Accepted Manuscript

Synthesis, structure-activity relationships and biological evaluation of barbigerone analogues as anti-proliferative and anti-angiogenesis agents

Guangcheng Wang, Fang Wang, Dong Cao, Yibin Liu, Ronghong Zhang, Haoyu Ye, Xiuxia Li, Lin He, Zhuang Yang, Liang Ma, Aihua Peng, Mingli Xiang, Yuquan Wei, Lijuan Chen

PII:	S0960-894X(14)00508-3
DOI:	http://dx.doi.org/10.1016/j.bmcl.2014.04.121
Reference:	BMCL 21634
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	27 December 2013
Revised Date:	15 April 2014
Accepted Date:	29 April 2014

Please cite this article as: Wang, G., Wang, F., Cao, D., Liu, Y., Zhang, R., Ye, H., Li, X., He, L., Yang, Z., Ma, L., Peng, A., Xiang, M., Wei, Y., Chen, L., Synthesis, structure-activity relationships and biological evaluation of barbigerone analogues as anti-proliferative and anti-angiogenesis agents, *Bioorganic & Medicinal Chemistry Letters* (2014), doi: http://dx.doi.org/10.1016/j.bmcl.2014.04.121

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Synthesis, structure-activity relationships
2	and biological evaluation of barbigerone
3	analogues as anti-proliferative and
4	anti-angiogenesis agents
5	Guangcheng Wang ^{a,b,1} , Fang Wang ^{a,1} , Dong Cao ^a , Yibin Liu ^a , Ronghong Zhang ^a ,
6	Haoyu Ye ^a , Xiuxia Li ^a , Lin He ^a , Zhuang Yang ^{a,c} , Liang Ma ^a , Aihua Peng ^a , Mingli
7	Xiang ^a , Yuquan Wei ^a , and Lijuan Chen ^{a,*}
8	^a State Key Laboratory of Biotherapy, West China Hospital, West China Medical
9	School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
10	^b College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000,
11	China
12	^c College of Chemistry of Sichuan University, Chengdu, Sichuan 610064, China
13	¹ These authors contributed equally to this work.
14	*Corresponding Author
15	Lijuan Chen
16	Tel.: +86 28 85164063.
17	Fax: +86 28 85164060.
18	E-mail address: <u>chenlijuan125@163.com</u> (L-J. Chen).
19	

20 Abstract

21	A series of barbigerone analogues (7a-7w, 13a-13x) were designed, synthesized and
22	biologically evaluated for their anti-proliferative and anti-angiogenic activities.
23	Among these compounds, compound 13a exhibited the most potent inhibitory effect
24	on the proliferation of HUVECs, HepG2, A375, U251, B16, and HCT116 cells (IC_{50}
25	= 3.80, 0.28, 1.58, 3.50, 1.09 and 0.68 μ M, respectively). Compound 13a inhibited the
26	angiogenesis in zebrafish embryo assay in a concentration-dependent manner.
27	Furthermore, 13a also effectively inhibited the migration and capillary like tube
28	formation of human umbilical vein endothelial cell in vitro. These results support the
29	further investigation of this class of compounds as potential anti-proliferative and
30	anti-angiogenesis agents.
31	
32	Keywords: barbigerone; isoflavone; anti-proliferative; anti-angiogenesis
33	

Angiogenesis, which is the growth of new blood vessels from the pre-existing 34 vasculature of a host, is a critical process for the growth and metastasis of most 35 cancerous tumors,¹ and its inhibition is now a well-established therapeutic strategy for 36 cancer patients.²⁻⁴ Angiogenesis is a very complex process and involves a number of 37 38 distinct steps, such as endothelial cell activation, migration, proliferation, formation of capillary tubes of endothelial cells, their invasion, and metastasis.^{5,6} In tumors, 39 angiogenesis causes the growth of new blood vessels that supply necessary oxygen 40 and nutrient for the growth of tumor tissue.⁷ It has been shown that, without 41 angiogenesis, a solid tumor cannot deteriorate beyond a critical size and metastasize 42

43 to other organs.⁸ Therefore, inhibition of angiogenesis is a promising approach to the

