ARYL RADICAL-INDUCED CYCLIZATION ROUTES TO FURO[2,3-b]BENZOFURANS. ABBREVIATED FORMAL SYNTHESES OF AFLATOXINS $\bf B_1$ AND $\bf B_2$

C.P. Sloan, J.C. Cuevas⁺, C. Quesnelle⁺⁺, and V. Snieckus^{*}
Guelph-Waterloo Centre for Graduate Work in Chemistry
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Summary: Radical-induced cyclization of butenolide ethers 3a-c affords furobenzofurans 4a-c; deprotection of 4c gives 4d, thus concluding formal total syntheses of aflatoxins B₁ (5) and B₂ (6).

Although conceptualization of free radical-mediated cyclizations has resulted in innovative syntheses of complex alicyclic systems, 1 the methodology and application of aryl radical-mediated annelations remain underdeveloped. As an exploitation of our general method of radical-induced heteroring annelation, 2f we report on the construction of the furobenzofuran ring system via radical ring closure, $3 \rightarrow 4$ and demonstrate its utility for the rapid assemblage of an intermediate 4d used by Büchi in the first, highly instructive total synthesis of aflatoxin 1 B₁ (5). Our work illustrates the potential of radical chemistry for the synthesis of aflatoxin metabolites specifically 4 and aromatic natural products in general and emphasizes the advantage of the directed metalation tactic 5 for the regiospecific construction of requisite contiguously substituted aromatic precursors 1.

a : R^1 = Me, R^2 = H; **b**: R^1 = MOM, R^2 = H; **c**: R^1 = MOM, R^2 = OMe; **d**: R^1 = H, R^2 = OMe

Condensation of the iodomethoxy phenol 1a $(X = I)^{6a}$ with the bromo butenolide 2 $(1.5 - 2 \text{ equiv})^7$ afforded the ether 3a (X = I) which when subjected to the nBu₂SnH radical-induced ring closure conditions^{2f} furnished the tricyclic lactone 4a. Similarly, the analogous methoxymethoxy system 1b $(X = I)^{6b}$ was converted into the ether 3b (X = I) which cleanly led to the benzodifuran 4b.⁸ The aflatoxin B_1 (5) synthesis was initiated by coupling the substituted bromophenol 1c $(X = Br)^{6c,9}$ with 2 to give 3c (X = Br) which, upon nBu_3SnH -induced cyclization, provided compound 4c.⁸ Deprotection [9-BBN-Br (3 equiv)/CH₂Cl₂/-78°C (1 h) \rightarrow 0°C (0.5 h)]¹⁰ furnished the phenol 4d. 11 Since 4d has been transformed into aflatoxin B_1 (5) and B_2 , 3 our work constitutes a total synthesis of these toxic metabolites.

This work provides a new entry into the furo[2,3-b]benzofurans which is comparably efficient but considerably shorter than previously reported routes.^{3,12} It is undoubtedly only an early indication of the utility of the radical-induced cyclization in aromatic natural product synthesis. 13,14

References and Footnotes

⁺NATO Postdoctoral Fellow, 1987-88; ⁺⁺NSERC Undergraduate Summer Scholar, 1988.

