Organic & Biomolecular Chemistry

PAPER

Check for updates

Cite this: DOI: 10.1039/c9ob02217a

View Article Online

Received 13th October 2019, Accepted 26th November 2019 DOI: 10.1039/c9ob02217a

rsc.li/obc

Introduction

N-Aryl cyclic amines are impressive ring frameworks that have vast synthetic utility and are found in numerous natural products and biologically active molecules (Fig. 1).^{1–4} For example, brucine, an indole-based alkaloid, has several pharmacological properties, such as antitumor, antiapoptotic, analgesic, and anti-inflammatory properties.² Brucine has also been used in traditional Chinese medicine for its therapeutic effects against arthritic and traumatic pain.³ Furthermore, synthetic derivatives of brucine are better allosteric modulators of M_1 muscarinic receptors compared to brucine.⁴ Therefore, the development of novel synthetic methods for the late-stage functionalization of *N*-aryl cyclic amines, such as brucine, can provide powerful tools for efficient structure–activity relationship (SAR) studies in medicinal chemistry and process chemistry.^{4,5}

Metal-free $C(sp^2)$ –H functionalization is an atom economical strategy that is important for environmental sustainability.⁶ In particular, direct C–C and C–heteroatom bond formations on bioactive ring frameworks, such as *N*-aryl cyclic amines, can lead to significant advances in the pharmaceutical industry and drug discovery. To our knowledge, selectivity is a major issue in $C(sp^2)$ –X functionalization. Recently, the selective functionalization of aminoaryl compounds was reported under both metal catalysis and metal-free conditions.⁷ However, we believe that such functionalization requires improvements in three areas: (i) substituent diversity, resulting from the scope of reactions/substrates/reagents; (ii) cost-effectiveness, includ-

Metal-free late-stage C(sp²)–H functionalization of N-aryl amines with various sodium salts[†]

Chandrashekar Mudithanapelli and Mi-hyun Kim 🕩 *

Metal-free consecutive $C(sp^2)-X$ (X = Cl, Br, S, N) bond formations of *N*-aryl amines (cyclic, fused, carbamate, and aminium radicals) were achieved under mild conditions using [bis(trifluoroacetoxy)iodo] benzene (PIFA) and simple nonharmful sodium salts. This direct and selective $C(sp^2)-H$ functionalization showed excellent functional group compatibility, cost effectiveness, and late-stage applicability for the synthesis of biologically active natural products. Two mechanisms were proposed to explain the *ortho-* or *para*-preference, as well as the accelerating effect of CH_3NO_2 .

ing environmental cost; and (iii) eligibility for late-stage functionalization.

Hypervalent iodine reagents are widely used as costeffective metal-free oxidants in C-C and C-heteroatom bond formation reactions.8 Among iodoarene(III) derivatives, PIFA has emerged as a powerful oxidant for $C(sp^2)$ -H functionalization.⁹ Before or during our study, direct functionalization has been reported, including o-chlorination,^{9a} thiocyanation,^{9b} sulfenylation,^{9b} o-azidation,^{9c} p-bromination,^{9d} p-iodination,^{9d} p-alkoxylation,^{9e} p-acetoxylation,^{9e} and nitration,^{9f} using PIFA and two types of substrates, namely, phenolic derivatives and N-acyl aniline derivatives (Scheme 1). Despite their efficiency, these methodologies have limitations regarding late-stage synthesis. The use of AlCl₃ leads to safety issues, such as risk of handling, while TMSNCS and TMSN3 are highly volatile liquids that are incompatible with moisture and can cause explosions when used in large-scale. These disadvantages have significantly restricted their industrial use in the pharmaceutical sector. The current best conditions for a less toxic and benign reaction are PIFA-mediated p-bromination and p-iodination using excess NaBr/NaI in ethanol as reported by Li and

Fig. 1 Representative bioactive *N*-aryl cyclic amines.

Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea. E-mail: kmh0515@gachon.ac.kr

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ c9ob02217a

Trace

10

Scheme 1 PIFA-mediated C(sp²)-H functionalizations

An.^{9d} During or after our study, NaX/PIFA conditions were also applied to activated imidazopyridine^{9g} or imidazole/indole.^{9h} However, current NaX methods provide limited reactivity with a more activated position (indole, imidazole) or the p-position of anilide.^{9d,g,h}

Results and discussion

Optimization of C(sp²)-X functionalization using CH₃NO₂

Recently, we reported a novel o-nitration via $C(sp^3)$ -N bond cleavage/C(sp²)-N bond formation using PIFA/NaCN/ CH_3NO_2 .⁹ⁱ In the spite of clarified mechanism, $C(sp^2)$ -H functionalization in this method was limited to o-nitration. However, we strongly expected that this mechanism could be applied to diverse functionalizations. Therefore, how to achieve the following three advances under facile conditions was considered: (i) broad scope of reactions/substrates/ reagents; (ii) cost effectiveness; and (iii) eligibility for late-stage functionalization. Herein, we report a metal-free (and Lewisacid-free) PIFA + NaX method for cost-effective and diverse direct C(sp²)-X (Cl, Br, SCN, NO₂, N₃, SO₂R, SR) functionalizations applicable to late-stage substitution. This research was initiated using 1-(4-methoxyphenyl)piperidine (1a) as a model substrate with two possible reactive sites $(C(sp^2)-H \text{ or } C(sp^3)-H$ activation) to investigate chlorination conditions, as described in Table 1.

Initially, the chlorination of 1a (1.0 equiv.) was performed using NaCl (2.0 equiv.) in the presence of PIFA (2.0 equiv.) in DCM at rt, which gave the desired product 2a in 23% yield (Table 1, entry 1). However, at the end of the reaction, insoluble solid NaCl was observed in the reaction mixture. Similarly, various solvents were tested in sequence (entries 2-9). No reaction was observed in CH₃CN and THF (entries 3 and 4), while 2a was isolated in 38%-55% yields when the reaction was performed in MeOH, EtOH, and DMF (entries 5-7). Unsurprisingly, CH₃NO₂ did not increase the yield of the desired product (entry 8). However, screening of various polar and nonpolar solvents indicated that the poor NaCl solubility resulted in poor-to-moderate yields of the

DMSO

Entry

1

2

3

4

5

6

7

8

9

PIFA

10	PIFA	$CH_3NO_2/H_2O(9:1)$	3	83
11	PIFA	$THF/H_2O(9:1)$	3	53
12	PIFA	$CH_3CN/H_2O(9:1)$	3	41
13	PIFA	$C_2H_5NO_2/H_2O(9:1)$	3	79
14	PIFA	$PhNO_2/H_2O(9:1)$	10	n.d.
15	PIDA	$CH_3NO_2/H_2O(9:1)$	10	33
16	IBX	$CH_3NO_2/H_2O(9:1)$	10	17
17	DMP	$CH_3NO_2/H_2O(9:1)$	10	Trace
a p			. (2.0	

Reaction conditions: 1a (1.0 equiv.), oxidant (2.0 equiv.), NaCl (2.0 equiv.) at room temperature (rt). b Isolated yield. n.d. = not detected.

desired product. Therefore, we reasoned that the reaction conditions employed were not favorable for the formation of 2a.

Accordingly, the conditions were modified to study the reaction using various organic solvents in combination with water as a cosolvent. To our delight, the mixed aqueous-organic solvents produced higher yields (entries 10-13). Among these solvents, $CH_3NO_2/H_2O(9:1, v/v)$ exhibited the highest efficiency and provided the desired product 2a in 83% yield (entry 10). Furthermore, various other nitro solvents were subjected to the above reaction conditions. Replacing CH₃NO₂ with $C_2H_5NO_2$ also afforded 2a in a slightly lower yield (entry 13), while PhNO₂ failed to provide any products (entry 14). Further screening of the reaction conditions with other hypervalent iodine compounds, such as (diacetoxyiodo)benzene (PIDA), 2-iodoxybenzoic acid (IBX), and Dess-Martin periodinane (DMP), also afforded 2a, but in low yields, even after a reaction time of 10 h (entries 15-17).