- Barbigerone (Figure 1) is one of the naturally occurring pyranoisoflavones, which 45 was first isolated from the seeds of a leguminous plant Tephrosia barbigera.⁹ It has 46 been reported to have a wide range of biological activities such as antioxidant,¹⁰ 47 antiplasmodial¹¹ and anti-cancer activity.^{12,13} Our previous study has shown that 48 49 barbigerone exhibited antitumor activity by inducing apoptosis and inhibiting angiogenesis in murine or human cancer cells.^{12,13} Recently, Yang and coworkers¹⁴ 50 have reported the total synthesis of barbigerone and its four analogues (7a, 7b, 7t and 51 7u in this study), but they didn't study the biological activity of these compounds. To 52 the best of our knowledge, there has been no study focusing on structural modification 53 of barbigerone associated with potential anti-cancer and anti-angiogenic activities. 54 During our continued efforts to screen natural and synthetic compounds for 55 anti-tumor effects, ¹⁵⁻¹⁸ a novel series of barbigerone analogues have been designed, 56 57 synthesized and evaluated for their anti-proliferative and anti-angiogenic activities.
- 58

44

development of anticancer therapy.

Please insert **Figure 1** here.

In this paper, a series of barbigerone analogues (**7a-7w**, **13a-13x**) were designed, synthesized and biologically evaluated for their anti-proliferative and anti-angiogenic activities. Among these compounds, compound **13a** exhibited the most potent inhibitory effect on the proliferation of HUVECs, HepG2, A375, U251, B16, and HCT116 cells (IC₅₀ = 3.80, 0.28, 1.58, 3.50, 1.09 and 0.68 μ M, respectively). Compound **13a** inhibited the angiogenesis in zebrafish embryo assay in a

65 concentration-dependent manner. Furthermore, 13a also effectively inhibited the 66 migration and capillary like tube formation of human umbilical vein endothelial cell 67 in vitro. Barbigerone analogues 7a - 7w were prepared by the synthesis route outlined in 68 Scheme 1. The 4-hydroxyl of compound 1 was protected with 3,4-dihydro-2H-Pyran 69 70 in dichloromethane in the presence of pyridinium p-toluenesulfonate (PPTS) to give 71 the THP ether 2, which condensation with N,N-dimethylformamide dimethylacetal (DMF-DMA) provided the enamine 3, The crude 3 was directly treated with I_2 in the 72 presence of pyridine at room temperature for 24 h, followed by neutralizing with 73 saturated Na₂S₂O₃ and extract with CHCl₃, compound 4 was obtained.^{19,20} The 74 obtained compound 4 was refluxed in CH₃OH-THF (1:1) in the presence of 75 *p*-toluenesulfonic acid for 1 h to give compound **5**. Following a literature method, 2^{1-23} 76 77 a condensation reaction between 5 and 1,1-diethoxy-3-methyl-2-butene in p-xylene in the presence of picoline as base brought about the desired ring closure in position 8 of 78

5 to give the key intermediate 6, which coupling with commercial available substituted phenylboronic acids in a Suzuki-Miyaura reaction^{19,20,24} led to the target products 7a - 7w.

Please insert Scheme 1 here.

82

Compounds 13a – 13x were synthesized by the method shown in Scheme 2. Having completed the synthesis of compound 4 in Scheme 1, we focus on the synthesis of (2,4,5-trimethoxyphenyl)boronic acid 10. Trimethoxybenzene 8 was brominated in 92.3 % yield to the bromide 9, which reacted with n-BuLi and trimethyl

