ORGANOMETALLICS

Intramolecular Oxidative Cyclization of Alkenes and Nitriles with Nickel(0)

Masato Ohashi,^{†,‡} Masashi Ikawa,[†] and Sensuke Ogoshi^{*,†}

⁺Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

[‡]Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871, Japan

Supporting Information

ABSTRACT: The use of Me₂AlCl as an additive was found to allow the oxidative addition of the Ar–CN bond in 2-(2-methylallyl)benzonitrile on nickel(0) in the presence of $P^n Bu_3$, giving a *trans*-arylnickelcyanide complex. In contrast, in the presence of PCy₃, the intramolecular oxidative cyclization on nickel(0) took place to afford a nickeladihydropyrrole. Without the addition of Me₂AlCl, the quantitative generation of

an η^2 : η^2 -5-ene-nitrile Ni(0) species, which was definitely converted to the nickeladihydropyrrole after treatment with Me₂AlCl, was observed. In addition, TfOH also promoted the oxidative cyclization of the η^2 : η^2 -5-ene-nitrile complex to yield the corresponding five-membered aza-nickelacycle. A similar intramolecular oxidative cyclization occurred when 2-allylbenzonitrile was used in the presence of a Lewis acid, such as Me₂AlCl, Me₂AlOTf, and Me₃SiOTf, or of TfOH to give the corresponding nickeladihydropyrroles in quantitative yield. The molecular structures of a series of nickeladihydropyrroles were unambiguously determined by means of X-ray crystallography. The nickeladihydropyrrole derived from (2-methylallyl)benzonitrile and TfOH was found to react with HSiMe₂Ph at 80 °C to furnish a silanamine derivative. The reaction was expanded to a Ni(0)/PCy₃/TfOH-catalyzed coupling reaction of 5-ene-nitrile and HSiMe₂Ph, yielding the corresponding silanamine in 84% yield.

INTRODUCTION

Oxidative cyclization of two π -components with nickel(0) species is an efficient method for the generation of a heteronickelacycle, which has been proposed as a key reaction intermediate in nickel-catalyzed multicomponent coupling reactions as well as [2+2+2] cycloaddition reactions to give heterocycles.¹ Earlier studies reported by Hoberg had focused on the formation of heteronickelacycles by oxidative cyclization with nickel(0) complexes, including carbon dioxide² or isocyanate³ as one π -component. In recent studies, our group reported the formation of five-membered heteronickelacycles by oxidative cyclization of a carbon-carbon unsaturated bond and a carbon-heteroatom double bond with nickel(0), such as alkene–aldehyde, alkene– ketone, diene-aldehyde, diene-ketone, alkyne-aldehyde or alkyne-imine.⁴ However, the oxidative cyclization of nitriles and unsaturated hydrocarbons with nickel is very rare (Scheme 1).⁵ The occurrence of the oxidative cyclization of alkyne and nitrile with nickel(0) has only been inferred from the formation of an enone by the protonolysis of a reaction mixture of diphenylacetylene and benzonitrile with Ni(0).5a Louie and co-workers proposed that, in the Ni/NHC-catalyzed formation of pyridines from alkynes and nitriles, a nickelapyrrole intermediate would be generated through the oxidative cyclization of an alkyne and a nitrile with nickel(0).^{bb,c} The reason for the rareness is that the oxidative addition of the C–CN bond of η^2 -nitrile Ni(0) complexes competes against oxidative cyclization (Scheme 1).^{6–13} In fact, some nickel-catalyzed reactions involving a C-CN bond

cleavage of nitriles as a key reaction step have appeared in the last decades.14-18

When all transition metal complexes are included, a significant number of aza-metalacycles generated by oxidative cyclization of nitriles and carbon-carbon unsaturated compounds has been discovered.¹⁹⁻²⁷ To the best of our knowledge, earlier research on a series of dihydrotitanapyrroles, generated by the reaction of $(\eta^5 - C_5 Me_5)Ti(\eta^2 - C_2 H_4)$ with an equimolar amount of nitriles, was conducted by Bercaw et al.¹⁹ Buchwald and co-workers, around the same time, engaged in the study on zirconocene-benzyne and zirconocene-alkyne complexes, both of which were found to react with nitriles to give the corresponding zirconapyrroles.²⁰ The first structural determination of the aza-metallacycle, derived from the oxidative cyclization of the *in situ* generated Cp₂Zr(η^2 benzyne) species with butyronitrile, was also achieved.^{20c} They also demonstrated that treatment of a zirconocene-cyclobutene complex with nitriles gave the corresponding aza-zirconacycles,²¹ and a related aza-zirconacycle derived from a zirconocene-cyclobutadiene complex with pivalonitrile was structurally determined by Sharp et al.^{21b} The formation of five-membered aza-zirconacycle derivatives was also reported by the use of dialkylzirconocenes, such as Cp₂ZrBu₂ and Zp₂ZrEt₂, as a synthetic precursor.²² Furthermore, Fagan and Nugent showed that an aza-zirconacyclopentadiene complex, generated by the intramolecular cyclization with 1-cyano-5-heptyne, reacted with S_2Cl_2 to give an isothiazole,²³

Received: February 20, 2011 Published: April 19, 2011

Scheme 1. Two Possible Reactions of Nitrile with Nickel(0)

Scheme 2. Oxidative Addition of 1 to Nickel(0)

while aza-zirconacycles were well-known to be hydrolyzed to yield the corresponding carbonyl compounds. A few aza-metallacycles containing a Group 4 metal, in addition, have also been synthesized and structurally well-defined by means of X-ray diffraction analysis.²⁴

Although the number of aza-metallacycles generated by the oxidative cyclization of nitriles and carbon-carbon unsaturated compounds with Group 4 metal is not relatively small, as mentioned above, the corresponding aza-metallacycles containing except for Group 4 metals are still rare. Strickler and Wigley inferred the generation of aza-tantalacyclopentadiene in the course of the reaction of tantalum-tolan complex with nitrile.²⁴ Legzdins and co-workers proposed the formation of aza-tungstenacyclopentadienyl intermediate from the reaction of an η^2 -PhCCH tungsten complex with acetonitrile.²⁶ Roesky et al. reported a unique reactivity of cyclopropane analogues of aluminum bearing a bulky β -diketiminato ligand toward benzonitrile to yield an aza-aluminacyclopentadiene, the molecular structure of which was definitely confirmed by X-ray diffraction study.²⁷ Here, we report the intramolecular oxidative cyclization of nitrile and alkene with nickel(0), promoted by a Lewis or Brønsted Acid. In addition, we observed that the aza-nickelacycle could act as a key intermediate in a catalytic reaction.

RESULTS AND DISCUSSION

The reaction of 2-(2-methylallyl)benzonitrile (1) with Ni- $(cod)_2$ and PⁿBu₃ in C₆D₆ gave a mixture of 1 and Ni(cod)- $(P^nBu_3)_2$. The addition of Me₂AlCl to the reaction mixture promoted the oxidative addition of the aryl-CN bond to nickel-(0) at room temperature to yield an arylnickelcyanide complex (2) quantitatively (Scheme 2). The oxidative addition of an Ar-CN bond to nickel(0) promoted by Lewis acids has been reported.^{6b,14,28} We also reported the oxidative addition of an Ar-CN bond of 2-(3-methyl-3-butenyl)benzonitrile by the addition of Me₂AlCl and suggested that the coordination ability of the nitrile group was enhanced by coordination of nitrile nitrogen to Me₂AlCl.^{14c} Insertion of the intramolecular alkene into the nickel-arene bond in 2 did not occur, even at 60 °C for 72 h, although the corresponding complex derived from 2-(3methyl-3-butenyl)benzonitrile underwent insertion under the same reaction conditions.^{14c}

In the presence of PCy₃, the reaction of 1 with Ni(cod)₂ gave an $\eta^2: \eta^2$ -5-ene-nitrile Ni(0) complex (3) quantitatively.

Figure 1. ORTEP drawing of **3** with thermal ellipsoids at the 30% probability level. One of the two independent molecules in a unit cell of **3** is depicted. H atoms are omitted for clarity.

The molecular structure was determined by X-ray crystallography (Scheme 3, Figure 1). The coordination geometry of the nickel center in 3 appeared to be a Y-shaped trigonal-planar structure, in which the midpoints of the carbon–carbon double and carbon–nitrile triple bonds are assumed to serve as a coordination center. The C1–N and C2–C3 bond distances of 1.215(7) and 1.390(9) Å, respectively, were slightly longer than those observed in uncoordinated PhCN (1.168(3) Å)²⁹ and ethylene (1.336(3) Å),³⁰ due to the contribution of back-donation from the nickel(0) center. The $\eta^2:\eta^2$ -coordination structure of 3 was also observed in solution, as evidenced by the upfield shift of the ¹³C resonances attributable to the coordinating alkene and nitrile moieties (δ_C 154.9, 76.9, and 50.4 for C1, C2, and C3, respectively).

The addition of Me_2AlCl to a solution of 3 promoted oxidative cyclization to give a nickeladihydropyrrole (4a) quantitatively (Scheme 3). The formation of a new carbon–carbon bond between C1 and C2 (1.508(3) Å) could be observed in the molecular structure of 4a revealed by X-ray crystallography (Figure 2). Simultaneous formation of Ni–N and Ni–C3 bonds (1.9164(14) and 1.958(2) Å, respectively) was also confirmed, and these bond lengths were consistent with those observed in a

Figure 2. ORTEP drawing of **4a** with thermal ellipsoids at the 30% probability level. H atoms are omitted for clarity.

Figure 3. ORTEP drawing of **4b** with thermal ellipsoids at the 30% probability level. H atoms are omitted for clarity.

structurally well-defined seven-membered aza-nickelacycle.^{4d} The chloride atom of **4a** bridged between the nickel and aluminum atoms, so Me₂AlCl served not only as a Lewis acid to promote the oxidative cyclization of **3**, but also as a Lewis base to stabilize the square-planar geometry of the Ni(II) center in **4a** by coordination of the chloride atom to the nickel.³¹ The important role of Lewis acid in promoting oxidative addition has already demonstrated by our group^{4a,b,h} and other groups.³² The C2–C3 and C1–N bond distances (1.534(2) and 1.274(2) Å, respectively) of **4a** were nearly identical to the typical lengths of carbon–carbon single and carbon–nitrogen double bonds, respectively.