Scope of the introduced functionality (X)

The optimal chlorination conditions used for 1a were then used to investigate other sodium salts (Scheme 2). The PIFA + NaX in CH₃NO₂ were also successfully applied using NaBr and the corresponding product 3a was obtained in 59% yield. Unfortunately, this process was not compatible with NaI and NaF. However, this method was not limited to halogenation; gratifyingly, various inorganic functionalizations using NaSCN, NaNO₂, and NaN₃ were applicable under identical conditions, resulting in excellent isolated yields (4a-6a). Notably, oxidative azidation of 1a under the optimal conditions resulted in a complex mixture (6a obtained in 37% yield). Fortunately, using CH₃NO₂ without water afforded **6a** as the sole product in 78%

Scheme 2 Scope of various functionalization reactions. Reaction conditions: **1a** (1.0 equiv.), PIFA (2.0 equiv.), NaX (2.0 equiv.) in CH_3NO_2/H_2O (9 : 1, v/v) at rt. ^a NaX is TMSCL. ^b NaX is NBS. ^c **1a** (1.0 equiv.), PIFA (2.0 equiv.), NaN₃ (2.0 equiv.) in CH_3NO_2 at rt.

isolated yield. Interestingly, although NaN₃ has been used as an additive for iodine(III) reactions in the literature,^{10a,b} azidation product 6a was obtained instead of cross-coupling with CH₃NO₂.¹¹ We suspected that our method could contribute to the above conversion. In fact, nitromethane, a polar solvent, has previously been used for PIFA-promoted reactions.¹² However, during our studies on PIFA-mediated reactions, CH₃NO₂ played a new role as a nitrating agent.⁹ⁱ These conditions were also suitable for $C(sp^2)$ -X functionalization. To further explore the reaction scope, TMSCl and NBS (reported activators of PIFA oxidative reactions)^{10c,d} were subjected to the above optimized reaction conditions. Substrate 1a was successfully converted into expected C-X products 2a and 3a with the recovered 1a. TMSCl (-Cl) or NBS (-Br) resulted in lower product yields compared with NaCl or NaBr. Furthermore, we investigated innovative organo-C(sp²)-H functionalization using readily available organosulfur sodium salts, such as sodium benzenesulfinate (NaSO₂Ph), sodium methanesulfinate (NaSO₂CH₃), and sodium benzenethiolate (NaSPh) using a similar reaction pathway, which afforded the desired organosulfur products 7a, 8a, and 9a in 69%-76% yields.^{9d,e,13}

Substrate scope of *p*-substitution and *o*,*p*-disubstitution

The substrate scope for $C(sp^2)$ -H functionalization was examined under the optimal conditions as shown in Scheme 2, with the results summarized in Scheme 3. First, diverse electronrich cyclic amines were tested with sodium salts (NaX). These substrates were successfully converted into the expected $C(sp^2)$ -functionalized products **2b-2e**, **3b**, **4b-4e**, **4k**, **4m**, **5b-5c**, **5m** and **6b-6d** with excellent yields, while *p*-Me groups gave slightly decreased yields (Scheme 3, **2e** and **4e**). Interestingly, 1,2,3,4-tetrahydroquinoline substrate **1u** under-

went 6-thiocyanation (sole product 4u in 71% yield) instead of 2-thiocyanation, making us speculate on the para-preference of the thiocyanation. Next, replacing p-OCH₃ (electron-donating) with p-CO₂CH₃ (electron-withdrawing) gave the desired products in up to 81% yields (2f and 4f). Furthermore, p-unsubstituted substrates were examined (1g-1j, 1l, 1n, and 1o). Surprisingly, thiocyanation showed regioselectivity between the ortho- and para-positions, producing predominantly p-substituted product 4g under the optimal conditions. Morpholine and dibenzoazepine (tricyclic) showed similar regioselectivity and efficient yields (4h, 4i, and 4o as sole isolable products). More reactive five-membered ring and tetrahydroisoquinoline substrates showed less discrimination, producing o,p-di-SCNsubstituted products 4ja and 4la along with 4j and 4l. In the case of substrate 1n, the Me-substituent on the arene ring accelerated thiocyanation to afford di-SCN along with mono-SCN before the complete disappearance of substrate 1n. At the end of the reaction the di-SCN product 4na could be obtained with a trace amount of the mono-SCN product. In short, reactivity of thiocyanation and reaction rate critically depend on the substrate structure: (1) cyclic amine group (e.g. 5 ring >6ring) and (2) a substituent of the aryl group. While H4-isoquinoline 1l was reactive enough to produce the mono- (4l) and di-thiocyanation product (4la), pyrrolidine (5-ring) and benzoazepine (7-fused ring) could produce di-thiocyanation products (4ja and 4na) under the assistance of electron-donating substituents. Notably, formation of products 4na and 4o can prove that the methyl group was critical for mono-/di-competition. In contrast to thiocyanation, the chlorination of compound 1g was unsuccessful under the optimized conditions shown in Table 1, leading to substrate decomposition. Notably, a decreased PIFA loading (from 2.0 equiv. to 1.0 equiv.) with an excess solvent ratio of CH3NO2/H2O (2 mL) afforded o-chlorinated product 2g along with o,p-dichloro product 2ga in low yields. The solvent quantity was also found to have a major impact on chlorination. Furthermore, the reaction with other sodium salts resulted in the detection of either decomposition or oxidative biaryl coupling products.¹⁴ ortho-Preference of the chlorination with poor conversion made us suggest different mechanisms between thiocyanation and halogenation. Notably, the difference in the reaction rate between 4b and 2b (or 3b) could be another evidence of this suggestion. Finally, we extended the scope of $C(sp^2)$ -functionalization from cyclic amines to amides (carbamates). When substrates 1p and 1q were subjected to the thiocyanation reaction, p-selective thiocyanation product 4p and o-thiocyanation product 4q were obtained in 43% and 91% yields. However, the chlorination of 1p and 1v (derivative of 8-aminoquinoline)¹⁵ gave similar results to that of 2g, producing 2p and 2v along with 2pa and 2va. Notably, chlorination was accelerated by the addition of CH₃COONa (1.0 equiv.), giving an increased yield of the o,p-di-Cl product 2pa (84%).

Late-stage C(sp²)-X functionalization with NaX

We next turned our attention to late-stage functionalization. Therefore, commercially available brucine $(\mathbf{1r})$ was used for

Scheme 3 Substrate scope of various functionalizations. Reaction conditions: 1b-q, 1u-v (1.0 equiv.) in CH₃NO₂/H₂O (1 mL; 9:1, v/v).^a 1g (1.0 equiv.), PIFA (1.0 equiv.), and NaCl (1.2 equiv.) in CH₃NO₂ : H₂O (2 mL; 9:1, v/v).^b 1a-1d (1.0 equiv.) in CH₃NO₂ (1 mL).^c Addition of CH₃COONa (1.0 equiv.).

selective C(sp²)–H azidation with PIFA (2.0 equiv.) and NaN₃ (2.0 equiv.) in nitromethane at rt. Gratifyingly, without the interference of other functional groups of brucine (3° amines, alkenes, homoallylic ethers, and amides),¹⁶ C(sp²)–H functionalization afforded **6r** (79% yield) as shown in Scheme 4(a). After success with brucine, the reactivity of julolidine was investigated. As julolidine derivatives are mainly useful for preparing dyes (or probes) and photoconductive materials, and due to their pharmacological activities, such as anti-hepatitis B activity,¹⁷ our *p*-SCN functionalization would be valuable for extending the julolidine scaffold. The SCN⁻ ion

underwent smooth coupling with julolidine **1s** to form product **4s** in 71% yield, as shown in Scheme 4(b). **6r** and **4s** are novel examples that highlight the scope of this method. In addition, the efficiency of thiocyanation was maintained on an increased scale, giving 81% yield, as shown in Scheme 4(c). Notably, a trace amount of di-SCN product **4ha** (7% yield) was observed along with **4h**. Finally, we obtained an example application of thiocyanation products **4h** and **4ha** through the modification into mono- and di-tetrazoles **10h** and **10ha**, as shown in Scheme 4(d) and (e).¹⁸ As tetrazoles are biologically privileged motifs,¹⁹ they can be highly useful in applications. In detail,

(a) Late-Stage azidation

because tetrazole is a well-known bioisostere of $-CO_2H$, drug candidates having terazole are present in COX2 inhibitors such as celecoxib analogues or antiulcer agents. In particular, *S*-tetrazole is observed in antibiotics,¹⁹ protease inhibitors,²⁰ or activators of autophagic flux and phospholipase D.²¹ To further illustrate the efficiency of these methods, the chlorination of stable radical **1t**, which shares the substructure of our substrates, was conducted. Interestingly, this reaction gave the optimal outcome, with trichlorinated product **2taa** obtained from NaCl and SbCl₆⁻, as shown in Scheme 4(f). Triarylamine of **2taa** is commonly used to synthesize conductive polymers and high-spin polyradicals exhibiting ferromagnetic coupling, representing another useful application.²²

Reaction mechanism based on radical trapping

To gain an understanding of the $C(sp^2)$ -H functionalization mechanism, we conducted chlorination and thiocyanation in the presence of 2,2,6,6-tetramethylpiperidin-1-yl-oxidanyl (TEMPO) and 1,1-diphenylethylene as radical scavengers under the optimal conditions (Scheme 5). The chlorination reaction with excess TEMPO (3.0 equiv.) did not give product 2a at all indicating a homolytic mechanism. 1,1-Diphenylethylene (3.0 equiv.), another radical scavenger, dramatically decreased the isolation yield of product 2a from 83% to 14%. In contrast, neither TEMPO nor 1,1-diphenylethylene affected the isolation yield of thiocyanation and its reaction time. The identical results using the radical scavengers supported that C(sp²)-thiocyanation did not follow a single electron transfer (SET) mechanism. Considering that the reaction with TMSNCS was reported to follow a SET mechanism,^{9b} the ionic mechanism of NaSCN is surprising. Based on the experimental results and previous literature,²³ mechanistic models were proposed for oxidative $C(sp^2)$ -H functionalization, as shown in Scheme 6.