87	borate to provide the intermediate (2,4,5-trimethoxyphenyl)boronic acid 10.
88	Compound 11 was obtained by a Suzuki-Miyaura coupling reaction between of
89	O-THP-protected iodochromanone 4 and (2,4,5-trimethoxyphenyl)boronic acid 10.
90	Deprotection of the THP group was performed by treatment with <i>p</i> -toluenesulfonic
91	acid, leading to the key intermediate 12, followed by an esterification or etherification
92	of the liberated phenol with alkyl halide, substituted benzyl halide and substituted aryl
93	acid to afford the final desired products $13a - 13x$.
94	Please insert Scheme 2 here.
95	These barbigerone analogues $(7a - 7w \text{ and } 13a - 13x)$ were evaluated for their
96	anti-proliferative activity in human umbilical vein endothelial cells (HUVECs),
97	HepG2 (hepatocellular carcinoma), A375 (melanoma), U251 (glioma), B16
98	(melanoma), and HCT116 (colorectal carcinoma) using MTT method. HUVECs were
99	used to evaluate their in vitro inhibitory effects on the proliferation of endothelial
100	cells that are closely related to angiogenesis. The compounds that exhibited IC_{50} >
101	10.0 μ M were considered to be inactive on the respective cancer cell lines. The results
102	were summarized in Table 1. Among these compounds, compound 13a displayed the
103	most potent anti-proliferative activity than barbigerone against HUVECs, HepG2,
104	A375, U251, B16, and HCT116 cells.
105	Please insert Table 1 here.
106	To study the structure – activity relationships (SAR) of barbigerone, the substitutes
107	of the B-ring were discussed firstly. Based on the anti-proliferative activity of $7a - 7w$,
108	we found that the substituents of the B-ring greatly affected on anti-proliferative

109	activity of the compounds in this series. The introduction of electro-withdraw groups
110	(CN, CF ₃ , Cl, F, CHO, COCH ₃) to the B-ring has proven to be detrimental to
111	antitumor activity. It's interesting to point out that 70 and $7p$ containing CF ₃ group at
112	para-position of the B-ring slightly decrease the anti-proliferative activity. The
113	replacement of the 2,4,5-trimethoxy group with various methoxyl, ethoxyl and
114	hydroxyl groups (3-methoxy in 7a, 3,4-dimethoxy in 7b, 4-methoxy in 7c,
115	2,4-dimethoxy in 7d, 2,3,4-trimethoxy in 7f, 2-F-3-methoxy in 7g, 4-hydroxyl in 7i,
116	3,5-dimethoxy in 7r, 2-ethoxy in 7s, 2,5-dimethoxy in 7t, 3,4,5-trimethoxy in 7u,
117	2-methoxy in $7v$, 4-ethoxy in $7w$) resulted in a remarkable decrease the
118	anti-proliferative activity. These results indicated the pattern of substitution in the
119	B-ring is closely related to the biological activity of this class of compounds. Thus,
120	the 2,4,5-trimethoxy group seems to be the optimal substituent on the B-ring.
121	Since 2,4,5-trimethoxy group is proved the most potent group in the B-ring, it was
122	retained during the structure-activity relationship studies focused at the C-5 position
123	of the A-ring. Introduction ester groups (13f and 13g) at the C-5 position, results in a
124	significant decrease the anti-proliferative activity. The replacement of benzopyran
125	ring with alkoxyl groups at the C-5 position (13a, 13b, 13c, 13e) resulting in
126	increased the anti-proliferative activity, whereas 2-morpholinoethoxy group (13n)
127	decrease the anti-proliferative activity. The replacement of benzopyran ring with
128	various substituted benzoyloxyl groups $(13h-13x)$ resulted in a maintained or
129	improved the anti-proliferative activity, whereas the substitution of benzyloxyl group
130	(13d) remarkable decreased the anti-proliferative activity. In summary, the

information of SAR provided us a guideline to improve the inhibitory activity in the

132 future structural modification.

133 The anti-angiogenic activity of the most potent compound 13a was tested using zebrafish embryos which represent an excellent animal model for the study of 134 angiogenesis.²⁵ Zebrafish embryos were treated with barbigerone (1.25 or 2.5 μ M), 135 136 **13a** (1.25 or 2.5 μ M) or vehicle for 24 h. As shown in **Figure 2**, the control group had 137 normal vessel development, in which the subintestinal vessel (SIV) formed as a 138 smooth basket-like structure. In the group treated with 13a and barbigerone, the formation of SIV was considerably inhibited compared with that of the vehicle control 139 group, indicating a dose-dependent inhibition pattern. Therefore, the anti-angiogenic 140 activity of 13a was further studied. 141

142

Please insert **Figure 2** here.