The oxidative cyclization of **3** was also promoted by the addition of a stoichiometric amount of TfOH. A nickeladihydropyrrole (**4b**) was isolated in 97% yield and its molecular structure was determined by X-ray crystallography (Scheme 3, Figure 3). Similar to the chloride atom in **4a**, one of the oxygen atoms in the trifluoromethanesulfonate group of **4b** coordinated to the nickel center to allow it to adopt a 16-electron, squareplanar geometry. The C1–C2 and Ni–N bond lengths of 1.504(13) and 1.284(11) Å, respectively, of **4b** were almost equal to those observed in **4a**. The interatomic distance between the N and O2 atoms (2.99 Å) suggests the existence of the hydrogen bond. The ¹H NMR spectrum of **4b** exhibited a broad singlet at δ 8.95 ppm, assignable to the hydrogen adjacent to the nitrogen atom.

As mentioned above, in the reaction of Ni(0) with 1, the nature of phosphine ligands apparently influenced a choice of the two reaction courses, the oxidative addition of the Ar-CN bond in the presence of $P^n Bu_3$ or the oxidative cyclization in the presence of PCy₃. However, the factor determining the reaction course was found to depend on not only the nature of ligands but also the chain length of ene-nitrile. Treating of 2-(3-methyl-3butenyl)benzonitrile (5) with Ni(cod)₂ and PCy₃ in the presence of Me₂AlCl followed by protolysis resulted in the quantitative formation of an intramolecular carbocyanation product (6), which was the product via the oxidative addition of the Ar-CN bond (Scheme 4).^{14c} Monitoring of the initial stage of the reaction before adding Me₂AlCl by means of NMR spectroscopy indicated the formation of two Ni(0) intermediates (A and B). These results clearly show that PCy_3 promotes predominantly the oxidative addition of the Ar-CN bond when 5, which has a longer alkyl chain than 1, is employed as a substrate.

In a similar manner, the reaction of 2-allylbezonitrile (7) with Ni(cod)₂ in the presence of PCy₃ led to the qualitative formation of the corresponding $\eta^{2}:\eta^{2}$ -5-ene-nitrile Ni(0) complex (8) (Scheme 5). The molecular structure of 8 was unambiguously determined by means of X-ray crystallography, and the ORTEP drawing is shown in Figure 4. The coordination geometry of the nickel center as well as the C1–N and C2–C3 bond distances (1.204(2) and 1.401(3) Å, respectively) of 8 were consistent with those observed in the analogous $\eta^{2}:\eta^{2}$ -5-ene-nitrile complex 3. The resonance assignable to the coordinating PCy₃ ligand appeared as a singlet at δ 37.4 in the ³¹P{¹H}</sup> NMR spectrum of 8.

In the presence of Me₂AlCl, the oxidative cyclization of 8 occurred faster than that of 3 at room temperature to quantitatively yield an aza-nickelacycle (9a) (Scheme 5). In addition, the oxidative cyclization of 8 proceeded smoothly with the addition of Me₂AlOTf, resulting in the quantitative formation of the corresponding nickeladihydropyrrole (9b). X-ray diffraction studies of 9a and 9b clearly demonstrated the formation of the five-membered Ni–N–C1–C2–C3 framework (Figure 5). In spite of the similar five-membered framework, however, the Ni–N bond distance of 9b (1.9949(19) Å) was slightly longer than that found in 4a–b (1.9164(14) and 1.905(9) Å, respectively) and 9a (1.930(3) Å). The same coordination mode of Me₂AlOTf to the five-membered heteronickelacycle was previously demonstrated in the reaction of ^tBuCHO and diphenylacetylene with nickel(0).^{4h}

As with the reaction of **3** with TfOH, the addition of an equimolar amount of TfOH allowed the oxidative cyclization of **8** to yield a nickeladihydropyrrole (**9c**) analogous to **4b** in quantitative yield (Scheme 6). In contrast, treatment of **8** with CH₃COOH instead of TfOH did not promote the corresponding oxidative cyclization. The interatomic distance between the N and O2 atoms (2.94 Å) was almost equal to that observed in **4b** (*vide supra*), which also suggested the existence of the hydrogen bond (Figure 6). A broad singlet at δ 9.13 ppm observed in the ¹H NMR spectrum of **9c** was assigned to the OH group hydrogen-bonding to the nitrogen atom. Furthermore, similar oxidative cyclization was promoted by the use of Me₃SiOTf, affording **9d** in a quantitative yield (Scheme 6). The X-ray diffraction study of **9d** clearly showed that the Si–O bond in