First, PIFA coordinates with the *N*-aryl cyclic amine *via* halogen– π interactions between the benzene ring and iodine to give intermediate **I**. CF₃CO₂Na elimination can be attributed to ligand exchange with SCN⁻ or Cl⁻. CH₃NO₂ seems to act as an additive^{9*i*,23*e*,*f*} affording the complex through coordination with intermediate **I**. Nucleophilic attack on the *o*- or *p*-position *via* transition state **IIS** then generates intermediate **IIIA** or **IIIB**

Scheme 5 Control experiment.

with the loss of PhI and CH₃NO₂. While coordination between intermediate I and CH₃NO₂ can be replicated using other solvents, CH₃NO₂ can give additional intermediate II via C(sp³)-N cleavage⁹ⁱ to accelerate the reaction. Finally, the aromaticity can be recovered by the loss of a proton from IIIA or IIIB, which gives the final products. When integrating the mechanism with the experimental results (Scheme 3), we propose that the electron density of the aromatic group in substrates (4j and 4k, 4na and 4o, and 4p and 4q) affects the initiation of thiocyanation to give intermediate I, while the steric environment near the o-iodo complex provides p-regioselectivity. After p-substitution, p-substituted 4k, 4o, and 4p were not sufficiently reactive for the next substitution. When comparing nitration⁹ⁱ and thiocyanation using our method (NaCN vs. NaSCN), despite the similar nucleophilicity of the anions, CN⁻ was consumed as a base and SCN⁻ could attack iminium intermediate II due to its basicity (pK_a of conjugated acids in water: $HCH_2NO_2(10) > HCN(9.4) \gg HN_3(4.72) > HSCN(4.0) > HNO_2$ $(3.29) \gg$ HCl). However, halogenation or azidation, following a homolytic mechanism, can be explained by the generation of iodanyl radical V. As reported previously,²³ initial homolytic cleavage of the I-X bond can produce iodanyl radical V and iminium radical VI. When TEMPO trapping was conducted, chlorination was stopped, with no consumption of substrate 1a observed, but no trapped products from substrate derivatives, including radical VI, were isolated. Therefore, we predict that the formation of intermediate IIIA or IIIB is very fast and the capture of radical V stops the reaction.

Furthermore, although a SET mechanism needs to be considered based on Kita's charge-transfer (CT) complex of electron-rich arenes,^{23c} our method does not use either a fluoroalcohol solvent or a Lewis acid. Therefore, a CT-complex *via* SET and biradicals *via* radical cleavage need to be considered together for the homolytic mechanism. When integrating the mechanism with experimental results (Scheme 3), radical **VI** seems to prefer *o*-substitution over *p*-substitution based on products **2g** and **2p**, owing to the different steric environment at the *o*-position. The ratio of *o*-chlorinated product **2p** to *o*,*p*dichlorinated product **2pa** could be adjusted by altering the acidity of the reaction mixture.

Conclusions

The metal-free and readily available $ArI(O_2CF_3)_2$ and NaX method has been used to achieve $C(sp^2)$ –X bond formations (halogenation, azidation, nitration, thiocyanation, and sulfonylation). This straightforward C–H functionalization was functional-group-compatible, cost-effective, and applicable to the late-stage synthesis of pharmacological molecules, such as brucine and julolidine. In particular, the method required neither metal catalysts nor strong acids, proving to be environmentally friendly and cost effective at room temperature. The mechanism of *ortho*- or *para*-preference could be achieved with the coordination of nitromethane. Consecutive C–X formation, *via p*- and *o*-functionalization, encouraged us to design a regiospecific reaction according to the reactivity of nucleophiles and substrates. Notably, the known additives acted as reactants in our method to indicate the future direction of study. Furthermore, the nonionic mechanism presents the possibility for *o*-selective functionalization in the near future. We believe that this method will be highly attractive for the functionalization of natural products.

Experimental

General procedure for the synthesis of compounds 1a-10 and 1u

The following reaction procedure is a slightly modified reported procedure.²⁴ A mixture of $Pd_2(dba)_3$ (0.137 g, 0.15 mmol, 3 mol%), ligand (2-dicyclohexylphosphino-2',6'dimethoxybiphenyl) (0.164 g, 0.40 mmol, 8 mol%) and 5.0 mL of dry toluene was added into an oven dried seal tube. The resulting solution was degassed with N2 for 1 hour. Then, bromoarene (5.0 mmol, 1.0 equiv.), cyclic amine (6.0 mmol, 1.2 equiv.), and ^tBuONa (0.672 g, 7.0 mmol, 1.4 equiv.) were sequentially added with a syringe to the reaction mixture. Then the reaction mixture was heated to 100 °C for 20 h. After completion of the reaction, the resulting reaction mixture was slowly brought to rt, and then quenched by adding water and extracted with ethyl acetate. The organic layer was dried over sodium sulphate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using hexane/EtOAc (20:1) as the eluent to afford the desired products.

1-(4-Methoxyphenyl)piperidine (1a). Light yellow oil, 94% yield (0.90 g); ¹H NMR (600 MHz, CDCl₃) δ 6.93–6.88 (m, 2H), 6.84–6.80 (m, 2H), 3.75 (s, 3H), 3.05–2.98 (m, 4H), 1.71 (dt, *J* = 11.4, 5.7 Hz, 4H), 1.57–1.50 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.51, 146.91, 118.71, 114.27, 55.51, 52.27, 26.13, 24.18 ppm. The analytical data are consistent with the literature.^{25a}

8-(4-Methoxyphenyl)-1,4-dioxa-8-azaspiro[**4.5**]**decane** (**1b**). Light yellow solid, mp 63–65 °C, 87% yield (1.08 g); ¹H NMR (600 MHz, CDCl₃) δ 6.96–6.87 (m, 2H), 6.85–6.78 (m, 2H), 3.97 (s, 4H), 3.75 (s, 3H), 3.26–3.10 (m, 4H), 1.91–1.76 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.69, 145.61, 118.91, 114.32, 107.03, 64.27, 55.50, 49.34, 34.83 ppm; the analytical data are consistent with the literature.^{25b}

4-(5*H*-dibenzo[*a*,*d*][7]**annulen-5-ylidene**)-**1**-(**4**-methoxyphenyl) **piperidine** (**1c**). White solid, mp 117–119 °C, 78% yield (1.48 g); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (dd, *J* = 11.4, 4.3 Hz, 4H), 7.27–7.20 (m, 4H), 6.92 (s, 2H), 6.88–6.84 (m, 2H), 6.83–6.78 (m, 2H), 3.75 (s, 3H), 3.25–3.17 (m, 2H), 2.84–2.77 (m, 2H), 2.47 (ddd, *J* = 13.3, 9.0, 4.1 Hz, 2H), 2.28 (ddd, *J* = 13.7, 5.8, 3.6 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.59, 145.80, 139.06, 135.32, 134.81, 133.67, 131.01, 128.47, 128.23, 127.79, 126.30, 118.67, 114.35, 55.55, 52.90, 30.12 ppm; LRMS (ESI, *m/z*): 380 ([M + H]⁺).