Endothelial cell migration is an essential step in angiogenesis. Inhibition on this 143 process will block the formation of new blood vessels.^{26, 27} Therefore, compound 13a 144 145 was tested for possible inhibition of endothelial cell migration in a wound-healing migration assay. As illustrated in Figure 3, the HUVECs actively migrated into the 146 147 wound area (between the two white lines) under the compound-free condition (vehicle). At a concentration of 0.5 μ M, the HUVECs migratory rates of 13a and 148 barbigerone were 35.36 ± 4.13 % and 74.26 ± 4.72 %, respectively. While the tested 149 150 compounds' concentration reached 1.0 μ M, the HUVECs migratory rates of 13a and 151 barbigerone were 8.45 \pm 2.91 % and 1.65 \pm 8.69 %, respectively. The results showed 152 that compound 13a and barbigerone exerted potent inhibitory effect on the migration

- of HUVECs in a dose-dependent manner. Compound **13a** statistically exerted the higher potent inhibitory effect on the migration of HUVECs, reaching a 4.9-fold
- improvement over barbigerone at a concentration of $1.0 \ \mu M$.
- 156

Please insert **Figure 3** here.

In the later stages of angiogenesis, tube formation of endothelial cell is also an 157 important process.²⁶ Inhibition on the formation of capillary-like tube networks will 158 159 terminate the development of new blood vessels. To further characterize the 160 anti-angiogenesis activity of 13a, we investigated the inhibitory effect of tube formation by plating HUVECs on matrigel substratum. As shown in Figure 4A, in the 161 vehicle group, HUVECs showed high mobility on matrigel and formation of tube-like 162 163 structures was observed in 8 h. In comparison with the vehicle group, treatment of 164 HUVECs with 13a or barbigerone at the concentration of 1.0 μ M could induce 78.21 165 ± 4.86 % and 23.74 ± 7.6 % inhibition of tube-like structure formation respectively. Moreover, the inhibitory rates of tube formation treated with 13a and barbigerone at a 166 167 concentration of 5.0µM were 88.33 ± 3.5 % and 65.37 ± 1.78 % respectively (Figure 4B). The results demonstrated that compound 13a and barbigerone could effectively 168 169 inhibit tube formation of HUVECs in a dose-dependent manner. Our observation indicated that **13a** approximately achieved a 3.3-fold improvement in the inhibition of 170 171 tube formation compared to that of barbigerone at the same concentration of 1.0 μ M. 172 Please insert **Figure 4** here.

Angiogenesis is a highly regulated process that involves a complex cascade of events, and its inhibition is now a well-established therapeutic strategy for cancer

175 patients. Herein, a series of barbigerone analogues were synthesized and their 176 anti-angiogenesis and anti-proliferative activities were tested. Among these 177 compounds, compound 13a exhibited the most potent inhibitory effect on the proliferation of HUVECs, HepG2, A375, U251, B16, and HCT116 cells ($IC_{50} = 3.80$, 178 179 0.28, 1.58, 3.50, 1.09 and 0.68 μ M, respectively). Compound 13a inhibited the 180 angiogenesis in zebrafish embryo assay in a concentration-dependent manner. 181 Furthermore, 13a also effectively inhibited the migration and capillary like tube formation of human umbilical vein endothelial cell in vitro. In conclusion, the 182 183 preliminary in vitro anti-angiogenic activities of these compounds possess potential for design of better future molecules targeting tumor angiogenesis. In the future 184 185 research we will be exploring for a clear structure-activity relationship of this type of 186 compound and studying on their mechanism of anti-angiogenesis activity.

187

188 Acknowledgements

The authors greatly appreciate the financial support from National Key Programs of
China during the 12th Five-Year Plan Period (2012ZX09103101-009) and National
Natural Science Foundation of China (81373283).

192

193 Supplementary data

Supplementary data associated with this article can be found, in the online version,at doi: .