Table 1. Crystallographic Data of 3, 4a–b, 8, and 9a–d a,b

complex	3	4a	4b	8
empirical formula	C ₂₉ H ₄₄ NNiP	C31H50AlClNNiP	C ₃₀ H ₄₅ F ₃ NNiO ₃ PS	C ₂₈ H ₄₂ NNiP
formula weight	496.33	588.83	646.41	482.31
color, description	yellow, block	orange, block	yellow, block	yellow, block
temperature, K	123(2)	123(2)	123(2)	123(2)
cryst. System	monoclinic	triclinic	monoclinic	monoclinic
space group	P2/c (#13)	P1 (#2)	$P2_1/n$ (#14)	$P2_1/c$ (#14)
a, Å	14.7687(12)	10.4287(5)	9.1579(8)	8.3374(5)
b, Å	12.0964(10)	12.2964(8)	22.3334(17)	33.3279(17)
<i>c,</i> Å	30.477(3)	14.4467(8)	15.0975(14)	9.2706(6)
α, deg		66.299(2)		
β , deg	101.537(2)	80.093(2)	93.729(3)	99.118(2)
γ, deg		67.103(2)		
volume. Å ³	5334.6(8)	1562.40(15)	3081.3(5)	2543.4(3)
7.	8	2	4	4
calculated density. Mo m^{-3}	1.236	1.252	1.393	1,260
2. <i>А</i>	50.7	54.9	50.0	61.0
limiting indices	$-17 \le h \le 16, -14 \le k$	$-12 \le h \le 13, -15 \le k$	$-10 \le h \le 10, -26 \le k$	$-11 \le h \le 11, -46 \le k$
initiality indices	< 14 - 36 < 1 < 36	12 = 10, 13 = 10 < 15 -18 < 1 < 15	< 25 - 17 < 1 < 17	< 45 - 13 < 1 < 13
absorption coefficient mm^{-1}	0 804	0.806	0 799	0.841
max and min transmission	0.856 (max)/0.795 (min)	0.739 (max)/0.602 (min)	0.777 (max)/0.741 (min)	0.679 (max)/0.632 (min)
E(000)	2144	632	1368	1040
crystal size mm	21++ 0.30 × 0.20 × 0.20	0.52 $0.70 \times 0.50 \times 0.40$	$0.40 \times 0.30 \times 0.20$	$0.60 \times 0.60 \times 0.50$
crystal size, min	1.013	1 106	1 360	1.035
reflections collected /unique	$27622/0522 \left[P(int) = 0.141 \right]$	1.100 $15150/7028 \left[P(int) = 0.028 \right]$	1.500 $22222/5212 \left[P(int) = 0.127 \right]$	$20075/7652 \left[P(int) = 0.050 \right]$
no. of variables	2/033/9323 [R(IIII) = 0.141]	13139/7028 [R(IIII) = 0.028]	23352/3512 [K(IIII) = 0.12/]	309/3//033 [K(IIII) = 0.039]
$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000000000000000000000000000000000$	592 0.0749 0.1402	529 0.0228 0.0862	0.1102.0.2070	287
RI, WR2 [I > 20(I)] $R1 = WR2 (all data)$	0.0768, 0.1602	0.0338, 0.0862	0.1193, 0.3070	0.0403, 0.1090
KI, WKZ (all data)	0.1011, 0.1984	0.0390, 0.0897	0.1582, 0.3437	0.0088, 0.1249
residual electron density, e A	1.079 (max), -0.075 (min)	0.838 (max), -0.417 (min)	2.310 (max), -0.750 (min)	1.207 (max), -0.532 (min)
complex	92	9b	0c	01
complex	Ju		90	98
empirical formula	C ₃₀ H ₄₈ AlClNNiP	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS	9a C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi•C ₇ H ₈
empirical formula formula weight	C ₃₀ H ₄₈ AlClNNiP 574.80	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38	9 d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi • C ₇ H ₈ 796.70
empirical formula formula weight color, description	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block	9a C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block
empirical formula formula weight color, description temperature, K	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2)	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2)	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2)	9a C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2)
empirical formula formula weight color, description temperature, K cryst. System	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic
empirical formula formula weight color, description temperature, K cryst. System space group	$C_{30}H_{48}AlClNNiP$ 574.80 yellow, block 296(2) monoclinic $P2_{1}/c$ (#14)	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14)	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14)	9a C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi ⋅ C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2)
empirical formula formula weight color, description temperature, K cryst. System space group <i>a</i> , Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_{1/c}$ (#14) 16.6868(13)	$C_{31}H_{48}AlF_{3}NNiO_{3}PS$ 688.42 orange, block 123(2) monoclinic $P2_{1}/n$ (#14) 12.1333(9)	$F_{29}H_{43}F_3NNiO_3PS$ 632.38 yellow, block 123(2) monoclinic $P2_1/n$ (#14) 10.5957(5)	9a C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi ⋅ C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7)
empirical formula formula weight color, description temperature, K cryst. System space group <i>a</i> , Å <i>b</i> , Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_{1}/c$ (#14) 16.6868(13) 10.2681(8)	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11)	$F_{29}H_{43}F_{3}NNiO_{3}PS$ 632.38 yellow, block 123(2) monoclinic $P2_{1}/n$ (#14) 10.5957(5) 15.5640(8)	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi ⋅ C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10)
empirical formula formula weight color, description temperature, K cryst. System space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17)	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12)	K C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10)	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic <i>P</i> Ī (#2) 9.4279(7) 14.2349(10) 15.7794(10)
empirical formula formula weight color, description temperature, K cryst. System space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17)	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12)	X C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10)	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi⋅C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2)
empirical formula formula weight color, description temperature, K cryst. System space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg β, deg	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_1/c$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2)	$C_{31}H_{48}AIF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2)	X C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2)	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2)
empirical formula formula weight color, description temperature, K cryst. System space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg β, deg γ, deg	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17) 1113.851(2)	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_{1/n}$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2)	X C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2)	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi⋅C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2)
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_{1/c}$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 1113.851(2) 2974.2(4)	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4)	C29H43F3NNiO3PS 632.38 yellow, block 123(2) monoclinic P21/n (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3)	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2)
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³ 7	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4	$C_{31}H_{48}AlF_3NNiO_3PS$ 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4	X C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³ Z calculated density. Mg m ⁻³	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17) 1113.851(2) 2974.2(4) 4 1 284	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic <i>P</i> 2 ₁ / <i>n</i> (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4	X C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1 300
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic P2 ₁ /n (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61 0	X C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic P2 ₁ /n (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431 50.0	9d C ₃₂ H ₅₁ F ₃ NNiO ₃ PSSi · C ₇ H ₈ 796.70 red, block 123(2) triclinic PĪ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_1/c$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 -22 $\leq h \leq 22$ -13 $\leq k$	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P_{1/n}$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 -17 $\leq h \leq 17$ -22 $\leq k$	K $C_{29}H_{43}F_3NNiO_3PS$ 632.38 yellow, block $123(2)$ monoclinic $P2_1/n$ (#14) $10.5957(5)$ $15.5640(8)$ $18.4190(10)$ $104.836(2)$ $2936.2(3)$ 4 1.431 50.0 $-12 \le h \le 12$	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11 - 16 \le k$
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³ Z calculated density, Mg m ⁻³ $2\theta_{max}$ deg limiting indices	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_{1/c}$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$	$F_{29}H_{43}F_{3}NNiO_{3}PS$ 632.38 yellow, block 123(2) monoclinic $P2_{1}/n (#14)$ 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11, -16 \le k$ $\le 16, -18 \le l \le 18$
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg volume, Å ³ Z calculated density, Mg m ⁻³ $2\theta_{max}$ deg limiting indices	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_{1/c}$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$ 0.920 (max)/0.849 (min)	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$ 0.865 (max)/0.662 (min)	$F_{29}H_{43}F_{3}NNiO_{3}PS$ 632.38 yellow, block 123(2) monoclinic $P2_{1}/n$ (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$ 0.921 (max)/0.851 (min)	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11, -16 \le k$ $\le 16, -18 \le l \le 18$ $0.830 (max)/0.738 (min)$
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³ Z calculated density, Mg m ⁻³ $2\theta_{max}$ deg limiting indices max. and min transmission absorption coefficient mm ⁻¹	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_1/c$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$ 0.920 (max)/0.849 (min) 0.845	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$ 0.865 (max)/0.662 (min) 0.748	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic $P2_1/n$ (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$ 0.921 (max)/0.851 (min) 0.837	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11, -16 \le k$ $\le 16, -18 \le l \le 18$ 0.830 (max)/0.738 (min) 0.646
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³ Z calculated density, Mg m ⁻³ $2\theta_{maxy}$ deg limiting indices max. and min transmission absorption coefficient, mm ⁻¹ F(000)	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_1/c$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$ 0.920 (max)/0.849 (min) 0.845 1232	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$ 0.865 (max)/0.662 (min) 0.748 1456	K $C_{29}H_{43}F_3NNiO_3PS$ 632.38 yellow, block $123(2)$ monoclinic $P2_1/n$ (#14) $10.5957(5)$ $15.5640(8)$ $18.4190(10)$ $104.836(2)$ $2936.2(3)$ 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$ $0.921 (max)/0.851 (min)$ 0.837	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11, -16 \le k$ $\le 16, -18 \le l \le 18$ 0.830 (max)/0.738 (min) 0.646
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å α, deg β, deg γ, deg volume, Å ³ Z calculated density, Mg m ⁻³ $2\theta_{max}$ deg limiting indices max. and min transmission absorption coefficient, mm ⁻¹ F(000)	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_1/c$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$ 0.920 (max)/0.849 (min) 0.845 1232 0.20 × 0.20 × 0.10	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$ 0.865 (max)/0.662 (min) 0.748 1456 0.60 × 0.50 × 0.20	$F_{29}H_{43}F_{3}NNiO_{3}PS$ 632.38 yellow, block 123(2) monoclinic $P2_{1}/n (#14)$ 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$ 0.921 (max)/0.851 (min) 0.837 1336 0.20 × 0.20 × 0.10	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11, -16 \le k$ $\le 16, -18 \le l \le 18$ 0.830 (max)/0.738 (min) 0.646 848 0.50 × 0.30 × 0.30
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic $P2_1/c$ (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$ 0.920 (max)/0.849 (min) 0.845 1232 0.20 × 0.20 × 0.10 1.110	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P_{1/n}$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$ 0.865 (max)/0.662 (min) 0.748 1456 0.60 × 0.50 × 0.20 1.082	$F_{29}H_{43}F_3NNiO_3PS$ 632.38 yellow, block $123(2)$ monoclinic $P2_1/n$ (#14) $10.5957(5)$ $15.5640(8)$ $18.4190(10)$ $104.836(2)$ 2936.2(3) 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$ 0.921 (max)/0.851 (min) 0.837 1336 $0.20 \times 0.20 \times 0.10$	9d $C_{32}H_{51}F_3NNiO_3PSSi \cdot C_7H_8$ 796.70 red, block 123(2) triclinic $P\overline{1}$ (#2) 9.4279(7) 14.2349(10) 15.7794(10) 74.939(2) 87.102(2) 84.712(2) 2035.5(2) 2 1.300 50.0 $-11 \le h \le 11, -16 \le k$ $\le 16, -18 \le l \le 18$ 0.830 (max)/0.738 (min) 0.646 848 0.50 × 0.30 × 0.30 1.053
empirical formula formula weight color, description temperature, K cryst. System space group a, Å b, Å c, Å	C ₃₀ H ₄₈ AlClNNiP 574.80 yellow, block 296(2) monoclinic P2 ₁ /c (#14) 16.6868(13) 10.2681(8) 18.9795(17) 113.851(2) 2974.2(4) 4 1.284 57.0 $-22 \le h \le 22, -13 \le k$ $\le 13, -25 \le l \le 25$ 0.920 (max)/0.849 (min) 0.845 1232 0.20 × 0.20 × 0.10 1.110 30573/7492 [<i>R</i> (int) = 0.086]	C ₃₁ H ₄₈ AlF ₃ NNiO ₃ PS 688.42 orange, block 123(2) monoclinic $P2_1/n$ (#14) 12.1333(9) 15.7000(11) 19.0696(12) 109.714(2) 3419.7(4) 4 1.337 61.0 $-17 \le h \le 17, -22 \le k$ $\le 22, -26 \le l \le 27$ 0.865 (max)/0.662 (min) 0.748 1456 0.60 × 0.50 × 0.20 1.082 41324/10380 [<i>R</i> (int) = 0.054]	C ₂₉ H ₄₃ F ₃ NNiO ₃ PS 632.38 yellow, block 123(2) monoclinic $P2_1/n$ (#14) 10.5957(5) 15.5640(8) 18.4190(10) 104.836(2) 2936.2(3) 4 1.431 50.0 $-12 \le h \le 12, -18 \le k$ $\le 18, -21 \le l \le 21$ 0.921 (max)/0.851 (min) 0.837 1336 0.20 × 0.20 × 0.10 1.072 15731/5043 [<i>R</i> (int) = 0.088]	$\begin{array}{c} 9d \\ \\ C_{32}H_{51}F_{3}NNiO_{3}PSSi \cdot C_{7}H_{8} \\ 796.70 \\ \\ red, block \\ 123(2) \\ triclinic \\ P\overline{1} (#2) \\ 9.4279(7) \\ 14.2349(10) \\ 15.7794(10) \\ 74.939(2) \\ 87.102(2) \\ 84.712(2) \\ 2035.5(2) \\ 2 \\ 1.300 \\ 50.0 \\ -11 \leq h \leq 11, -16 \leq k \\ \leq 16, -18 \leq l \leq 18 \\ 0.830 (max)/0.738 (min) \\ 0.646 \\ 848 \\ 0.50 \times 0.30 \times 0.30 \\ 1.053 \\ 16182/7146 \left\lceil R(int) = 0.064 \right\rceil$

1	able 1. Continued				
	complex	9a	9b	9c	9d
	no. of variables	318	382	354	456
	R1, wR2 $[I > 2\sigma(I)]$	0.0643, 0.1587	0.0460, 0.1070	0.0574, 0.1097	0.0547, 0.1355
	R1, wR2 (all data)	0.1142, 0.2048	0.0707, 0.1207	0.1208, 0.1514	0.0716, 0.1498
	residual electron density, e ${\rm \AA}^{-3}$	1.203 (max), -1.102 (min)	0.871 (max), -0.630 (min)	0.901 (max), -0.826 (min)	0.863 (max), -0.598 (min)
а	$R1 = (\Sigma F_0 - F_0) / \Sigma F_0 .$	$^{b}wR2 = [\Sigma w (Fo^{2} - Fc^{2})^{2}/\Sigma$	(wFo^4)] ^{1/2} ; the function minim	mized: $w(Fo^2 - Fc^2)^2$.	

Scheme 4. Reaction of 5 with Ni(0) in the Presence of PCy_3 and Me_2AlCl

Organometallics

Scheme 5. Oxidative Cyclization of 8 Promoted by Me₂AlX (X = Cl and OTf)

Me₃SiOTf was completely cleaved (Figure 6).^{4a} As a result, unlike the other nickeladihydropyrroles **4b**, **9b**, and **9c**, the triflate in **9d** was coordinated to the nickel center as a monoanionic monodentate ligand. In addition, a new Si–N bond was formed with a distance of 1.783(3) Å, whereas the N–C1 bond distance of 1.282(4) Å was the typical length of the C=N double bond. Therefore, the slight elongation of the Ni–N bond distance (1.997(3) Å) may be due to the formation of a Ni–N coordination bond.

