crude samples. cDetermined by HPLC 
analysis with a chiral stationary phase. 

Using a bulkier DM-ANIPE ligand (L2) with 3,5-xylyl groups 
on the sidearm phenyl groups afford 3a in 74% ee (entry 2). 
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Sterically more demanding DTB-ANIPE possessing 3,5-di-tert-
butyl phenyl groups (L3) further improved the 
enantioselectivity to 80% (entry 3). Next, we examined our 
recently disclosed SIPE type ligand. The use of saturated SIPE 
(L4) having the same N-substituents with L1 gave 3a in 
quantitative yield and 54% ee (entry 4). Bulkier DM-SIPE 
ligand (L5) shown dramatically increased enantioselectivity of 
84% (entry 5). Based on these observations, we concluded that 
SIPE type ligands were superior to the corresponding ANIPE 
type ligands in terms of enantioselectivity. The higher 
enantioselectivity stems from the incorporation of a bulkier 
flanking group to the ligands. Therefore, we anticipated that an 
extremely bulky DTB-SIPE ligand (L6) should be promising to 
improve the level of enantiocontrol. However, the preparation 
of L6 turned out to be problematic (Scheme 2). Although we 
could prepare the corresponding chiral aniline11j in a 13.4 gram-
scale employing very low loading of rhodium catalyst (0.3 
mol%), a typical synthetic route to the carbene precursor (an 
imidazolium salt, L6/HCl) involving a diimine intermediate 
resulted in very low yield. Eventually, we were able to 
efficiently synthesize L6/HCl in gram-scale through a newly 
designed route using a bis-oxalamide intermediate.14 As we 
expected, the use of L6 did significantly improve the 
enantioselectivity to 96% ee, although the yield was moderate 
due to the formation of hydrodebromination byproduct (entry 
6). Unsurprisingly, the less bulky unsaturated IPE ligand (L7) 
gave 3a in very low enantioselectivity of 40% (entry 7). 
Importantly, a survey of solvents revealed that tBuOH was a 
superior solvent, as the hydrodebromination side reaction was 
completely suppressed in these cases (entries 8-12). Finally, 
through extensive screening of base effects, KOH was 
identified as the most effective base affording product 3a in 
97% ee and 98% yield (entries 13-16). 

Scheme 2. Synthesis of a new NHC L6 and the pre-catalyst 

1) KOtBu (0.9 equiv)
THF, rt, 4 h
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Reaction Scope. With the optimized reaction conditions in 
hand, we first examined the scope of this asymmetric cross-
coupling using simple bromoarene substrates. As shown in 
Table 2, a wide variety of biaryl atropisomers were obtained 
with high yields and excellent enantioselectivities (3a-3r, 85-
99% ee). Notably, large coordination groups at ortho-position 
of haloarenes such as phosphonate8a,h,m-o, amide8b, or carbonyl-

benzooxazolidinone8i-j previously used for optimal 
stereoinduction are not necessary for our protocol. For example, 
the chiral ortho-hydroxyl biaryls, important structures 
commonly existed in numerous natural products, were obtained 
in high enantioselectivities without the assistance of a special 
bulky protection8j, but using simple ether protecting groups (3c, 
3d) or non-protected substrates (3e-3h) even with lower loading 
of catalyst (0.5 mol%). Remarkably, these mild conditions 
tolerated a wide array of functional groups, including ethers 
(3c), hemiacetals (3d), esters (3h), amides (3i), aldehydes (3j), 
free anilines (3k), free phenols (3e-3h), ketones (3p), a 
trifluoromethyl (3l), nitro (3n), cyano (3o) group and fluoride 
(3m). In addition to aryl bromides, aryl chlorides (3v) and 
triflates (3q) were competent coupling partners. For the aryl-
boron component, various bench-stable and commonly used 
organoboron sources, including the boronic acids, pinacol and 
neopentylglycol boronate esters (Bpin, Bneo), as well as the 
potassium organotrifluoroborates, all delivered products in 
excellent enantioselectivities and chemical yields (3r). These 
expansions further highlighted the generality of the current 
method. 