197 **References and notes**

- 198 1. Folkman, J. Nat. Med. 1995, 1, 27.
- 199 2.Ferrara, N.; Kerbel, R. S. *Nature* **2005**, 438, 967.
- 200 3.Folkman, J. Nat. Rev. Drug Discov. 2007, 6, 273.
- 4.Herbst, R. S. Expert. Opin. Emerg. Drugs 2006, 11, 635.
- 202 5. Hanahan, D.; Folkman, J. Cell **1996**, 86, 353.
- 203 6. Conway, E. M.; Collen, D.; Carmeliet, P. Cardiovasc. Res. 2001, 49, 507.
- 204 7. Folkman, J. Adv. Cancer Res. **1985**, 43, 175.
- 205 8. Carmeliet, P. *Nature Med.* **2003**, 9, 653.
- 206 9. Vilain, C. *Phytochemistry* **1980**, 19, 988.
- 207 10. Wangensteen, H.; Miron, A.; Alamgir, M.; Rajia, S.; Samuelsen, A. B.; Malterud
- 208 K. E. *Fitoterapia* **2006**, 77, 290.
- 209 11. Yenesew, A.; Derese, S.; Midiwo, J. O.; Oketch-Rabah, H. A.; Lisgarten, J.;
- 210 Palmer, R.; Heydenreich, M.; Peter, M. G; Akala, H.; Wangui, J.; Liyala, P.; Waters, N.
- 211 C. *Phytochemistry* **2003**, 64, 773.
- 212 12. Li, Z.; Zhao, Y.; Wu, X.; Ye, H.; Peng, A.; Cao, Z.; Mao, Y.; Zheng, Y.; Jiang, P.;
- 213 Zhao, X.; Chen, L.; Wei, Y. Cell Physiol Biochem. 2009, 24, 95.
- 214 13. Li, X.; Wang, X.; Ye, H.; Peng, A.; Chen, L. *Cancer Chemother. Pharmacol.* 2012,
 215 70, 425.
- 216 14. Yang, Y.; Wang, C.; Sun, J. Chin. J. Org. Chem. 2013, 33, 159.
- 217 15. Wang,G.; Wu, W.; Peng, F.; Cao, D.; Yang, Z.; Ma, L.; Qiu, N.; Ye, H.; Han, X.;
- 218 Chen, J.; Qiu, J.; Sang, Y.; Liang, X.; Ran, Y.; Peng, A.; Wei, Y.; Chen, L. Eur. J. Med.

- 219 *Chem.* **2012**, 54, 793.
- 220 16. Wang, G.; Peng, F.; Cao, D.; Yang, Z.; Han, X.; Liu, J.; Wu, W.; He, L.; Ma, L.;
- 221 Chen, J.; Sang, Y.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Bioorg. Med. Chem. 2013,
- 222 21, 6844.
- 223 17. Chen, T.; Zhang, R.; He, S.; Xu, Q.; Ma, L.; Wang, G.; Qiu, N.; Peng, F.; Chen, J.;
- 224 Qiu, J.; Peng A.; Chen, L. *Molecules* **2012**, 17, 6249.
- 225 18. Ma, L.; Chen, J.; Wang, X.; Liang, X.; Luo, Y.; Zhu, W.; Wang, T.; Peng, M.; Li,
- 226 S.; Shi, J.; Peng, A.; Wei, Y.; Chen, L. J. Med. Chem. 2011, 54, 6469.
- 227 19. Felpin, F. X.; Lory, C.; Sow, H.; Acherar, S. *Tetrahedron* **2007**, 63, 3010.
- 228 20. Matin, A.; Gavande, N.; Kim, M. S.; Yang, N. X.; Salam, N. K.; Hanrahan, J. R.;
- 229 Roubin, R. H.; Hibbs, D. E. J. Med. Chem. 2009, 52, 6835.
- 230 21. Khupse, R. S.; Erhardt, P. W. Org. Lett. 2008, 10, 5007.
- 231 22. Jiang, Q.; Payton-Stewart, F.; Elliott, S.; Driver, J.; Rhodes, L. V.; Zhang, Q.;
- 232 Zheng, S. L.; Bhatnagar, D.; Boue, S. M.; Collins-Burow, B. M.; Sridhar, J.; Stevens,
- C.; McLachlan, J. A.; Wiese, T. E.; Burow, M. E.; Wang, G. D. J. Med. Chem. 2010,
 53, 6153.
- 235 23. North, J. T.; Kronenthal, D. R.; Pullockaran, A. J.; Real, S. D.; Chen, H. Y. J. Org.
 236 *Chem.* 1995, 60, 3397.
- 237 24. Felpin, F. X. J. Org. Chem. 2005, 70, 8575.
- 238 25.Rocke, J.; Lees, J.; Packham, I.; Chico, T. Recent Pat. Cardiovasc. Drug Discov.
- **239 2009**, 4, 1.
- 240 26. Yi, T. F.; Yi, Z. F.; Cho, S. G.; Luo, J.; Pandey, M. K.; Aggarwal, B. B.; Liu, M. Y.