Finally, the reaction of aza-nickelacycles with $HSiMe_2Ph$ was examined. Only 4b was found to react with $HSiMe_2Ph$ at 80 °C in the presence of 1 to afford a silanamine derivative (10) in 81% yield (Scheme 7). However, in the absence of 1, the silanamine 10 was not generated. This observation suggests that the existence of 1, which has alkene and nitrile moieties that can coordinate to stabilize a Ni(0) species, might play an important

ARTICLE

Figure 4. ORTEP drawing of **8** with thermal ellipsoids at the 30% probability level. H atoms are omitted for clarity.

role in this transformation, and that this stoichiometric formation of **10** from **1** and HSiMe₂Ph via the nickeladihydropyrrole intermediate **4b** may be applied to the catalytic reaction. In fact, in the presence of Ni(cod)₂ and PCy₃ (10 mol % each) and TfOH (5 mol %), the reaction of HSiMe₂Ph with **1** at 80 °C afforded **10** in 84% isolated yield (Scheme 8). As shown in Scheme 8, this catalytic reaction probably proceeded via the TfOH-promoted intramolecular oxidative cyclization of **1** with Ni(0), followed by hydrosilylation of the resulting Ni–N bond.

In conclusion, we demonstrated the Me₂AlCl-mediated intramolecular oxidative cyclization of 5-ene-nitrile with nickel(0)in the presence of PCy₃ as a ligand. Me₂AlCl played two important roles for the oxidative cyclization of 5-ene-nitrile, as a Lewis acid to promote the cyclization reaction and as a Lewis base to stabilize the resulting square-planner structure of the Ni(II) product. In contrast, when $P^{n}Bu_{3}$ was used as a ligand, oxidative addition of the C–CN bond of the 5-ene-nitrile to Ni(0) took place under the same reaction conditions. The oxidative cyclization of 5-enenitrile was also observed with the addition of a Brønsted acid such as TfOH. The nickeladihydropyrrole product reacted with HSi-Me₂Ph to give a silanamine derivative in the presence of 5-enenitrile. We also achieved the catalytic formation of silanamine. This catalytic reaction is the first example of a Ni(0)-catalyzed transformation reaction obviously involving the formation of an aza-nickelacycle intermediate via the oxidative cyclization of a nitrile and a carbon-carbon unsaturated molecule.

EXPERIMENTAL SECTION

General. All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or drybox techniques. ¹H, ³¹P and

Figure 5. ORTEP drawings of 9a (left) and 9b (right) with thermal ellipsoids at the 30% probability level. H atoms are omitted for clarity.

Scheme 6. Oxidative Cyclization of 8 Promoted by ROTf (R = H and Me₃Si)

¹³C NMR spectra were recorded at room temperature on JEOL GSX-270S, JEOL AL-400 and BRUKER DPX-400 spectrometers. The chemical shifts in ¹H and ¹³C NMR spectra were recorded relative to Me₄Si ($\delta_{\rm H} = \delta_{\rm C} = 0$) or residual C₆D₅H ($\delta_{\rm H}$ and $\delta_{\rm C} = 7.16$ and 128.0, respectively). The chemical shifts in ³¹P NMR spectra were recorded using 85% H₃PO₄aq as an external standard. Assignment of the resonances observed in ¹H and ¹³C NMR spectra was based on ¹H–¹H COSY, HMQC, and HMBC experiments. Elemental analyses were performed at Instrumental Analysis Center, Faculty of Engineering, Osaka University. X-ray crystal data were collected with a Rigaku RAXIS-RAPID Imaging Plate diffractometer. Crystallographic data are summarized in Table 1. Several nickel complexes containing aluminum atom as a component are too sensitive toward oxygen or moisture to obtain accurate elemental analysis.

Materials. The degassed and distilled solvents (benzene, toluene, and hexane) used in this work were commercially available. C_6D_6 was distilled from sodium benzophenone ketyl. All commercially available reagents were distilled and degassed prior to use.

Generation of trans-(PⁿBu₃)₂Ni(C₆H₄-CH₂C(CH₃)=CH₂)-(C=N·Al(CH₃)₂Cl) (2). To a solution of Ni(cod)₂ (6.9 mg, 0.025 mmol) and PⁿBu₃ (12.5 μ L, 0.050 mmol) in 0.5 mL of C₆D₆ was added 2-(2-methylallyl)benzonitrile (1) (3.9 mg, 0.025 mmol) at room temperature. After 15 min, generation of Ni(cod)(PⁿBu₃)₂ was observed and 1 remained intact. The color of the solution changed gradually from yellow to light yellow by addition of Me₂AlCl (1.08 M solution in hexane, 23.0 μ L, 0.025 mmol) to the mixture. After 45 h, the title complex 2 was generated quantitatively.

Isolation of **2**. To a solution of Ni(cod)₂ (110 mg, 0.40 mmol) and P^nBu_3 (200 μ L, 0.80 mmol) in 3.0 mL of toluene at room temperature was added **1** (62.8 mg, 0.40 mmol) and Me₂AlCl (1.08 M solution in hexane, 370 μ L, 0.40 mmol). The reaction mixture was thermostatted at 60 °C for 1 h and the color of the solution changed gradually from yellow to light yellow. All volatiles were removed *in vacuo* to give yellow oil (283 mg,

99%). The attempt to purify the crude product by recrystallization failed due to its high solubility. ¹H NMR (400 MHz, C_6D_6): δ -0.25 (s, 6H, -AlMe₂), 0.70-1.60 (m, 54H, PⁿBu₃), 1.78 (s, 3H, CH₂=C(CH₃)-), 3.57 (s, 2H, -C₆H₄CH₂-), 4.87 (s, 1H, CHH=C(CH₃)-), 4.94 (s, 1H, CHH=C(CH₃)-), 6.80-7.13 (m, 4H, -C₆H₄-). ³¹P{¹H} NMR (109 Hz, C₆D₆): δ 13.2 (s). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ -6.8 (s, -AlMe₂), 14.0 (s, PⁿBu₃), 23.8 (d, $J_{CP} = 6.0$ Hz, PⁿBu₃), 23.9 (s, CH₂=C(CH₃)-), 24.0 (d, $J_{CP} = 14.0$ Hz, PⁿBu₃), 24.9 (d, $J_{CP} = 6.0$ Hz, PⁿBu₃), 25.0 (d, $J_{CP} = 6.0$ Hz, PⁿBu₃), 26.9 (s, PⁿBu₃), 48.9 (s, -C₆H₄CH₂-), 113.1 (s, CH₂=C(CH₃)-), 123.2 (s, -C₆H₄-), 125.5 (s, -C₆H₄-), 128.5 (s, -C₆H₄-), 135.4 (t, $J_{CP} = 4.0$ Hz, $-C_6$ H₄-), 143.4 (t, $J_{CP} = 3.0$ Hz, $-C_6$ H₄-), 144.2 (s, CH₂=C(CH₃)-), 154.9 (t, $J_{CP} = 24.5$ Hz, $-C \equiv$ N), 157.7 (t, $J_{CP} = 27.5$ Hz, $-C_6$ H₄-).

Generation of $(PCy_3)Ni(\eta^2:\eta^2-CH_2=C(CH_3)CH_2C_6H_4C=N)-(PCy_3)$ (3). To a solution of Ni(cod)₂ (6.9 mg, 0.025 mmol) and PCy₃ (7.0 mg, 0.025 mmol) in 0.5 mL of C₆D₆ was added 1 (4.1 mg, 0.026 mmol) at room temperature. The color of the solution immediately changed from orange to light yellow, resulting in the quantitative formation of 3.

Isolation of **3**. To a toluene solution of $Ni(cod)_2$ (165.0 mg, 0.60 mmol) and PCy₃ (168.3 mg, 0.60 mmol) was added 1 (94.3 mg, 0.60 mmol) at room temperature. The color of the solution changed immediately from orange to light yellow. The reaction mixture was stirred for 15 min, and then all volatiles were removed in vacuo to give yellow solids. The solids were washed with hexane to give 3 (271 mg, 91% yield). Further purification was achieved by recrystallization from toluene/hexane at -35 °C. ¹H NMR (400 MHz, C₆D₆): δ 1.22–2.31 (m, 33H, Cy), 1.41 (obscured by Cy, 3H, CH₂=C(CH₃)-), 2.30 (obscured by Cy, 1H, CHH=C(CH₃)-), 2.58 (d, J = 9.6 Hz, 1H, CHH=C(CH₃)-), 2.79 (d, J = 15.6 Hz, 1H, -C₆H₄CHH-), 3.42 (dd, J = 10.2, 15.6 Hz, 1H, -C₆H₄CHH-), 6.94 (dd, *J* = 6.8, 6.8 Hz, 1H, -C₆H₄-), $7.05-7.11 \text{ (m, 2H, -C_6H_4-), 8.10 (d, J = 7.2 Hz, 1H, -C_6H_4-). }^{31}P{}^{1}H}$ NMR (109 Hz, C_6D_6): δ 37.5 (s). ¹³C{¹H} NMR (100 MHz, C_6D_6): δ 21.9 (d, J_{CP} = 2.0 Hz, CH_2 =C(CH_3)-), 26.1 (s, Cy), 27.2 (d, J_{CP} = 3.0 Hz, Cy), 27.3 (d, J_{CP} = 3.0 Hz, Cy), 29.8 (d, J_{CP} = 3.0 Hz, Cy), 33.7 (d, $J_{\rm CP}$ = 15.0 Hz, Cy), 41.9 (s, -C₆H₄CH₂-), 50.4 (d, $J_{\rm CP}$ = 4.0 Hz, $CH_2=C(CH_3)-)$, 76.9 (d, $J_{CP} = 11.0$ Hz, $CH_2=C(CH_3)-)$, 115.7 (s, -C₆H₄-), 126.6 (s, -C₆H₄-), 127.6 (s, -C₆H₄-), 129.6 (s, -C₆H₄-), 130.1 (s, $-C_6H_{4^-}$), 147.1 (d, $J_{CP} = 6.0$ Hz, $-C_6H_{4^-}$), 154.9 (d, $J_{CP} =$ 8.0 Hz, -C≡N). Anal. Calcd for C₂₉H₄₄NNiP: C, 70.18; H, 8.94; N, 2.82. Found: C, 69.40; H, 8.69; N, 2.75.