4-(4-Methoxyphenyl)morpholine (1d). Yellow solid, mp 70–71 °C, 85% yield (0.82 g); ¹H NMR (600 MHz, CDCl₃) δ 6.93–6.80 (m, 4H), 3.89–3.80 (m, 4H), 3.75 (s, 3H), 3.09–2.99

(m, 4H) ppm; ^{13}C NMR (150 MHz, CDCl₃) δ 153.92, 145.60, 117.76, 114.46, 67.00, 55.51, 50.77 ppm; the analytical data are consistent with the literature. 25c

1-(*p***-Tolyl)piperidine** (1e). Light yellow oil, 88% yield (0.77 g); ¹H NMR (600 MHz, CDCl₃) δ 7.09–6.98 (m, 2H), 6.89–6.78 (m, 2H), 3.13–2.98 (m, 4H), 2.24 (s, 3H), 1.68 (dt, *J* = 11.4, 5.7 Hz, 4H), 1.61–1.45 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 150.26, 129.48, 128.64, 116.93, 51.29, 25.95, 24.29, 20.40 ppm; the analytical data are consistent with the literature.^{25a}

Methyl 4-(piperidin-1-yl)benzoate (1f). Light yellow solid, mp 89–91 °C, 71% yield (0.78 g); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 9.1 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 3.35–3.30 (m, 4H), 1.74–1.60 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 167.25, 154.50, 131.22, 118.65, 113.56, 51.57, 48.79, 25.40, 24.36 ppm; the analytical data are consistent with the literature.^{25d}

1-Phenylpiperidine (1g). Light yellow oil, 93% yield (0.75 g); ¹H NMR (600 MHz, CDCl₃) δ 7.23 (dddd, J = 9.0, 7.2, 3.5, 1.5 Hz, 2H), 6.96–6.90 (m, 2H), 6.84–6.78 (m, 1H), 3.18–3.09 (m, 4H), 1.74–1.66 (m, 4H), 1.56 (ddd, J = 6.3, 5.7, 1.8 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 152.24, 128.96, 119.13, 116.49, 50.65, 25.86, 24.31 ppm; the analytical data are consistent with the literature.^{25c}

4-Phenylmorpholine (1h). Light yellow solid, mp 54–56 °C, 89% yield (0.73 g); ¹H NMR (600 MHz, CDCl₃) δ 7.31–7.26 (m, 2H), 6.92 (d, *J* = 7.9 Hz, 2H), 6.88 (t, *J* = 7.3 Hz, 1H), 3.90–3.82 (m, 4H), 3.21–3.12 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 151.27, 129.18, 120.04, 115.70, 66.94, 49.36 ppm; the analytical data are consistent with the literature.^{25c}

1-(*m***-Tolyl)piperidine (1i).** Light yellow oil, 76% yield (0.67 g); ¹H NMR (600 MHz, CDCl₃) δ 7.11 (t, J = 7.8 Hz, 1H), 6.79–6.68 (m, 2H), 6.63 (d, J = 7.4 Hz, 1H), 3.19–3.04 (m, 4H), 2.29 (s, 3H), 1.68 (dt, J = 14.9, 5.7 Hz, 4H), 1.60–1.48 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 152.33, 138.52, 128.80, 120.11, 117.41, 113.67, 50.78, 25.91, 24.35, 21.77 ppm; the analytical data are consistent with the literature.^{25e}

1-(*m***-Tolyl)pyrrolidine (1j).** Light yellow oil, 73% yield (0.59 g); ¹H NMR (600 MHz, CDCl₃) δ 7.14–7.07 (m, 1H), 6.48 (d, *J* = 7.5 Hz, 1H), 6.37 (d, *J* = 6.1 Hz, 2H), 3.32–3.17 (m, 4H), 2.30 (s, 3H), 2.01–1.89 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 148.04, 138.72, 128.96, 116.33, 112.34, 108.88, 47.56, 25.43, 21.84 ppm; the analytical data are consistent with the literature.^{25*f*}

1-(4-Methoxyphenyl)pyrrolidine (1k). Light orange solid, mp 43–45 °C, 77% yield (0.68 g); ¹H NMR (600 MHz, CDCl₃) δ 6.92–6.78 (m, 2H), 6.56 (d, *J* = 8.4 Hz, 2H), 3.75 (s, 3H), 3.23 (d, *J* = 5.7 Hz, 4H), 2.03–1.95 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 130.87, 127.65, 115.00, 55.99, 48.47, 25.35 ppm; the analytical data are consistent with the literature.^{25*f*}

2-Phenyl-1,2,3,4-tetrahydroisoquinoline (11). Orange solid, mp 45–47 °C, 79% yield (0.83 g); ¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, J = 8.4, 7.4 Hz, 2H), 7.22–7.11 (m, 4H), 6.98 (d, J = 8.2 Hz, 2H), 6.82 (t, J = 7.2 Hz, 1H), 4.40 (s, 2H), 3.56 (t, J = 5.9 Hz, 2H), 2.98 (t, J = 5.8 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 150.54, 134.86, 134.45, 129.19, 128.51, 126.53, 126.31, 126.01, 118.64, 115.12, 50.71, 46.50, 29.11 ppm; the analytical data are consistent with the literature. 25g

5-(4-Methoxyphenyl)-10,11-dihydro-5*H***-dibenzo[***b***,***f***]azepine (1m). High viscous brown oil; 67% yield (1.0 g); ¹H NMR (600 MHz, CDCl₃) \delta 7.45–7.41 (m, 2H), 7.29–7.25 (m, 4H), 7.22 (td,** *J* **= 7.4, 1.4 Hz, 2H), 6.73 (d,** *J* **= 9.1 Hz, 2H), 6.59 (d,** *J* **= 9.1 Hz, 2H), 3.76 (s, 3H), 3.02 (s, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) \delta 151.95, 143.96, 143.65, 138.42, 130.83, 130.66, 130.20, 128.63, 126.96, 126.80, 126.71, 119.43, 117.90, 114.33, 114.02, 55.73, 31.03 ppm; the analytical data are consistent with the literature.^{25***h***}**

5-(*o*-Tolyl)-10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepine (1n). White solid, mp 107–109 °C, 81% yield (1.16 g); ¹H NMR (600 MHz, CDCl₃) δ 7.32 (ddt, *J* = 12.9, 7.2, 6.6 Hz, 4H), 7.07 (dd, *J* = 7.4, 1.6 Hz, 2H), 6.95–6.84 (m, 2H), 6.76 (td, *J* = 7.3, 0.9 Hz, 2H), 6.48 (dd, *J* = 8.5, 0.8 Hz, 2H), 3.20 (s, 4H), 2.06 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 145.31, 144.92, 137.51, 132.30, 132.22, 131.67, 130.31, 127.66, 127.25, 126.25, 121.04, 119.84, 37.16, 18.00 ppm; the analytical data are consistent with the literature.^{25*h*}

5-Phenyl-10,11-dihydro-5*H***-dibenzo**[*bf***]azepine** (10). White solid, mp 99–101 °C, 87% yield (1.18 g); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 7.7 Hz, 2H), 7.29–7.17 (m, 6H), 7.09 (t, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.58 (d, *J* = 8.1 Hz, 2H), 2.98 (s, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 149.06, 143.43, 138.34, 130.91, 130.14, 128.82, 127.06, 127.04, 117.44, 112.54, 77.22, 77.00, 76.79, 30.84 ppm; the analytical data are consistent with the literature.^{25h}

1-(4-Methoxyphenyl)-1,2,3,4-tetrahydroquinoline (1u). White solid, mp 69–71 °C, 81% yield (0.97 g); ¹H NMR (600 MHz, CDCl₃) δ 7.18–7.13 (m, 2H), 7.03–6.98 (m, 1H), 6.94–6.85 (m, 3H), 6.62 (td, *J* = 7.3, 1.0 Hz, 1H), 6.47 (dd, *J* = 8.2, 0.6 Hz, 1H), 3.81 (s, 3H), 3.57–3.50 (m, 2H), 2.86 (t, *J* = 6.4 Hz, 2H), 2.08–1.99 (m, 2H)pp; ¹³C NMR (150 MHz, CDCl₃) δ 156.76, 145.53, 141.35, 129.29, 127.66, 126.46, 122.93, 117.16, 114.82, 114.29, 55.46, 51.64, 27.86, 22.50 ppm; the analytical data are consistent with the literature.^{25*i*}

Synthetic procedure of compounds 1p-1q and 1v

To a mixture of aniline (3.25 mmol, 1.0 equiv.) and Na₂CO₃ (6.5 mmol, 2.0 equiv.) 3.0 mL THF/H₂O (v/v = 1 : 1) was added, and then the reaction mixture was cooled to 0 °C. A solution of benzyl chloroformate (CbzCl) (3.38 mmol, 1.04 equiv.) in THF was slowly added dropwise to the reaction mixture. After the addition, the reaction mixture was continuously stirred for 3 h at rt. After completion of the reaction, checked by TLC, the organic solvent was removed under reduced pressure and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was concentrated *in vacuo* and the crude product was purified by column chromatography over silica gel (gradient elution of EtOAc/hexane 1:15).