- 241 *Cancer Res.* **2008**, 68, 1843.
- 242 27. Park, Y. J.; Lee, T.; Ha, J.; Jung, I. M.; Chung, J. K.; Kim, S. J. Vascul. Pharmacol.
- **2008**, 49, 32.

244

- 245 **Table Captions**
- **Table 1**. The anti-proliferative activities of tested compounds against HUVECs and
- five cancer cell lines.

248

- 249 Scheme Captions
- 250 Scheme 1. Reagents and conditions: (a) DHP, PPTS, CH₂Cl₂, r.t., 4 h; (b) DMF-DMA,
- 251 95 °C, 3 h; (c) I₂, pyridine, CHCl₃, r.t., 12 h (91.7% for three steps); (d) pTsOH,
- 252 CH₃OH, THF, 60 °C, 1 h (94.9%); (e) 1,1-diethoxy-3-methyl-2-butene, 3-picoline,
- 253 xylene, reflux, 24 h (48.4%); (f) ArB(OH)₂, 10 % Pd/C, Na₂CO₃, H₂O, DME, 45 °C, 1
- 254 h (49.6%–89.7%).
- 255 Scheme 2. Reagents and conditions: (a) Br_2 , CH_2Cl_2 , 0 °C (92.3%); (b) *n*-BuLi,
- 256 trimethyl borate, THF, -78 °C (37.7%); (c) 10 % Pd/C, Na₂CO₃, H₂O, DME, 45 °C, 1
- 257 h (61.4%); (d) pTsOH, CH₃OH, THF, 60 °C, 1 h (87.1%); (e) RX, K₂CO₃, Acetone,
- 258 r.t., overnight, or RCOOH, DCC, DMAP, CH₂Cl₂, r.t., overnight (18.7%-99.4%).

259

260 **Figure Captions**

- **Figure 1.** Chemical structure of barbigerone.
- 262 Figure 2. Effects of 13a and barbigerone on the formation of subintestinal vessel

(SIV) in zebrafish embryos assay. Zebrafish embryos were incubated with 13a or 263 barbigerone at 1.25 or 2.5 μ M for 24 h. 264

	265	Figure 3. Effects on the HUVECs migration. (A) HUVECs were wounded with
	266	pipette and treated with vehicle, indicated concentrations of compound 13a or
	267	barbigerone. At 0 h or 24 h, photographs were taken by an OLYMPUS digital camera
	268	(magnification 50×). (B) Rates of migration impacted by compound 13a and
	269	barbigerone on the HUVECs. Data represented the mean \pm standard deviation (SD)
	270	from three independent experiments. $**P < 0.01$; $***P < 0.005$.
	271	Figure 4. Effects on the HUVECs tube formation. (A) HUVECs $(1 \times 10^4 \text{ cells})$
	272	suspended in EBM-2 containing vehicle, compound 13a (1.0 or 5.0 $\mu M)$ or
	273	barbigerone (1.0 or 5.0 μ M) were added to the Matrigel. After incubation for 8 h at 37
	274	°C, capillary networks were photographed and quantified (magnification: 100×). (B)
	275	Rates of tube formation impacted by compound 13a or barbigerone on the HUVECs.
	276	The number of intact tubes was counted in five randomly chosen regions and
	277	expressed as the percentage of that of the vehicle group. The results were expressed as
	278	mean \pm SD. ** $P < 0.01$; *** $P < 0.005$.
	279	
1		