Reaction of **3** with $AIMe_2CI$. To a solution of **3** (9.9 mg, 0.02 mmol) in 0.5 mL of C_6D_6 was added Me₂AlCl (1.08 M solution in hexane, 19.0 μ L,

Figure 6. ORTEP drawings of 9c (left) and 9d (right) with thermal ellipsoids at the 30% probability level. H atoms and solvated molecules in 9d (C_7H_8) are omitted for clarity.

Scheme 7. Reaction of 4b with $HSiMe_2Ph$ in the Presence of 1

0.02 mmol) at room temperature. The color of the solution gradually changed from yellow to orange, resulting in the quantitative formation of a nickeladihydropyrrole (4a).

Isolation of 4a. To a toluene solution of Ni(cod)₂ (110.0 mg, 0.40 mmol), PCy₃ (112.2 mg, 0.40 mmol) and 1 (62.8 mg, 0.40 mmol) was added Me₂AlCl (1.08 M solution in hexane, 370 µL, 0.40 mmol) at room temperature. The color of the solution changed from yellow to reddish orange. The reaction mixture was stirred for 2 h, and then all volatiles were removed in vacuo to give orange solids. The solids were washed with hexane to give 4a (223 mg, 95%). Further purification was achieved by recrystallization from toluene/hexane at -35 °C. ¹H NMR (400 MHz, C_6D_6): $\delta 0.04$ (s, 3H, -AlMe₂), 0.13 (s, 3H, -AlMe₂), 0.81 (dd, J = 9.0, 9.0 Hz, 1H, -Ni-CHH-), 1.11-2.03 (m, 33H, Cy), 1.73 (obscured by Cy, 1H, -Ni-CHH-), 1.78 (obscured by Cy, 3H, -Ni-CH₂C(CH₃)-), 2.46 (d, J = 15.8 Hz, 1H, -C₆H₄CHH-), 2.55 (d, J = 15.8 Hz, 1H, $-C_6H_4CHH_{-}$, 6.88 (d, J = 7.0 Hz, 1H, $-C_6H_{4-}$), 6.96 (dd, J = 6.2, 7.0 Hz, 1H, $-C_6H_{4^-}$), 7.06 (dd, J = 6.2, 7.0 Hz, 1H, $-C_6H_{4^-}$), 7.69 (d, J = 7.0 Hz, 1H, $-C_6H_4$ -). ³¹P{¹H} NMR (109 MHz, C_6D_6): δ 26.7 (s). ¹³C{¹H} NMR (100 MHz, C_6D_6): $\delta - 7.2$ (s, -AlMe₂), -5.9 (s, -AlMe₂), 24.0 (d, $J_{CP} = 26.0 \text{ Hz}, -\text{Ni}CH_2$ -), 26.9 (s, Cy), 28.0 (s, Cy), 28.1 (s, Cy), 30.3 (d, J_{CP} = 12.0 Hz, Cy), 32.1 (s, -NiCH₂C(CH₃)-), 33.9 (d, J_{CP} = 18.0 Hz, Cy), 40.5 (s, $-C_6H_4CH_2$ -), 68.0 (d, $J_{CP} = 8.0$ Hz, $-NiCH_2C(CH_3)$ -), 122.7 (s, $-C_6H_4$ -), 127.5 (s, $-C_6H_4$ -), 127.8 (s, $-C_6H_4$ -), 131.5 (s, $-C_6H_4$ -), 134.6 (s, -C₆H₄-), 154.5 (s, -C₆H₄-), 202.2 (s, -C=N(AlMe₂)Ni-). Anal. Calcd for C31H50AlCINNiP: C, 63.23; H, 8.56; N, 2.38. Found: C, 62.63; H, 8.40; N, 2.36.

Reaction of **3** with TfOH. To a solution of **3** (19.9 mg, 0.04 mmol) in 0.5 mL of C_6D_6 was added TfOH (3.5 μ L, 0.04 mmol) at room temperature. The color of the solution immediately changed from yellow to light yellow, resulting in the quantitative formation of a nickeladihydropyrrole (4b).

Scheme 8. $Ni(0)/PCy_3/TfOH$ -Catalyzed Reaction of 1 with $HSiMe_2Ph$

Isolation of **4b**. To a toluene solution of $Ni(cod)_2$ (137.5 mg, 0.50 mmol), PCy₃ (140.2 mg, 0.50 mmol) and 1 (87.5 mg, 0.56 mmol) was added TfOH (44 μ L, 0.50 mmol) at room temperature. The color of the solution changed from yellow to reddish orange. The reaction mixture was stirred for 15 min, and then all volatiles were removed in vacuo to give yellow solids. The solids were washed with hexane to give 4b (315 mg, 97%). Further purification was achieved by recrystallization from THF/hexane at $-35 \,^{\circ}$ C. ¹H NMR (400 MHz, THF- d_8): $\delta 0.59$ (m, 1H, -Ni-CHH-), 1.20-2.20 (m, 33H, Cy), 1.33 (obscured by Cy, 1H,-Ni-CHH-), 1.72 (obscured by Cy, 3H, -NiCH₂C(CH₃)-), 2.72 (d, J = 16.2 Hz, 1H, -C₆H₄CHH-), 2.77 (d, *J* = 16.2 Hz, 1H, - C₆H₄CHH-), 7.29 (d, J = 7.6 Hz, 1H, $-C_6H_{4^-}$), 7.34 (dd, J = 7.6, 7.6 Hz, 1H, $-C_6H_{4^-}$), 7.49 (dd, J = 7.6, 7.6 Hz, 1H, $-C_6H_4$ -), 7.62 (brs, 1H, $-C_6H_4$ -), 8.95 (brs, 1H, -NH). ${}^{31}P{}^{1}H$ NMR (109 MHz, THF- d_8): δ 27.1 (s). ${}^{13}C{}^{1}H$ NMR (100 MHz, THF-*d*₈): δ 17.4 (brs, -NiCH₂-), 27.6 (s, Cy), 28.6 (s, Cy), 28.8 (s, Cy), 30.8 (d, $J_{CP} = 9.2$ Hz, Cy), 32.0 (brs, -NiCH₂C(CH₃)-), 33.1 (d, J_{CP} = 20.7 Hz, Cy), 41.7 (s, $-C_6H_4CH_2$ -), 63.3 (s, $-NiCH_2C(CH_3)$ -), 124.0 (brs, $-C_6H_{4^-}$), 128.1 (s, $-C_6H_{4^-}$), 128.7 (s, $-C_6H_{4^-}$), 131.7 (d, $J_{CP} = 9.2$ Hz, -C₆H₄-), 155.1 (s, -C₆H₄-), 202.3 (s, -C=NH-Ni-). Anal. Calcd for C30H45F3NNiO3PS: C, 55.74; H, 7.02; N, 2.17. Found: C, 55.30; H, 7.09; N, 2.12.

Reaction of 2-(3-Methyl-3-butenyl)benzonitrile ($\mathbf{5}$) with Ni(cod)₂ in the Presence of PCy₃. To a solution of Ni(cod)₂ (11.0 mg, 0.04 mmol)

and PCy₃ (11.2 mg, 0.04 mmol) in 0.5 mL of C_6D_6 was added 5 (6.8 mg, 0.04 mmol) at room temperature. Monitoring of the reaction by means of NMR spectroscopy revealed that the conversion of the starting materials (Ni(cod)₂ and 5) is 44% for 10 min and that generation of a mixture of $\eta^2:\eta^2$ -6-ene-nitrile nickel(0) complex (A) and η^2 -nitrile nickel(0) complex (B) is found to be generated in 9 and 35% yield, respectively. The resulting reaction mixture was treated with an equimolar amount of Me₂AlCl (1.08 M solution in hexane, 38.0 μ L, 0.041 mmol) to give a complicated mixture. After 5 h, the reaction mixture was exposed to air for the sake of decomposition of nickel species, and then GC-Mass analysis of the crude product clearly showed that all of 5 were consumed and 2-(1-methyl-2,3-dihydro-1H-inden-1-yl)acetonitrile (6) was formed as a solo product. These nickel(0) complexes A and B were tentatively identified based on the characteristic resonances observed in the ¹H and ³¹P NMR spectra.

Selected spectral data for A: ¹H NMR (400 MHz, C₆D₆): δ 2.48 (m, 1H, CHH=C(CH₃)-), 2.66 (m, 1H, CHH=C(CH₃)-), 7.63 (d, *J* = 7.2 Hz, 1H, -C₆H₄-). ³¹P{¹H} NMR (109 Hz, C₆D₆): δ 36.6 (s, 1P). Selected spectral data for B: ¹H NMR (400 MHz, C₆D₆): δ 1.80 (s, 3H, CH₂=C(CH₃)-), 2.56 (m, 2H, CH₂=C(CH₃)CH₂CH₂-), 3.02 (m, 2H, CH₂=C(CH₃)CH₂CH₂-), 4.88 (s, 1H, CHH=C(CH₃)-), 4.97 (s, 1H, CHH=C(CH₃)-), 7.42 (br s, 1H, -C₆H₄-). ³¹P{¹H} NMR (109 Hz, C₆D₆): δ 33.0 (d, *J*_{PP} = 41.5 Hz, 1P), 47.9 (d, *J*_{PP} = 41.5 Hz, 1P).