Encouraged by the above outcomes, we next surveyed the 
scope of heteroaryl substrates. Due to their strong coordination 
to metals and lower configurational stability of products, it's 
much more challenging to achieve high levels of 
enantiocontrol. Quinolines, core structures in bioactive 
molecules and ligands, were chosen for evaluation. To our 
delight, high to excellent levels of enantiocontrol were obtained 
when we used bromo-quinoline and -isoquinoline substrates 
with nitrogen atoms at all possible positions (3s-3y, 87-95% 
ee). Moreover, bromoquinoline substrates were effective for 
coupling with several different arylboronic acids (3z-4b). Aside 
from quinoline and isoquinolines, other electron-deficient 
heterocycles such as pyridines (4c) and quinazolines (4d), and 
electron-rich heterocycles including carbazole (4e), indole (4f), 
and benzothiophene (4g), were all compatible, affording 
heterobiaryls in high yields and enantioselectivities. It bears 
mentioning that challenging heterobiaryls with lower rotation 
energy barriers, for example, 3y and 4g with less bulky 8-
quinoline and benzothiophene fragments, respectively, could be 
generated in high enantioselectivities by conducting the 
reaction at ambient temperature. Interestingly, a heteroaryl 
bromide could be coupled with a heteroaryl boronate in 
excellent yield and enantioselectivity (4h). Importantly, this 
asymmetric coupling method could apply to the synthesis of 
challenging tetra-ortho-substituted biaryls from both aryl and 
heteroaryl bromides, furnishing products in excellent 
enantioselectivities (4i-4l). Furthermore, a gram-scale reaction 
(4 mmol) was successfully performed in the presence of very 
low loading of catalyst (0.2 mol%) to deliver the product (3p) 
in high yield and enantioselectivity as before, highlighting the 
practicality of this method. Finally, the absolute configuration 
of 3d was determined to be the (R)-form by X-ray 
crystallographic diffraction analysis. 

Synthesis Of Axially Chiral Ternaphthalenes. To further 
demonstrate the utility of our protocol, we applied it to the 
synthesis of atropisomeric ternaphthalenes (Scheme 3). 
Ternaphthalenes and oligonaphthalenes, which are higher 
homologs of binaphthalene, have played essential roles in 
supramolecular chemistry and materials science.15 However, 
the asymmetric catalytic synthesis of these homologs has rarely 
been reported, presumably due to the difficulty in control of 
both diastereoselectivity and enantioselectivity.16 To our 
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delight, the subjection of 1,4-dibromonaphthalene (5) and 
boronic acids (6 or 7) to our coupling conditions smoothly 
delivered the optically active ternaphthalenes (8 or 9) in 

excellent enantioselectivity (>99% ee) and in high to excellent 
ratio with their meso-isomers (8’ or 9’).

Table 2. Substrate Scopea

OHHOOMe

3a, 91%, 97% eeb

[Pd(L6)(3-cin)Cl] (1 mol%)
KOH (2.0 equiv)
tBuOH (0.2 M)

50 oC, 24 h

OH

3e, 76%, 97% eed

Me

3b, 98%, 94% eeb

3i, 86%, 93% eed

OBn O OEt

3d, 85%, 92% eed
ArBpin

3c, 92%, 90% eec

OMe

O

Me

Me

3p, 99%, 95% eed

OHHO
Me

3g, 96%, 92% eed

N

OR

4a, R = Me, 98%, 95% ee
4b, R = Et, 79 %, 92% ee

N

OMe

N

Me
OMe

4c, 94%, 93%ee

3f, 85%, 99% eed

OMe

N

4e, 93%, 99% ee

Me

3w, 91%, 95% ee

OMe

NO2

3n, 90%, 97% ee

N

Me

Me

CN

3o, 95%, 95% eef

N

Me

3x, 84%, 94% eef

N
Me

Ar-Bpin
3y, 82%, 90% eec,f

N

Me

N

Me

ArBPin
3s, 60%, 90% eef

ArBPin
3t, 61%, 87% eef

Me

F
3m, 89%, 92% ee

Me

S

4g, 97%, 86% eec,f

N

Me

3u, 88%, 93% ee

OMe
F Me

ArBPin
4k, 85%, 95% ee

CF3

OEt

3l, 81%, 91% eee

CHO
Me

NH2

Me

3j, 81%, 90% eee 3k, 75%, 85% eee

OMe

Ar-OTf
3q, 97%, 96% ee

N

N

OMe

Ar-Bpin
4h, 98%, 95% eee

3v, Ar-Br, 94%, 94% ee
Ar-Cl, 87%, 94% ee

OMe

N
Me

Me

4f, 82%, 90% eef

OMe

N

3z, 92%, 96% eef

OMe
OMe

1 2 (1.2 equiv) 3-4

ArBPin
4i, 57%, 96% ee

OMe
OBn

OMe

N

OMe

ArBPin
4j, 62%, 92% ee

ArBPin
4l, 54%, 94% ee

X-ray structure of 3d

[Pd(L6)(3-cin)Cl] (0.2 mol%)
KOtBu (1.3 equiv)