Benzyl phenylcarbamate (1p)

White solid, mp 71–73 °C, 91% yield (0.67 g); ¹H NMR (600 MHz, CDCl₃) δ 7.42–7.35 (m, 6H), 7.35–7.31 (m, 1H), 7.30

(t, *J* = 8.0 Hz, 2H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.70 (s, 1H), 5.19 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.29, 137.73, 136.02, 129.35, 129.06, 128.91, 128.82, 128.73, 128.61, 128.56, 128.36, 128.31, 126.98, 123.51, 118.64, 67.01 ppm; the analytical data are consistent with the literature.^{25j}

Benzyl benzo[*d*][1,3]dioxol-5-ylcarbamate (1q). White solid, mp 95–97 °C, 83% yield (0.73 g); ¹H NMR (600 MHz, CDCl₃) δ 7.45–7.29 (m, 5H), 7.09 (s, 1H), 6.69 (dd, *J* = 30.0, 8.0 Hz, 2H), 6.55 (s, 1H), 5.93 (d, *J* = 2.3 Hz, 2H), 5.18 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 147.96, 136.05, 128.61, 128.35, 128.32, 108.10, 101.24, 67.02 ppm; the analytical data are consistent with the literature.^{25k}

Benzyl quinolin-8-ylcarbamate (1v). White solid, mp 75–77 °C, 87% yield (0.79 g); ¹H NMR (600 MHz, CDCl₃) δ 9.28 (s, 1H), 8.77 (dd, J = 4.2, 1.7 Hz, 1H), 8.45 (d, J = 6.2 Hz, 1H), 8.14 (dd, J = 8.2, 1.6 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.50–7.37 (m, 6H), 7.35 (ddd, J = 7.3, 3.8, 1.2 Hz, 1H), 5.29 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.41, 148.12, 138.22, 136.23, 134.67, 128.61, 128.31, 128.29, 128.02, 127.31, 121.63, 120.66, 114.64, 66.96 ppm; the analytical data are consistent with the literature.²⁵¹

General procedure for C(sp²)-H functionalization

Cyclic amine (0.15 mmol, 1.0 equiv.) and NaX (0.3 mmol, 2.0 equiv.) (NaX = NaCl or NaBr or NaSCN or NaNO₂ or NaSO₂Ph or NaSO₂CH₃ or NaSPh) were dissolved in a 1 mL mixture of nitromethane and water (9:1) and PIFA (0.3 mmol, 2.0 equiv.) was cautiously added portionwise to the reaction mixture, and then the solution was stirred at room temperature for 5 min to 8 h, monitored by TLC. Then, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with a saturated solution of NaHCO₃ and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (hexane/EtOAc) to afford the corresponding products.

1-(2-Chloro-4-methoxyphenyl)piperidine (2a). White solid, mp 44–46 °C, 83% yield (28.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 6.98 (d, J = 8.8 Hz, 1H), 6.94 (d, J = 2.9 Hz, 1H), 6.76 (dd, J = 8.8, 2.9 Hz, 1H), 3.76 (s, 3H), 2.88 (s, 4H), 1.73 (dt, J = 11.1, 5.6 Hz, 4H), 1.59–1.52 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 155.34, 144.19, 129.79, 120.98, 115.96, 112.85, 55.64, 53.40, 26.37, 24.24 ppm; FT-IR ν 2936, 1496, 1209, 1044, 872, 862 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₂H₁₆ClNO 225.0920, found 225.0924.

8-(2-Chloro-4-methoxyphenyl)-1,4-dioxa-8-azaspiro[4.5]decane (2b). Light yellow solid, mp 56–58 °C, 79% yield (34.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.01 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 2.9 Hz, 1H), 6.76 (dd, J = 8.8, 2.9 Hz, 1H), 4.00 (s, 4H), 3.76 (s, 3H), 3.12–2.94 (m, 4H), 1.97–1.82 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 155.63, 143.06, 129.81, 121.22, 115.96, 112.87, 107.06, 64.29, 55.64, 50.17, 35.41 ppm; FT-IR ν 2957, 1496, 1208, 1107, 1039, 903, 863 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₄H₁₈ClNO₃ 283.0975, found 283.0977.

1-(2-Chloro-4-methoxyphenyl)-4-(5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)piperidine (2c). Yellow solid, mp 146–148 °C, 73% yield (45.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.37–7.30 (m,

View Article Online

4H), 7.24 (d, J = 7.5 Hz, 4H), 6.97–6.92 (m, 3H), 6.90 (d, J = 8.9 Hz, 1H), 6.72 (dd, J = 8.8, 2.9 Hz, 1H), 3.74 (s, 3H), 3.07–3.01 (m, 2H), 2.61 (dd, J = 14.1, 5.8 Hz, 2H), 2.52 (ddd, J = 13.4, 9.3, 4.0 Hz, 2H), 2.34–2.28 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 155.50, 143.16, 139.14, 134.80, 131.00, 128.55, 128.19, 127.77, 126.26, 121.10, 115.98, 112.82, 95.67, 55.63, 53.73, 30.62 ppm; FT-IR ν 2923, 1496, 1212, 1044, 801, 742 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₂₇H₂₄ClNO 413.1546, found 413.1546.

4-(2-Chloro-4-methoxyphenyl)morpholine (2d). Brown liquid, 59% yield (20.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 6.98 (dd, J = 19.1, 5.9 Hz, 2H), 6.79 (dd, J = 8.8, 2.9 Hz, 1H), 3.94–3.84 (m, 4H), 3.78 (s, 3H), 3.05–2.93 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 155.92, 142.52, 129.79, 120.96, 116.19, 113.05, 67.28, 55.68, 52.16 ppm; FT-IR ν 2922, 1490, 1218, 1117, 1046, 939, 874 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₁H₁₄ClNO₂ 227.0713, found 227.0712.

1-(2-Chloro-4-methylphenyl)piperidine (2e). Light yellow liquid, 47% yield (15.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, *J* = 1.8 Hz, 1H), 7.00 (ddd, *J* = 8.1, 1.4, 0.6 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 2.93 (s, 4H), 2.26 (s, 3H), 1.73 (dt, *J* = 11.1, 5.6 Hz, 4H), 1.60–1.54 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 148.13, 133.01, 130.94, 128.65, 127.99, 120.18, 53.08, 26.30, 24.27, 20.38 ppm; FT-IR ν 2927, 1497, 1235, 1068, 870, 813 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₂H₁₆ClN 209.0971, found 209.0974.

Methyl 3-chloro-4-(piperidin-1-yl)benzoate (2f). Brown liquid, 66% yield (25.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 2.0 Hz, 1H), 7.86 (dd, J = 8.4, 2.0 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 3.09–3.02 (m, 4H), 1.79–1.72 (m, 4H), 1.61 (dt, J = 11.8, 6.0 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 166.13, 154.47, 132.06, 129.10, 127.81, 124.14, 119.54, 52.33, 52.05, 26.02, 24.16 ppm; FT-IR ν 2934, 1721, 1597, 1435, 1244, 1120, 768 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₃H₁₆ClNO₂ 253.0870, found 253.0869.

1-(2-Chlorophenyl)piperidine (2g). Yellow liquid, 17% yield (addition of 1.0 equiv. PIFA) (5.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.38–7.32 (m, 1H), 7.23–7.14 (m, 1H), 7.03 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.93 (ddd, *J* = 9.1, 5.7, 1.9 Hz, 1H), 3.03–2.88 (m, 4H), 1.79–1.70 (m, 4H), 1.58 (t, *J* = 7.3 Hz, 2H) pp; ¹³C NMR (150 MHz, CDCl₃) δ 149.38, 130.49, 127.40, 123.11, 121.17, 120.44, 52.89, 26.26, 24.27 ppm; FT-IR ν 2933, 2851, 1442, 1238, 1042, 746 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₁H₁₄ClN 195.0815, found 195.0817.