- 7a R = 3-methoxyphenyl **7b** R = 3,4-dimethoxyphenyl 7c R = 4-methoxyphenyl 7d R = 2,4-dimethoxyphenyl 7e R = benzo[d][1,3]dioxol-5-yl**7f** R = 2,3,4-trimethoxyphenyl 7g R = 2-fluoro-3-methoxyphenyl 7h R = 4-acetylphenyl 7i R = 4-hydroxyphenyl 7j R = 2,3-dihydrobenzo[b][1,4]dioxin-6-yl $7\mathbf{k} \mathbf{R} = 4$ -formylphenyl 7IR = 4-cyanophenyl
- 7m R = 3-formylphenyl 7n R = 4-chloro-3-(trifluoromethyl)phenyl 70 R = 2-chloro-4-(trifluoromethyl)phenyl 7p R = 4-(trifluoromethyl)phenyl 7q R = 3-(trifluoromethyl)phenyl $7\mathbf{r} = 3,5$ -dimethoxyphenyl 7s R = 2-ethoxyphenyl 7t R = 2,5-dimethoxyphenyl 7u R = 3,4,5-trimethoxyphenyl $7\mathbf{v} \mathbf{R} = 2$ -methoxyphenyl $7 \mathbf{w} \mathbf{R} = 4$ -ethoxyphenyl

- 13a-13x
- 13a: R = 3-methyl-2-butyenyl 13b: R = allyl13c: R = 2-propynyl 13d: R = benzyl 13e: R = Methyl **13f**: R = 3-methoxybenzoyl **13g**: R = 2-(3-(trifluoromethyl)phenyl)acetyl **13h**: R = 2-fluorobenzyl **13i**: R = 4-fluorobenzyl **13j**: R = 4-bromobenzyl **13k**: R = 2-methylbenzyl
- 13I: R = 4-nitrobenzyl 290

13m: R = 2-(trifluoromethyl)benzyl **13n**: R = 2-morpholinoethyl 130: R = 4-cyanobenzyl **13p**: R = 2-cyanobenzyl **13q**: R = 3-fluorobenzyl **13r**: R = 4-chlorobenzyl **13s**: R = 3-chlorobenzyl **13t**: R = 2-chlorobenzyl **13u**: R = 3-bromobenzyl **13v**: R = 2-bromobenzyl **13w**: R = 4-(trifluoromethyl)benzyl **13x**: R = 3-(trifluoromethyl)benzyl

Comuda	IC ₅₀ (μM)					
Compas -	HepG2	A375	U251	B16	HCT116	HUVEC
barbigerone	1.77	1.85	4.10	1.23	2.36	7.45
7a	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7b	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7c	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7d	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7e	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7 f	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7g	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7h	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7 i	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7j	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7k	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
71	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7 m	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
7n	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
70	>10.0	8.90	2.50	3.55	3.80	>10.0
7 p	>10.0	7.25	5.85	1.91	7.00	>10.0
7q	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0

Table 1. The antiproliferative activities of test compounds against HUVECs and five

293 cancer cell lines.

7r	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
7s	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
7t	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
7u	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
7 v	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
7w	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
13 a	0.28	1.58	3.50	1.09	0.68	3.80	
13b	3.45	4.75	5.90	5.10	6.60	>10.0	
13c	4.95	3.68	6.45	4.50	8.05	>10.0	
13d	1.32	1.64	6.75	2.33	2.28	9.75	
13e	2.04	2.64	9.40	5.20	9.17	>10.0	
13f	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
13g	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
13h	1.28	2.10	2.89	1.61	2.90	4.30	
13i	1.00	1.72	3.20	1.12	0.95	>10.0	
13j	1.05	1.00	>10.0	1.18	1.98	>10.0	
13k	1.86	1.36	2.00	2.15	2.90	4.83	
131	2.50	>10.0	9.40	>10.0	>10.0	>10.0	
13m	6.55	>10.0	>10.0	8.55	4.76	>10.0	
13n	>10.0	>10.0	>10.0	>10.0	>10.0	>10.0	
130	4.23	1.55	6.18	7.00	4.22	10.0	
13p	>10.0	0.99	0.98	2.14	>10.0	>10.0	

D

	13q	1.23	1.30	3.51	2.44	4.92	5.30	
	13r	0.94	1.02	0.47	2.40	4.45	4.40	
	13s	0.75	0.98	>10.0	2.28	1.33	>10.0	
	13t	1.69	2.02	>10.0	4.18	2.45	>10.0	
	13u	0.87	1.12	>10.0	4.40	1.20	>10.0	
	13v	2.18	2.85	>10.0	8.90	4.55	>10.0	
	13w	0.89	2.28	3.75	5.40	2.44	>10.0	
	13x	0.61	1.14	>10.0	>10.0	3.40	>10.0	
294					2			
295				MA				