Spectral data of **6** were identical to that previously reported.^{14c}

Generation of $(PCy_3)Ni(\eta^2:\eta^2-CH_2=CHCH_2C_6H_4C=N)$ (8). To a solution of Ni(cod)₂ (5.5 mg, 0.02 mmol) and PCy₃ (5.6 mg, 0.02 mmol) in 0.5 mL of C_6D_6 was added 2-allylbenzonitrile (7) (2.9 mg, 0.02 mmol) at room temperature. The color of the solution changed immediately from orange to yellow, resulting in the quantitative formation of 8.

Isolation of 8. To a toluene solution of $Ni(cod)_2$ (328.9 mg, 1.20 mmol) and PCy₃ (336.8 mg, 1.20 mmol) was added 7 (172.0 mg, 1.20 mmol) at room temperature. The color of the solution changed immediately from orange to yellow. The reaction mixture was stirred for 15 min, and then all volatailes were removed in vacuo to give yellow solids. The solids were washed with hexane to give 8 (572 mg, 99% yield). Further purification was achieved by recrystallization from toluene/hexane at -20 °C. ¹H NMR (400 MHz, C₆D₆): δ 1.14–2.33 (m, 33H, Cy), 2.30 (obscured by Cy, 1H, CHH=CH-), 2.49 (dd, J = 13.0, 14.4 Hz, 1H, -C₆H₄CHH-), 2.67 (dd, J = 8.4, 8.8 Hz, 1H, CHH=CH-), 3.31 (m, CH₂=CH-), 3.52 (dd, J = 13.0, 12.8 Hz, 1H, $-C_6H_4CHH_{-}$, 6.93 (dd, J = 6.8, 6.8 Hz, 1H, $-C_6H_{4^{-}}$), 7.04–7.06 (m, 2H, $-C_{6}H_{4}$, 8.08 (d, J = 7.2 Hz, 1H, $-C_{6}H_{4}$). ³¹P{¹H} NMR (109 Hz, $C_{6}D_{6}$): δ 37.4 (s). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 27.0 (s, Cy), 28.1 (d, J_{CP} = 4.0 Hz, Cy), 28.2 (d, J_{CP} = 2.0 Hz, Cy), 30.7 (s, Cy), 34.8 (d, J_{CP} = 15.0 Hz, Cy), 37.1 (s, CH_2 =CHCH₂-), 46.4 (d, J_{CP} = 4.0 Hz, CH_2 =CHCH₂-), 69.6 (d, J_{CP} = 11.0 Hz, CH_2 =CHCH₂-), 117.9 (s, -C₆H₄-), 127.7 (s, $-C_6H_{4^-}$), 129.8 (s, $-C_6H_{4^-}$), 130.6 (d, J_{CP} = 2.0 Hz, $-C_6H_{4^-}$), 131.0 (s, $-C_6H_{4^-}$), 148.8 (d, $J_{CP} = 6.0 \text{ Hz}$, $-C_6H_4$ -), 153.4 (d, $J_{CP} = 6.0 \text{ Hz}$, $-C \equiv N$). Anal. Calcd for C28H42NNiP: C, 69.73; H, 8.78; N, 2.90. Found: C, 68.54; H, 8.75; N, 2.95.

Reaction of **8** with $AIMe_2CI$. To a solution of **8** (9.6 mg, 0.02 mmol) in 0.5 mL of C_6D_6 was added Me₂AlCl (1.04 M solution in hexane, 19.0 μ L, 0.02 mmol) at room temperature. The color of the solution changed immediately from yellow to reddish orange to give a nickeladihydropyrrole (**9a**) in quantitative yield.

Isolation of **9a**. To a toluene solution of 8 (96.5 mg, 0.20 mmol) was added Me₂AlCl (1.04 M solution in hexane, 190 μ L, 0.20 mmol) at room temperature. The color of the solution changed from yellow to reddish orange. The reaction mixture was stirred for 10 min, and then all volatiles were removed *in vacuo* to give reddish orange solids. The solids were washed with hexane to give **9a** (110 mg, 96%). Further purification was achieved by recrystallization from toluene/hexane at -20 °C. ¹H NMR (400 MHz, C₆D₆): δ 0.06 (s, 3H, -AlMe₂), 0.11 (s, 3H, -AlMe₂), 0.92

(dd, J = 8.0, 16.8 Hz, 1H, -Ni-CHH-), 1.08–2.00 (m, 33H, Cy), 1.60 (obscured by Cy, 1H, -Ni-CHH-), 2.23 (dd, J = 8.0, 16.0 Hz, 1H, -C₆H₄CHH-), 2.60 (dd, J = 6.4, 16.0 Hz, 1H, -C₆H₄CHH-), 3.49 (m, 1H, -NiCH₂CH-), 6.83 (d, J = 7.6 Hz, 1H, -C₆H₄-), 6.95 (dd, J = 7.0, 7.6 Hz, 1H, -C₆H₄-), 7.06 (d, J = 7.6 Hz, 1H, -C₆H₄-), 7.66 (d, J = 7.6 Hz, 1H, -C₆H₄-), 7.03 (dd, J = 7.0, 7.6 Hz, 1H, -C₆H₄-), 7.66 (d, J = 7.6 Hz, 1H, -C₆H₄-), 7.03 (dd, J = 7.0, 7.6 Hz, 1H, -C₆H₄-), 7.66 (d, J = 7.6 Hz, 1H, -C₆H₄-), 100 MHz, C₆D₆): δ -7.1 (s, -AlMe₂), -5.8 (s, -AlMe₂), 15.2 (d, $J_{CP} = 27.0$ Hz, -NiCH₂-), 26.8 (s, Cy), 27.9 (d, $J_{CP} = 3.0$ Hz, Cy), 28.0 (d, $J_{CP} = 3.0$ Hz, Cy), 30.3 (d, $J_{cp} = 27.0$ Hz, Cy), 33.1 (s, -NiCH₂CHCH₂-), 33.2 (d, $J_{cp} = 19.0$ Hz, Cy), 64.1 (d, $J_{CP} = 8.0$ Hz, -NiCH₂CH-), 122.0 (s, -C₆H₄-), 127.1 (s, -C₆H₄-), 128.6 (s, -C₆H₄-), 131.4 (s, -C₆H₄-), 135.6 (s, -C₆H₄-), 155.8 (s, -C₆H₄-), 198.6 (s, -C=N(AlMe₂)Ni-). Anal. Calcd for C₃₀H₄₈AlCINNiP: C, 62.69; H, 8.42; N, 2.44. Found: C, 61.99; H, 8.31; N, 2.34.

Reaction of **8** with Me_2AIOTf . To a solution of 8 (19.3 mg, 0.04 mmol) in 0.5 mL of C_6D_6 was added Me_2AIOTf (THF adduct, 10.0 μ L, 0.04 mmol) at room temperature. The color of the solution changed immediately from yellow to reddish orange to give a nickeladihydropyrrole (**9b**) in quantitative yield.

Isolation of 9b. To a toluene solution of 8 (289.2 mg, 0.60 mmol) was added Me₂AlOTf (THF adduct, 150 µL, 0.60 mmol) at room temperature. The color of the solution changed from yellow to red. The reaction mixture was stirred for 15 min, and then all volatiles were removed in vacuo to give dark orange solids. The solids were washed with hexane to give 9b as yellow microcrystalline (355 mg, 86%). Further purification was achieved by recrystallization from toluene/hexane at -20 °C. ¹H NMR (400 MHz, C_6D_6): $\delta -0.05$ (s, 3H, -AlMe₂), -0.01 (s, 3H, -AlMe₂), 0.43 (m, 1H, -Ni-CHH-), 1.00-2.00 (m, 33H, Cy), 1.10 (obscured by Cy, 1H, -Ni-CHH-), 2.19 (dd, J = 6.4, 16.0 Hz, 1H, $-C_6H_4CHH_{-}$), 2.57 (dd, J = 8.6, 16.0 Hz, 1H, $-C_6H_4CHH_{-}$), 3.49 (m, 1H, -NiCH₂CH-), 6.82 (d, J = 6.8 Hz, 1H, -C₆H₄-), 6.97 (dd, J = 7.4, 7.6 Hz, 1H, $-C_6H_{4^-}$), 7.02 (dd, J = 6.8, 7.4 Hz, 1H, $-C_6H_{4^-}$), 8.04 (d, J = 7.6 Hz, 1H, -C₆H₄-). ³¹P{¹H} NMR (109 MHz, C₆D₆): δ 24.7 (s). ¹³C{¹H} NMR (100 MHz, C_6D_6): $\delta - 8.4$ (s, -AlMe₂), -6.6 (s, -AlMe₂), 10.4 (d, $J_{CP} = 32.0 \text{ Hz}, -\text{Ni}CH_2$ -), 26.8 (s, Cy), 27.9 (d, $J_{CP} = 9.0 \text{ Hz}, \text{Cy}$), 28.0 (d, J_{CP} = 9.0 Hz, Cy), 30.0 (s, Cy), 30.3 (s, Cy), 33.0 (d, J_{cp} = 19.0 Hz, Cy), 33.4 (d, J_{CP} = 5.0 Hz, -NiCH₂CHCH₂-), 63.8 (d, J_{CP} = 6.0 Hz, -NiCH₂CH-), 124.9 (s, -C₆H₄-), 126.9 (s, -C₆H₄-), 127.0 (s, -C₆H₄-), 131.6 $(s, -C_6H_{4^-}), 135.6 (d, J_{CP} = 4.0 Hz, -C_6H_{4^-}), 155.1 (s, -C_6H_{4^-}), 199.5 (d, J_{CP} = 4.0 Hz, -C_6H_{$ $J_{CP} = 5.0$ Hz, $-C = N(AIMe_2OTf)Ni$ -). Anal. Calcd for $C_{31}H_{48}AIF_{3-1}$ NNiO₃PS: C, 54.08; H, 7.03; N, 2.03. Found: C, 51.51; H, 6.93; N, 2.17.

Reaction of **8** with TfOH. To a solution of **8** (9.6 mg, 0.02 mmol) in 0.5 mL of C_6D_6 was added TfOH (1.8 μ L, 0.02 mmol) at room temperature. The color of the solution immediately changed from yellow to orange, resulting in the quantitative formation of a nickeladihydropyrrole (**9c**).