1-(2,4-Dichlorophenyl)piperidine (2ga). Yellow liquid, 35% yield (addition of 1.0 equiv. PIFA) (12.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 2.5 Hz, 1H), 7.16 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.94 (d, *J* = 8.6 Hz, 1H), 3.03–2.84 (m, 4H), 1.73 (dt, *J* = 11.2, 5.6 Hz, 4H), 1.58 (d, *J* = 11.4 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 149.40, 130.16, 129.58, 127.55, 127.44, 121.19, 52.87, 26.16, 24.15 ppm; FT-IR ν 2921, 2851, 1532, 1478, 1233, 751, 690 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₁H₁₃Cl₂N 229.0425, found 229.0426.

Benzyl(2-chlorophenyl)carbamate (2**p).** White solid, mp 44–46 °C, 37% yield (15.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, *J* = 7.6 Hz, 1H), 7.59–7.31 (m, 6H), 7.32–7.11 (m, 2H),

6.99 (td, J = 7.7, 1.4 Hz, 1H), 5.22 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 152.99, 135.77, 134.64, 133.46, 129.06, 128.74, 128.70, 128.67, 128.59, 128.49, 128.44, 127.92, 127.76, 123.78, 122.06, 119.89, 67.33 ppm; FT-IR ν 1695, 1528, 1441, 1235, 1034, 740 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₄H₁₂ClNO₂ 261.0557, found 261.0554.

Benzyl(2,4-dichlorophenyl)carbamate (2pa). White solid, mp 75–77 °C, 84% yield (addition of 1.0 equiv. CH₃COONa) (37.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 1H), 7.55–7.32 (m, 6H), 7.26–7.21 (m, 1H), 7.15 (s, 1H), 5.22 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 152.84, 135.56, 133.46, 129.06, 128.74, 128.70, 128.66, 128.59, 128.49, 128.44, 128.23, 127.91, 127.76, 123.77, 122.51, 120.61, 67.53 ppm; FT-IR ν 2919, 2850, 1687, 1522, 1474, 1238, 745, 694 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₄H₁₁Cl₂NO₂ 295.0167, found 295.0167.

Benzyl(5-chloroquinolin-8-yl)carbamate (2v). White solid, mp 99–101 °C, 69% yield (32.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 9.24 (s, 1H), 8.81 (dd, *J* = 4.2, 1.5 Hz, 1H), 8.54 (dd, *J* = 8.5, 1.6 Hz, 1H), 8.39 (d, *J* = 7.4 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.55 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.47 (d, *J* = 7.3 Hz, 2H), 7.43–7.38 (m, 2H), 7.35 (dd, *J* = 8.4, 6.2 Hz, 1H), 5.28 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.27, 148.59, 138.71, 136.05, 133.98, 133.29, 128.64, 128.38, 128.36, 127.15, 125.97, 123.47, 122.37, 114.57, 67.13 ppm; HRMS (ESI, *m/z*): [M + H]⁺ calculated for C₁₇H₁₄ClN₂O₂ 313.0738, found 313.0768.

Benzyl(5,7-dichloroquinolin-8-yl)carbamate (2va). Yellow solid, mp 141–143 °C, 13% yield (7.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.91 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.51 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.76 (s, 1H), 7.70 (s, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.46–7.40 (m, 2H), 7.42–7.30 (m, 3H), 5.26 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.59, 150.86, 143.64, 135.96, 133.29, 131.19, 129.76, 128.67, 128.54, 128.36, 128.26, 125.22, 122.33, 67.73 ppm; HRMS (ESI, *m/z*): $[M + H]^+$ calculated for C₁₇H₁₃Cl₂N₂O₂ 347.0349, found 347.0364.

1-(2-Bromo-4-methoxyphenyl)piperidine (3a). Red viscous liquid, 59% yield (24.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.14 (d, *J* = 2.9 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 6.81 (dd, *J* = 8.8, 2.9 Hz, 1H), 3.76 (s, 3H), 2.87 (s, 4H), 1.73 (dt, *J* = 11.0, 5.6 Hz, 4H), 1.55 (d, *J* = 4.9 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 155.61, 145.50, 121.31, 120.91, 118.89, 113.61, 55.68, 53.81, 26.36, 24.21 ppm; FT-IR ν 2937, 1492, 1208, 1103, 1036, 737 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₂H₁₆BrNO 269.0415, found 269.0420.

8-(2-Bromo-4-methoxyphenyl)-1,4-dioxa-8-azaspiro[**4.5**]decane (**3b**). White solid, mp 89–91 °C, 82% yield (40.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.14 (d, J = 2.9 Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H), 6.81 (dd, J = 8.8, 2.9 Hz, 1H), 4.00 (s, 4H), 3.76 (s, 3H), 3.10–2.94 (m, 4H), 1.96–1.83 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 155.89, 144.36, 121.52, 120.88, 118.88, 113.60, 107.08, 64.28, 55.67, 50.55, 35.42 ppm; FT-IR ν 2957, 1491, 1208, 1106, 1038, 736 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₄H₁₈BrNO₃ 327.0470, found 327.0473.

1-(4-Methoxy-2-thiocyanatophenyl)piperidine (4a). Brown liquid, 76% yield (28.0 mg); ¹H NMR (600 MHz, $CDCl_3$) δ 7.15 (d, J = 2.7 Hz, 1H), 7.11 (d, J = 8.7 Hz, 1H), 6.81 (dd, J = 8.7, 2.7

Hz, 1H), 3.83 (s, 3H), 2.80–2.71 (m, 4H), 1.71–1.65 (m, 4H), 1.57–1.53 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 158.02, 143.29, 127.38, 122.84, 114.49, 112.51, 110.64, 55.74, 54.21, 26.37, 23.82 ppm; FT-IR ν 2936, 2155, 1493, 1221, 1044, 859 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₃H₁₆N₂OS 248.0983, found 248.0983.

8-(4-Methoxy-2-thiocyanatophenyl)-1,4-dioxa-8-azaspiro[4.5] decane (4b). White solid, mp 86–87 °C, 85% yield (39.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.16 (t, J = 5.4 Hz, 2H), 6.81 (dd, J = 8.7, 2.8 Hz, 1H), 4.00 (s, 4H), 3.83 (s, 3H), 3.00–2.84 (m, 4H), 1.93–1.77 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 158.25, 142.22, 127.09, 123.01, 114.54, 112.15, 110.84, 106.51, 64.36, 55.75, 51.24, 35.45 ppm; FT-IR ν 2926, 2156, 1492, 1294, 1109, 1038, 735 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₅H₁₈N₂O₃S 306.1038, found 306.1041.

4-(5*H*-Dibenzo[*a*,*d*][7]**annulen-5**-ylidene)-1-(4-methoxy-2-thiocyanatophenyl)piperidine (4c). Light yellow solid, mp 153–154 °C, 78% yield (51.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (ddd, *J* = 6.6, 3.7, 1.7 Hz, 4H), 7.26–7.20 (m, 4H), 7.13 (d, *J* = 2.7 Hz, 1H), 7.04 (d, *J* = 8.6 Hz, 1H), 6.94 (s, 2H), 6.77 (dd, *J* = 8.7, 2.7 Hz, 1H), 3.81 (s, 3H), 2.86–2.79 (m, 2H), 2.60 (dd, *J* = 19.9, 13.9 Hz, 2H), 2.45 (ddd, *J* = 13.3, 9.2, 4.0 Hz, 2H), 2.32–2.25 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 158.15, 142.28, 138.89, 134.73, 134.49, 134.16, 130.99, 128.38, 128.24, 127.84, 127.10, 126.39, 122.92, 114.51, 112.22, 110.82, 55.74, 54.65, 30.60 ppm; FT-IR ν 2924, 2155, 1493, 1215, 1042, 756, 741 cm⁻¹; HRMS (EI, *m*/z): M⁺ calculated for C₂₈H₂₄N₂OS 436.1609, found 436.1610.

4-(4-Methoxy-2-thiocyanatophenyl)morpholine (4d). Light yellow solid, mp 92–94 °C, 83% yield (31.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.16 (dd, J = 5.7, 4.5 Hz, 2H), 6.85 (dd, J = 8.7, 2.8 Hz, 1H), 3.84 (s, 3H), 3.83–3.78 (m, 4H), 2.88–2.81 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 158.49, 141.58, 127.10, 123.17, 114.78, 111.81, 111.09, 67.23, 55.78, 52.89 ppm; FT-IR ν 2960, 2156, 1493, 1217, 1114, 933, 735 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₂H₁₄N₂O₂S 250.0776, found 250.0780.