toluene/H2O (9:1, 0.25 M)
rt, 36 h

1.12 g (4 mmol)

heteroaryl substrates

tetra-ortho-substituted biarylsb,f

functional group compatibility

gram-scale reaction

N

Ar

Ar
Ar

Ar

N

L6, Ar = (3,5-tBu-C6H3)

 Small ortho-substituents

 Excellent functional group compatibility  Tetra-ortho-substituents

 Low catalyst loading and mild conditions

 Tolerance to various types of heterocycles

 Novel chiral NHC ligand

NEt2

O

Br
R1 R3

B(OH)2

+ R1
R3

FG
Het

Het

R2 R2

OMe

O

Me

Me

3p, 1.15 g
99%, 95% ee

OMe

O

Me

Me
B(OH)2 Br+

1.3 equiv

OMe
Me Ar-B(OH)2 97%, 93% eeg

Ar-Bpin 99%, 94% eeg

Ar-Bneo 91%, 93% eeg

Ar-BF3K 98%, 90% eee

3r

OH

3h, 98%, 91% eed

MeO

O

N

N

Me

4d, 79%, 94% ee

FG

aYields of isolated products on a 0.2 mmol scale. b40 oC. c30 oC. d0.5 mol% catalyst, KOtBu (1.3 equiv), toluene/H2O (9:1), rt, 24 h. e2 
mol% catalyst, Cs2CO3 (2.5 equiv), tBuOH/H2O (9:1), 60 oC, 24 h. f2 mol% catalyst. g0.5 mol% catalyst.

Scheme 3. Synthesis of Axially Chiral Ternaphthalenes 
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Proposed Stereoinduction Models.  To get insight into the 
origin of excellent stereoinduction of the newly designed ligand, 
we obtained the X-ray crystal structure of Pd(L6)(η3-cin)Cl 
(Figure 2a).17 The steric map of this complex shows a 
pronounced C2-symmetric binding pocket with two accessible 
quadrants.18 Based on the X-ray crystal structure, we proposed 
stereoinduction models for the oxidative addition and 
transmetalation intermediates of L6-Pd complex, as shown in 
Figure 2b. Notably, due to the steric repulsions between 
coupling partners and the bulky 3,5-di-tert-butyl phenyl group 
on the ligand, the reductive elimination would proceed through 
the favored transition state (TM1), in which the two naphthyl 
substituents occupy the two vacant quadrants provided by L6-
Pd complex, thereby furnishing biaryls 3d in the (R)-
configuration. These results are consistent with our initial 
hypothesis that the bulkier C2-symmetric N-substituents on 
NHCs would lead to a more efficient enantiodiscrimination and 
facilitate the key reductive elimination step.

a)     Pd(L6)(η3-cin)Cl            Steric map (37.5 %VBur)

b) Proposed stereoinduction models
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N N
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TM1 TM2 TM3 TM4
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Figure 2. a) X-ray crystal structure and corresponding steric map 
of Pd(L6)(η3-cin)Cl. b) Oxidative addition (OA1-2) and 
transmetalation (TM1-4) intermediates to binaphthyls (3d). 

 CONCLUSIONS 

In conclusion, we have developed the first highly 
enantioselective NHC-Pd catalyzed (Suzuki-Miyaura) C(sp2)-
C(sp2) cross-coupling reaction for the synthesis of 
atropisomeric biaryls. A diverse variety of axially chiral biaryls, 
heterobiaryls, tetra-ortho-substituted biaryls, and 
ternaphthalenes, were efficiently prepared in high yields with 
excellent levels of enantiocontrol from readily available and 
stable substrates. These reactions tolerate a remarkable scope of 
heterocycles and functional groups, employ low catalyst 
loading, and proceed under mild conditions. Key to the success 
of the reaction was the development and application of a very 
bulky C2-symmetric chiral NHC for the Pd catalyst. Efforts to 
further explore this NHC-metal catalysis are underway in our 
laboratory. 
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