Isolation of 9c. To a toluene solution of 8 (241.2 mg, 0.50 mmol) was added TfOH (44.0 μ L, 0.50 mmol) at room temperature. The color of the solution changed from orange to dark red. The reaction mixture was stirred for 20 min, and then insoluble was filtered to remove by passing through a pad of Celite. The filtrate was concentrated in vacuo to give yellow solids. The solids were washed with hexane to give 9c (306 mg, 97%). Further purification was achieved by recrystallization from THF/ hexane at -20 °C. ¹H NMR (400 MHz, C₆D₆): δ 0.44 (dd, J = 8.8, 17.6 Hz, 1H, -Ni-CHH-), 0.87 (dd, J = 8.8, 8.8 Hz, 1H, -Ni-CHH-), 1.10-2.10 (m, 33H, Cy), 1.95 (obscured by Cy, 1H, -C₆H₄CHH-), 2.42 (dd, J = 8.4, 16.0 Hz, 1H, -C₆H₄CHH-), 2.98 (m, 1H, -NiCH₂CH-), 6.67 (d, J = 7.6 Hz, 1H, $-C_6H_4$ -), 6.73 (dd, J = 7.6, 7.6 Hz, 1H, $-C_6H_4$ -), 6.81 (d, J = 7.6 Hz, 1H, $-C_6H_4$ -), 6.94 (dd, J = 7.6, 7.6 Hz, 1H, $-C_6H_4$ -), 9.13 (brs, 1H, -NH). ${}^{31}P{}^{1}H$ NMR (109 MHz, C₆D₆): δ 27.2 (s). ${}^{13}C{}^{1}H$ NMR $(100 \text{ MHz}, C_6D_6): \delta 17.4 (d, J_{cp} = 32.0 \text{ Hz}, -\text{Ni}CH_2-), 26.6 (s, Cy), 27.6$ $(d, J_{cp} = 5.0 \text{ Hz}, \text{Cy}), 27.7 (d, J_{cp} = 5.0 \text{ Hz}, \text{Cy}), 29.7 (s, \text{Cy}), 30.0 (s, \text{Cy}),$ 32.2 (d, J_{cp} = 20.0 Hz, Cy), 33.0 (d, J_{CP} = 5.0 Hz, -NiCH₂CHCH₂-),57.4 (d, $J_{CP} = 5.0$ Hz, -NiCH₂CH-),122.5 (s, -C₆H₄-), 126.2 (s, -C₆H₄-),

128.2 (s, $-C_6H_4$ -), 131.7 (s, $-C_6H_4$ -), 132.5 (s, $-C_6H_4$ -), 154.5 (s, $-C_6H_4$ -), 197.4 (s, -CNHNi-). Anal. Calcd for $C_{29}H_{43}F_3NNiO_3PS$: C, 55.08; H, 6.85; N, 2.21. Found: C, 55.31; H, 6.91; N, 2.27.

Reaction of **8** with TMSOTF. To a solution of **8** (9.6 mg, 0.02 mmol) in 0.5 mL of C_6D_6 was added TMSOTF (3.6 μ L, 0.02 mmol) at room temperature. The color of the solution immediately changed from yellow to orange, resulting in the quantitative formation of a nickeladi-hydropyrrole (9d).

Isolation of 9d. To a toluene solution of 8 (192.9 mg, 0.40 mmol) was added TMSOTf (72.0 μ L, 0.40 mmol) at room temperature. The color of the solution changed from yellow to red. The reaction mixture was stirred for 15 min, and then all volatiles were removed in vacuo to give vermillion solids. The solids were washed with hexane to give 9d (278 mg, 99%). Further purification was achieved by recrystallization from toluene/ hexane at -20 °C. ¹H NMR (400 MHz, C₆D₆): δ 0.34 (dd, J = 8.4, 11.2 Hz, 1H, -Ni-CHH-), 0.69 (s, 9H, -TMS), 0.83 (m, 1H, -Ni-CHH-), 1.20-2.40 (m, 33H, Cy), 2.05 (obscured by Cy, 1H, -C₆H₄CHH-), 2.49 $(dd, J = 8.4, 16.4 Hz, 1H, -C_6H_4CHH-), 4.21 (m, 1H, -NiCH_2CH-), 6.76$ $(d, J = 7.8 \text{ Hz}, 1\text{H}, -\text{C}_{6}H_{4}-), 6.84 (dd, J = 7.6, 7.8 \text{ Hz}, 1\text{H}, -\text{C}_{6}H_{4}-), 7.00$ $(dd, J = 7.6, 7.8 Hz, 1H, -C_6H_{4^-}), 7.54 (d, J = 7.8 Hz, 1H, -C_6H_{4^-}).$ ³¹P{¹H} NMR (109 MHz, C_6D_6): δ 24.5 (s). ¹³C{¹H} NMR (100 MHz, C_6D_6): δ 2.20 (s, -TMS), 9.9 (d, $J_{\rm cp}$ = 33.0 Hz, -NiCH_2-), 27.0 (s, Cy), 28.1 (m, Cy), 30.6 (s, Cy), 33.8 (d, J_{cp} = 19.0 Hz, Cy), 34.3 (s, -C₆H₄CH₂-), 61.2 (s, -NiCH₂CH-), 126.2 (s, -C₆H₄-), 127.0 (s, -C₆H₄-), 127.9 $(s_1 - C_6H_4)$, 132.9 $(s_1 - C_6H_4)$, 133.7 $(s_1 - C_6H_4)$, 156.2 $(s_1 - C_6H_4)$, 199.9 (s, -CN(TMS)Ni-). Anal. Calcd for C₃₂H₅₁F₃NNiO₃PSSi: C, 54.55; H, 7.30; N, 1.99. Found: C, 55.00; H, 7.33; N, 2.10.

Reaction of **4b** with $HSiMe_2Ph$ in the Presence of **1**. A solution of **4b** (38.8 mg, 0.06 mmol), $HSiMe_2Ph$ (9.2 μ L, 0.06 mmol) and **1** (9.4 mg, 0.06 mmol) in 0.5 mL of C_6D_6 was heated at 80 °C for 3 h. The yellow suspension changed to a red solution along with precipitation of a little amount of Ni black. Monitoring the reaction by means of ¹H NMR revealed that $HSiMe_2Ph$ and **1** were fully consumed after 3 h. Then, all volatiles were removed *in vacuo* to give yellow solids. Extraction with hexane followed by concentration under N₂ atmosphere gave a silanamine (**10**) in 81% yield.

Catalytic Reaction of HSiMe₂Ph with 1 in the Presence of TfOH. To a solution of Ni(cod)₂ (5.5 mg, 0.02 mmol) and PCy₃ (5.6 mg, 0.02 mmol) in 0.5 mL of C₆D₆ was added 1 (31.4 mg, 0.20 mmol), TfOH (0.9 μ L, 0.01 mmol) and HSiMe₂Ph (31.0 μ L, 0.20 mmol) sequentially. The solution was heated at 80 °C for 4 h. The color of the solution changed from yellow to red with a small amount of Ni black. All volatiles were removed in vacuo to give yellow solids. Extraction with hexane followed by concentration under N_2 atmosphere gave 10 (48 mg, 84%). ¹H NMR (400 MHz, C₆D₆): δ 0.65 (s, 6H, -SiMe₂Ph), 1.13 (s, 6H, $(CH_3)_2C_2$, 2.65 (s, 2H, $-C_6H_4CH_2$), 6.96 (dd, J = 7.4, 7.4 Hz, 1H, $-C_6H_{4^-}$, 7.05 (d, J = 7.6 Hz, 1H, $-C_6H_{4^-}$), 7.10–7.28 (m, 1H of $-C_6H_{4^-}$ and 3H of -*Ph*), 7.63 (d, J = 7.6 Hz, 1H, -C₆H₄-), 7.82 (d, J = 6.8 Hz, 2H, -Ph). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, C_6D_6): δ 1.4 (s, -SiMe₂Ph), 27.3 (s, $(CH_3)_2C_{-}$, 44.3 (s, $-C_6H_4CH_{2^-}$), 46.3 (s, $(CH_3)_2C_{-}$), 124.8 (s, $-C_6H_{4^-}$), 126.6 (s, -C₆H₄-), 127.1 (s, -C₆H₄-), 128.0 (s, m-Ph), 129.3 (s, p-Ph), 132.1 (s, -C₆H₄-), 134.0 (s, o-Ph), 138.5 (s, -C₆H₄-), 141.0 (s, ipso-Ph), 150.2 (s, -C₆H₄-), 187.3 (s, -CN-). HRMS Calcd for C₁₉H₂₃NSi 293.1600, Found *m*/*z* 293.1595.

ASSOCIATED CONTENT

Supporting Information. Crystallographic data (CIF) for 3, 4a-b, 8, and 9a-d. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*ogoshi@chem.eng.osaka-u.ac.jp.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research (No. 21245028) and Encouragement for Young Scientists (B) (No. 21750102) from MEXT. S.O. and M.O. acknowledge NAGASE Science and Technology Foundation and the Japan Petroleum Institute, respectively, for the Grant for Research.

REFERENCES

For reviews, see: (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467–473. (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901–2915.
 (c) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120–5122. (d) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890–3908. (e) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307–2327. (f) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441–4449. (g) Tekavec, T. N.; Louie, J. Top. Organomet. Chem. 2007, 21, 159–192. (h) Montgomery, J.; Sormunen, G. J. Top. Curr. Chem. 2007, 279, 1–23. (i) Kimura, M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173–207. (j) Jeganmohan, M.; Cheng, C.-H. Chem.-Eur. J. 2008, 14, 10876–10886.

(2) (a) Hoberg, H.; Schaefer, D.; Burkhart, G. J. Organomet. Chem. 1982, 228, C21–C24. (b) Hoberg, H.; Schaefer, D. J. Organomet. Chem. 1983, 251, C51–C53. (c) Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. 1987, 26, 771–772. (d) Hoberg, H. In Carbon Dioxide as a Source of Carbon; Aresta, A., Forti, G., Eds.; Reidel: Dordrecht, 1987. (e) Hoberg, H.; Ballesteros, A.; Sigan, A.; Jegat, C.; Milchereit, A. Synthesis 1991, 395–8.