1-(4-Methyl-2-thiocyanatophenyl)piperidine (4e). Light yellow liquid, 63% yield (22.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (s, 1H), 7.11–7.01 (m, 2H), 2.83–2.73 (m, 4H), 2.36 (s, 3H), 1.72–1.66 (m, 4H), 1.53–1.53 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 147.95, 136.65, 129.33, 126.41, 125.49, 121.73, 112.55, 54.02, 26.32, 23.87, 21.09 ppm; FT-IR ν 2935, 2155, 1491, 1233, 1108, 925, 818 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₃H₁₆N₂S 232.1034, found 232.1035.

Methyl 4-(piperidin-1-yl)-3-thiocyanatobenzoate (4f). Light yellow liquid, 81% yield (34.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, *J* = 1.8 Hz, 1H), 7.99 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.19 (d, *J* = 8.3 Hz, 1H), 3.92 (s, 3H), 2.96–2.84 (m, 4H), 1.78–1.69 (m, 4H), 1.60 (dt, *J* = 11.3, 5.8 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 165.70, 154.75, 130.72, 128.48, 127.60, 124.98, 121.24, 111.12, 53.60, 52.38, 26.04, 23.79 ppm; FT-IR ν 2935, 2154, 1724, 1493, 1245, 858 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₄H₁₆N₂O₂S 276.0932, found 276.0931.

1-(4-Thiocyanatophenyl)piperidine (4g). Light yellow solid, mp 44–46 °C, 85% yield (28.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.47–7.35 (m, 2H), 6.88 (d, J = 9.0 Hz, 2H), 3.29–3.20 (m, 4H), 1.71–1.65 (m, 4H), 1.64–1.59 (m, 2H) ppm; 13 C NMR (150 MHz, CDCl₃) δ 153.00, 134.01, 116.43, 112.27, 109.03, 49.20, 25.34, 24.20 ppm; FT-IR ν 2931, 2153, 1590, 1500, 1240, 1129, 815 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₂H₁₄N₂S 218.0878, found 218.0877.

1-(3-Methyl-4-thiocyanatophenyl)piperidine (4i). Brown liquid, 73% yield (25.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, J = 8.7 Hz, 1H), 6.79 (d, J = 2.7 Hz, 1H), 6.72 (dd, J = 8.7, 2.8 Hz, 1H), 3.31–3.18 (m, 4H), 2.48 (s, 3H), 1.75–1.64 (m, 4H), 1.63–1.57 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.52, 142.32, 135.72, 117.57, 114.10, 111.90, 108.67, 49.16, 25.38, 24.24, 21.36 ppm; FT-IR ν 2935, 2152, 1590, 1490, 1243, 1129, 736 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₃H₁₆N₂S 232.1034, found 232.1031.

1-(3-Methyl-4-thiocyanatophenyl)pyrrolidine (4j). White solid, mp 109–111 °C, 32% yield (10.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 8.6 Hz, 1H), 6.45 (d, *J* = 2.6 Hz, 1H), 6.38 (dd, *J* = 8.6, 2.8 Hz, 1H), 3.29 (ddd, *J* = 6.6, 4.3, 2.6 Hz, 4H), 2.51 (s, 3H), 2.09–1.96 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 149.78, 142.87, 136.43, 114.04, 112.46, 110.68, 105.11, 47.51, 25.47, 21.40 ppm; FT-IR ν 2923, 2146, 1592, 1497, 1386, 1114, 831 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₂H₁₄N₂S 218.0878, found 218.0875.

1-(5-Methyl-2,4-dithiocyanatophenyl)pyrrolidine (4ja). White solid, mp 67–69 °C, 57% yield (24.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (s, 1H), 6.75 (s, 1H), 3.54 (t, *J* = 6.6 Hz, 4H), 2.52 (s, 3H), 2.07–1.98 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 152.04, 145.25, 143.81, 118.84, 111.63, 110.91, 110.29, 105.65, 51.61, 25.78, 21.23 ppm; FT-IR ν 2919, 2154, 1581, 1478, 1134, 735, 703 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₃H₁₃N₃S₂ 275.0551, found 275.0547.

1-(4-Methoxy-2-thiocyanatophenyl)pyrrolidine (4k). Light yellow liquid, 69% yield (24.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.14 (d, *J* = 2.8 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 1H), 6.83 (dd, *J* = 8.7, 2.8 Hz, 1H), 3.82 (s, 3H), 3.08–2.96 (m, 4H), 1.99–1.90 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 157.47, 140.94, 125.71, 122.48, 115.25, 112.36, 111.71, 55.79, 53.32, 24.65 ppm; FT-IR ν 2923, 2155, 1492, 1284, 1228, 1044 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₂H₁₄N₂OS 234.0827, found 234.0826.

2-(4-Thiocyanatophenyl)-1,2,3,4-tetrahydroisoquinoline (4l). Orange solid, mp 114–116 °C, 64% yield (26.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.53–7.40 (m, 2H), 7.24–7.10 (m, 4H), 6.94–6.85 (m, 2H), 4.45 (s, 2H), 3.59 (t, J = 5.9 Hz, 2H), 2.98 (t, J = 5.9 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 151.38, 134.80, 134.29, 133.61, 128.28, 126.75, 126.47, 126.37, 114.76, 112.33, 108.38, 49.29, 45.13, 28.91 ppm; FT-IR ν 2927, 2154, 1592, 1500, 1265, 734 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₆H₁₄N₂S 266.0878, found 266.0880.

2-(2,4-Dithiocyanatophenyl)-1,2,3,4-tetrahydroisoquinoline (4la). Orange solid, mp 61–63 °C, 23% yield (11.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 2.1 Hz, 1H), 7.58 (dd, J = 8.3, 2.1 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.21 (ddd, J = 17.0, 11.5, 6.9 Hz, 3H), 7.07 (d, J = 7.0 Hz, 1H), 4.15 (s, 2H), 3.26 (t, J = 5.8 Hz, 2H), 3.03 (t, J = 5.7 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 150.82, 133.44, 133.33, 131.67, 129.06, 128.77, 128.17, 126.89, 126.31, 126.21, 123.85, 122.20, 110.72, 110.40, 109.89, 54.22, 50.65, 28.97 ppm; FT-IR ν 2925, 2155, 1582, 1483, 1135, 737 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₇H₁₃N₃S₂ 323.0551, found 323.0550.

5-(4-Methoxy-2-thiocyanatophenyl)-10,11-dihydro-5*H***-dibenzo [***b***,***f***]azepine (4m). White solid, mp 153–155 °C, 78% yield (42.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d,** *J* **= 8.7 Hz, 1H), 7.35–7.21 (m, 3H), 7.17–7.04 (m, 3H), 7.03–6.86 (m, 2H), 6.62 (dd,** *J* **= 8.3, 0.8 Hz, 1H), 6.55 (d,** *J* **= 8.9 Hz, 1H), 3.93 (s, 3H), 3.32–3.15 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 159.99, 146.13, 143.39, 134.84, 134.47, 134.37, 134.29, 133.28, 130.21, 129.85, 128.43, 126.78, 122.99, 122.08, 121.35, 116.12, 113.66, 111.31, 109.65, 55.95, 36.87, 35.12 ppm; FT-IR \nu 2923, 2154, 1497, 1234, 1047, 755, 731 cm⁻¹; HRMS (EI,** *m/z***): M⁺ calculated for C₂₂H₁₈N₂OS 358.1140, found 358.1139.**

5-(2-Methyl-4,6-dithiocyanatophenyl)-10,11-dihydro-5*H***-dibenzo [***b***,***f***]azepine (4na). White solid, mp 141–143 °C, 71% yield (43.0 mg); ¹H NMR (600 MHz, CDCl₃) \delta 7.54–7.33 (m, 3H), 7.29 (s, 2H), 7.21 (d,** *J* **= 6.5 Hz, 1H), 7.07 (d,** *J* **= 8.2 Hz, 2H), 6.44 (d,** *J* **= 8.8 Hz, 2H), 3.20 (s, 4H), 2.01 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) \delta 145.93, 144.15, 137.04, 133.71, 133.58, 132.84, 130.93, 130.05, 128.66, 128.54, 122.60, 113.07, 111.38, 37.11, 17.52 ppm; FT-IR \nu 2923, 2856, 2152, 2104, 1578, 1474, 1297, 812 cm⁻¹; HRMS (ESI,** *m/z***): [M + Na]⁺ calculated for C₂₃H₁₇N₃NaS₂ 422.0762, found 422.0776.**