- 1. Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon Press: Oxford, 1986; Ramaiah, M., Tetrahedron, 1987, 43, 3541; Curran, D.P.; Chen, M.-H. J. Am. Chem. Soc., 1987, 109, 6558 and references therein.
- 2. a) Ueno, Y.; Chino, K.; Okawara, M. Tetrahedron Lett., 1982, 2575; b) Beckwith, A.L.J.; O'Shea, D.M.; Roberts, D.H. J.C.S. Chem. Comm., 1983, 1445; c) Beckwith, A.L.J.; Goh, S.H. ibid. 1983, 905; d) Setsune, J.-i.; Ueda, T.; Matsukawa, K.; Kitao, T. <u>Chem. Lett.</u>, 1984, 1931; e) Beckwith, A.L.J.; Boate, D.R. <u>Tetrahedron Lett.</u>, 1985, 1761; f) Shankaran, K.; Sloan, C.P.; Snieckus, V. <u>ibid.</u> 1985, 6001; g) Parker, K.A.; Spero, D.M.; Inman, K.C. ibid. 1986, 2833; h) Urabe, H.; Kuwajima, I. ibid. 1986, 1355; for a kinetic study, see i) Abeywickrema, A.N.; Beckwith, A.L.J. ibid. 1986, 464; j) Wright, C.; Shulkind, M.; Jones, K.; Thompson, M. ibid. 1987, 6387 and references therein.
- 3. Büchi, G.; Foulkes, D.M.; Kurono, M.; Mitchell, G.F.; Schneider, R.S. J. Am. Chem. Soc., 1967, 89, 6745.
- 4. Schuda, P.F. Topics Curr. Chem., 1980, 91, 75.
- Snieckus, V. Bull. Soc. Chim. France (II), 1988, 67; Snieckus, V. "Lectures in Heterocyclic Chemistry", Castle, R.N., Ed., Heterocorp., J. Heterocyclic Chem., Tampa, FL, 1984, 95. 5.
- 6. Prepared from a) 3-methoxymethoxyanisole: t-BuLi/TMEDA/Et₂0/-78°C; I₂; TFA/CH₂Cl₂/RT (63%); b) 1,3dimethoxymethoxybenzene: t-BuLi/TMEDA/Et₂0/-78°C; l₂; TFA/CH₂Cl₂/RT (40%); c) 2-bromo-5-methoxyresorcinol (prepared according to the method used for the synthesis of 2-bromoresorcinol: Davis, T.L.; Harrington, V.F. <u>J. Am. Chem. Soc.</u>, 1934, <u>56</u>, 129): NaH/ClCH₂OMe/DMF (23%).
- 7. Doerr, I.L.; Willette, R.E. J. Org. Chem., 1973, 38, 3878; Heather, J.B.; Mittal, R.S.D.; Sih, C.J. J. Am. Chem. Soc., 1976, 98, 3661.
- Chem. Soc., 1976, 26, 3601.

 4a: 42%, mp 124-126°C (EtOH), IR(CHCl₃) ν (max) 1791 cm⁻¹, NMR (CDCl₃) δ 2.98 (m, 2H), 4.21 (q, 1H, J = 6.4, 11.3 Hz), 6.50-6.59 (m, 3H); 4b: 79%, mp 105-107°C (EtOH), IR(CHCl₃) ν (max) 1788 cm⁻¹, NMR 8. $(CDCl_3)$ δ 2.91-3.07 (m, 2H), 4.10-4.39 (m, 1H), 6.51 (d, 1H, J = 6.1 Hz); 4c: 74%, mp 103-105°C (EtOH), IR(CHCl₃) ν (max) 1792 cm⁻¹, NMR (CDCl₃) δ 2.91-2.99 (m, 2H), 4.14-4.22 (m, 1H), 6.50 (d, 1H, J = 6.2)
- Attempts to prepare 1c (X = I) from 3,5-dimethoxymethoxymethoxyanisole by metalation resulted in the formation of a 2:1 inseparable mixture of 2- and 4-iodo isomers necessitating the use of the classical method. Bhatt, M.V. J. Organometal. Chem., 1978, 156, 221. These conditions emerged only after extensive failure 9.
- 10. with other conventional methods.
- 11.
- 72% yield, mp 163-164°C, lit³ mp 166-167.5°C, IR and ¹H NMR spectral identical with those reported.³ Knight, J.A.; Roberts, J.C.; Roffey, P. <u>J. Chem. Soc.</u> (C), 1966, 1308; Castellino, A.J.; Rapoport, H. <u>J. Org.</u> 12. Chem., 1986, 51, 1006; Weeratunga, G.; Horne, S.; Rodrigo, R. J.C.S. Chem. Commun., 1988, 721.
- Yields are of chromatographically pure materials and are not optimized. All new compounds show analytical 13. and spectral (IR, NMR, MS) data consistent with the structures shown.
- We gratefully acknowledge NSERC and Merck Frosst Canada for financial support and S. Rafferty (NSERC 14. Undergraduate Summer Scholar, 1986) for technical assistance.

(Received in USA 31 May 1988)