(3) (a) Hoberg, H.; Oster, B, W. J. Organomet. Chem. **1982**, 234, C35–C38.(b) Hoberg, H. J. Organomet. Chem. **1988**, 358, 507–517 and references cited therein. (c) Hoberg, H.; Bärhausen, D.; Mynott, R.; Schroth, G. J. Organomet. Chem. **1991**, 410, 117–126. (d) Hoberg, H.; Matthias, N. J. Organomet. Chem. **1991**, 412, 225–236.

(4) (a) Ogoshi, S.; Oka, M.; Kurosawa, H. J. Am. Chem. Soc. 2004, 126, 11802–11803. (b) Ogoshi, S.; Ueta, M.; Arai, T.; Kurosawa, H. J. Am. Chem. Soc. 2005, 127, 12810–12811. (c) Ogoshi, S.; Tonomori, K.; Oka, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 7077–7086. (d) Ogoshi, S.; Ikeda, H.; Kurosawa, H. Angew. Chem., Int. Ed. 2007, 46, 4930–4932. (e) Ogoshi, S.; Arai, T.; Ohashi, M.; Kurosawa, H. Chem. Commun 2008, 1347–1349. (f) Ogoshi, S.; Ikeda, H.; Kurosawa, H. Pure Appl. Chem. 2008, 80, 1115–1125. (g) Ohashi, M.; Kishizaki, O.; Ikeda, H.; Ogoshi, S. J. Am. Chem. Soc. 2009, 131, 9160–9161. (h) Ohashi, M.; Saijo, H.; Arai, T.; Ogoshi, S. Organometallics 2010, 29, 6354–6540.

(5) (a) Eisch, J. J.; Ma, X.; Han, K. I.; Gitua, J. N.; Kruger, C. *Eur. J. Inorg. Chem.* **2001**, 77–88. (b) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. *J. Am. Chem. Soc.* **2005**, 127, 5030–5031. (c) Takavec, T. N.; Zuo, G.; Simon, K.; Louie, J. *J. Org. Chem.* **2006**, 71, 5834–5836.

(6) (a) García, J. J.; Jones, W. D. Organometallics 2000, 19, 5544–5545. (b) García, J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002, 124, 9547–6555. (c) García, J. J.; Arevalo, A.; Brunkan, N. M.; Jones, W. D. Organometallics 2004, 23, 3997–4002. (d) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627–3641. (e) Atesin, T. A.; Li, T.; Lachaize, S.; Brennessel, W. W.; García, J. J.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627–3641. (e) Atesin, T. A.; Li, T.; Lachaize, S.; Brennessel, W. W.; García, J. J.; Jones, W. D. J. Am. Chem. Soc. 2007, 129, 7562–7569.
(f) Atesin, T. A.; Li, T.; Lachaize, S.; García, J. J.; Jones, W. D. Organometallics 2008, 27, 3811–3817. (g) Li, T.; García, J. J.; Brennessel, W. W.; Jones, W. D. Organometallics 2010, 29, 2430–2445. (h) Evans, M. E.; Li, T.; Jones, W. D. J. Am. Chem. Soc. 2010, 132, 16278–16284.

(7) (a) Abla, M.; Yamamoto, T. J. Organomet. Chem. **1997**, 532, 267–270. (b) Yamamoto, T.; Yamaguchi, I.; Abla, M. J. Organomet. Chem. **2003**, 671, 179–182.

(8) Schaub, T.; Doering, C.; Radius, U. Dalton Trans 2007, 1993-2002.

(9) (a) Favero, G.; Turco, A. J. Organomet. Chem. 1976, 105, 389–392. (b) Favero, G.; Gaddi, M.; Morvillo, A.; Turco, A. J. Organomet. Chem. 1978, 149, 395–400. (c) Favero, G.; Morvillo, A.; Turco, A.

J. Organomet. Chem. **1978**, *162*, 99–107. (d) Morvillo, A.; Turco, A. *J. Organomet. Chem.* **1981**, 208, 103–113. (e) Favero, G.; Morvillo, A.; Turco, A. *J. Organomet. Chem.* **1983**, *241*, 251–257.

(10) Parshall, G. W. J. Am. Chem. Soc. 1974, 96, 2360-2366.

(11) Cassar, L. J. Organomet. Chem. 1973, 54, C57-C58.

(12) Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543–3544.

(13) Burmeister, J. L.; Edwards, L. M. J. Chem. Soc. A 1971, 1663–1666.

(14) Carbocyanation using Ni(0)/LA cocatalysts: (a) Nakao, Y.;
Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428–2429.
(b) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed.
2008, 47, 385–387. (c) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874–12875. (d) Hirata, Y.;
Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037–5050. (e) Yada, A.; Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun 2009, 3931–3933. (f) Hirata, Y.; Yukawa, T.; Kashihara, N.;
Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964–10973. (g)
Yada, A.; Yukawa, T.; Idei, H.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 10024–10026. (i) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.;
Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070–10077.

(15) (a) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904–13905. (b) Nakao, Y.; Yada, A.; Satoh, J.; Ebata, S.; Oda, S.; Hiyama, T. Chem. Lett. 2006, 35, 790. (c) Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7420. (d) Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567–7576. (e) Nakao, Y.; Yukawa, T.; Hirata, Y.; Oda, S.; Satoh, J.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7116–7117. (f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624–6631.

(16) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594–12595.

(17) (a) Penney, J. M.; Miller, J. A. Tetrahedron Lett. 2004, 44, 4989–4992. (b) Miller, J. A.; Dankwardt, J. W.; Penney, J. M. Synthesis 2003, 11, 1643–1648. (c) Miller, J. A.; Dankwardt, J. W. Tetrahedron Lett. 2003, 44, 1907–1910. (d) Miller, J. A. Tetrahedron Lett. 2001, 42, 6991–6993.

(18) See also a review: Arévalo, A.; García, J. J. *Eur. J. Inorg. Chem.* **2010**, 4063–4074 and references cited therein.

(19) Cohen, S. A.; Bercaw, J. E. Organometallics. 1985, 4, 1006–1014.
(20) (a) Buchwald, S. L.; Watson, B. T. J. Am. Chem. Soc. 1986, 108, 7411–7413. (b) Buchwald, S. L.; Lum, R. T.; Dewan, J. C. J. Am. Chem. Soc. 1986, 108, 7441–7442. (c) Buchwald, S. L.; Sayers, A.; Watson, B. T.; Dewan, J. C. Tetrahedron Lett. 1987, 28, 3245–3248. (d) Buchwald, S. L.; Watson, B. T. J. Am. Chem. Soc. 1987, 109, 2544–2546. (e) Buchwald, S. L.; Watson, B. T.; Lum, R. T.; Nugent, W. A. J. Am. Chem. Soc. 1987, 109, 7137–7141. (f) Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047–1058. (g) Hsu, D. P.; Lucas, E. A.; Buchwald, S. L. Tetrahedron Lett. 1990, 31, 5563–5566. (h) Buchwald, S. L.; King, S. M. J. Am. Chem. Soc. 1991, 113, 258–265.

(21) Fisher, R. A.; Buchwald, S. L. Organometallics 1990, 9, 871–873.
(b) Ramakrishna, T. V. V.; Lushnikova, S.; Sharp, P. R. Organometallics 2002, 21, 5685–5687.

(22) (a) Mori, M.; Uesaka, N.; Shibasaki, M. J. Chem. Soc., Chem. Commun. 1990, 1222–1224. (b) Takahashi, T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E. Tetrahedron Lett. 1993, 34, 687–690. (c) Takahashi, T.; Xi, C.; Xi, Z.; Kageyama, M.; Fischer, R.; Nakajima, K.; Negishi, E. J. Org. Chem. 1998, 63, 6802–6806. See also:(d) Negishi, E.; Holms, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111, 3336–3346.

(23) Fagan, P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988, 110, 2310–2312.

(24) (a) Binger, P.; Sandmeyer, F.; Krüger, C. Organometallics **1995**, *14*, 2969–2976. (b) Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. **2005**, *127*, 13774–13775.

(25) Strickler, J. R.; Wigley, D. E. Organometallics 1990, 9, 1665–1669.

(26) (a) Legzdins, P.; Lumb, S. A. Organometallics **1997**, *16*, 1825–1827. (b) Legzdins, P.; Lumb, S. A.; Young, V. G., Jr. Organometallics **1998**, *17*, 854–871.

(27) Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Wrackmeyer, B. J. Am. Chem. Soc. 2001, 123, 9091–9098.

(28) (a) Tolman, C. A.; Seidel, W. C.; Druliner, J. D.; domaille, P. J. Organometallics 1984, 3, 33–38.

(29) Portalone, G.; Domenicano, A.; Schultz, G.; Hargittai, I. J. Mol. Struct. **1987**, *160*, 97–108.

(30) Bartell, L. S.; Roth, E. A.; Hollowell, C. D.; Kuchitsu, K.; Young, J. E., Jr. J. Chem. Phys. **1965**, *42*, 2683–2686.

(31) The same coordination mode of Me₂AlCl as that observed in 4a was previously observed in a related oxa-nickelacyclopentane complex; see ref 4b. Another example of the Lewis acid/base interaction of Me₂AlCl with aza-zirconacyclopentadiene was found in ref 24a.

(32) (a) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 397–400. (b) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221–4223. (c) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442–3443. (d) Hratchian, H. P.; Chowdhury, S. K.; Gutierrez-Garcia, V. M.; Amarasinghe, K. K. D.; Heeg, M. J.; Schlegel, H. B.; Montgomery, J. Organometallics 2004, 23, 4636–4646. (e) McCarren, P. R.; Liu, P.; Cheong, P. H.-Y.; Jamison, T. F.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 6654–6655. (f) Li, W.; Hearth, A.; Montgomery, J. J. Am. Chem. Soc. 2009, 131, 17024–17029.