5-(4-Thiocyanatophenyl)-10,11-dihydro-5*H***-dibenzo[***b***,***f***]azepine (40). White solid, mp 175–176 °C, 83% yield (41.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.35 (dd,** *J* **= 7.3, 1.4 Hz, 2H), 7.31–7.19 (m, 8H), 6.65–6.52 (m, 2H), 2.98 (s, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 150.83, 142.45, 137.89, 134.15, 131.18, 129.36, 127.75, 127.38, 113.97, 112.34, 108.55, 30.60 ppm; FT-IR \nu 2927, 2155, 1592, 1501, 1247, 803 cm⁻¹; HRMS (EI,** *m/z***): M⁺ calculated for C₂₁H₁₆N₂S 328.1034, found 328.1038.**

1-(4-Methoxyphenyl)-6-thiocyanato-1,2,3,4-tetrahydroquinoline (**4u**). White solid, mp 89–91 °C, 71% yield (32.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.20 (d, J = 1.3 Hz, 1H), 7.16–7.10 (m, 2H), 7.04 (dd, J = 8.7, 2.2 Hz, 1H), 6.97–6.91 (m, 2H), 6.36 (d, J = 8.7 Hz, 1H), 3.83 (s, 3H), 3.65–3.53 (m, 2H), 2.85 (t, J = 6.3 Hz, 2H), 2.06 (dt, J = 12.5, 6.2 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 157.68, 147.71, 139.57, 134.05, 131.86, 128.15, 124.09, 115.20, 114.79, 112.67, 106.85, 55.48, 51.68, 27.75, 21.84 ppm; HRMS (ESI, m/z): [M + Na]⁺ calculated for C₁₇H₁₆N₂NaOS 319.0876, found 319.0863.

Benzyl(4-thiocyanatophenyl)carbamate (4p). White solid, mp 83–85 °C, 43% yield (18.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.53–7.46 (m, 4H), 7.43–7.34 (m, 5H), 6.81 (s, 1H), 5.22 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 152.88, 139.77, 135.58, 132.46, 128.72, 128.61, 128.44, 119.82, 117.19, 111.05, 67.48 ppm; FT-IR ν 2920, 2851, 2152, 1713, 1590, 1220, 1043, 811, 689 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₅H₁₂N₂O₂S 284.0619, found 284.0616.

Benzyl(6-thiocyanatobenzo[*d*][1,3]dioxol-5-yl)carbamate (4q). White solid, mp above 250 °C, 91% yield (45.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (s, 1H), 7.52–7.32 (m, 5H), 7.15 (s, 1H), 7.06 (s, 1H), 6.03 (s, 2H), 5.23 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.23, 151.50, 135.48, 128.71, 128.61, 128.50, 113.50, 109.92, 102.49, 77.25, 77.04, 76.83, 67.74 ppm; FT-IR ν 2919, 2851, 2157, 1697, 1529, 1233, 1066, 877 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₆H₁₂N₂O₄S 328.0518, found 328.0518.

1-(4-Methoxy-2-nitrophenyl)piperidine (5a). Red liquid, 85% yield (30.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.26 (d, J = 1.1 Hz, 1H), 7.13 (d, J = 9.0 Hz, 1H), 7.04 (dd, J = 9.0, 3.0 Hz, 1H), 3.81 (s, 3H), 2.94–2.89 (m, 4H), 1.73–1.65 (m, 4H), 1.57–1.53 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 154.38, 144.60, 141.18, 123.09, 120.09, 109.36, 55.87, 54.02, 26.22, 24.05 ppm; FT-IR ν 2936, 1529, 1301, 1225, 1043, 802 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₂H₁₆N₂O₃ 236.1161, found 236.1163.

8-(4-Methoxy-2-nitrophenyl)-1,4-dioxa-8-azaspiro[4.5]decane (5b). Yellow solid, mp 107–109 °C, 93% yield (41.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.29–7.26 (m, 1H), 7.19 (d, J = 9.0 Hz, 1H), 7.05 (dd, J = 9.0, 3.0 Hz, 1H), 3.99 (s, 4H), 3.81 (s, 3H), 3.12–2.98 (m, 4H), 1.92–1.79 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 154.99, 145.17, 140.17, 123.50, 119.97, 109.40, 106.79, 64.31, 55.88, 51.18, 35.35 ppm; FT-IR ν 2962, 1528, 1266, 1107, 1040, 734, 703 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₄H₁₈N₂O₅ 294.1216, found 294.1219.

4-(5*H*-Dibenzo[*a*,*d*][7]annulen-5-ylidene)-1-(4-methoxy-2-nitrophenyl)piperidine (5c). Orange solid, mp 167–168 °C, 81% yield (52.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.37–7.30 (m, 4H), 7.26–7.24 (m, 3H), 7.24–7.20 (m, 2H), 7.06 (d, *J* = 9.0 Hz, 1H), 7.01 (dd, *J* = 9.0, 2.9 Hz, 1H), 6.93 (s, 2H), 3.79 (s, 3H), 3.05–2.99 (m, 2H), 2.71–2.64 (m, 2H), 2.49 (ddd, *J* = 13.6, 9.5, 4.1 Hz, 2H), 2.32–2.26 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 138.98, 134.75, 130.99, 128.49, 128.21, 127.82, 126.33, 123.29, 120.02, 109.40, 55.87, 54.46, 30.51 ppm; FT-IR ν 2926, 1528, 1362, 1221, 1092, 802 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₂₇H₂₄N₂O₃ 424.1787, found 424.1786.

5-(4-Methoxy-2-nitrophenyl)-10,11-dihydro-5*H***-dibenzo[***b***,***f***] azepine (5m). Brown solid, mp 136–137 °C, 84% yield (44.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d,** *J* **= 9.2 Hz, 1H), 7.18 (dd,** *J* **= 8.5, 2.5 Hz, 3H), 7.12–6.99 (m, 7H), 3.82 (s, 3H), 3.19 (s, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 153.61, 144.28, 141.57, 136.56, 133.94, 130.69, 126.58, 125.34, 124.85, 124.75, 120.23, 109.79, 55.99, 32.47 ppm; FT-IR \nu 2924, 1527, 1487, 1264, 1037, 758 cm⁻¹; HRMS (EI,** *m/z***): M⁺ Calcd for C₂₁H₁₈N₂O₃ 346.1317, found 346.1317.**

1-(4-Methoxy-2-(phenylsulfonyl)phenyl)piperidine(7a). White solid; mp 111–112 °C; 76% yield (38.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.7 Hz, 2H), 7.81 (d, *J* = 3.0 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 8.7 Hz, 1H), 7.11 (dd, *J* = 8.7, 3.0 Hz, 1H), 3.88 (s, 3H), 2.69–2.43 (m, 4H), 1.55–1.33 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.57, 146.90, 142.71, 137.73, 132.27, 128.21, 127.43, 125.63, 121.31, 113.81, 55.90, 54.84, 25.60, 23.87 ppm; FT-IR ν 2928, 2145, 1515, 1311, 1114, 876 cm⁻¹; HRMS (ESI, *m/z*): [M + H]⁺ calculated for C₁₈H₂₂NO₃S 332.1320, found 332.1316.

1-(4-Methoxy-2-(methylsulfonyl)phenyl)piperidine (8a). Light orange solid, mp 99–101 °C, 73% yield (29.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 3.0 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 7.11 (dd, *J* = 8.7, 3.0 Hz, 1H), 3.83 (s, 3H), 3.37 (s, 3H), 3.24–2.89 (bs, 2H), 2.88–2.47 (bs, 2H), 1.96–1.52 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.64, 146.46, 137.76, 125.24, 121.02, 112.99, 55.85, 55.29, 42.73, 26.44, 23.99 ppm; FT-IR ν 2936, 2800, 1492, 1294, 1137, 1018, 758 cm⁻¹; HRMS (EI, *m*/*z*): M⁺ calculated for C₁₃H₁₉NO₃S 269.1086, found 269.1090.

1-(4-Methoxy-2-(phenylthio)phenyl)piperidine (9a). Brown viscous liquid, 69% yield (31.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.55–7.46 (m, 2H), 7.40–7.31 (m, 3H), 7.00 (d, *J* = 8.6 Hz, 1H), 6.63 (dd, *J* = 8.6, 2.9 Hz, 1H), 6.31 (d, *J* = 2.9 Hz, 1H), 3.60 (s, 3H), 2.96–2.81 (bs, 4H), 1.71 (dt, *J* = 11.1, 5.6 Hz, 4H), 1.54 (d, *J* = 5.1 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.18, 144.51, 136.70, 134.53, 133.28, 129.37, 128.21, 120.72, 113.30, 110.50, 55.29, 53.90, 26.52, 24.28 ppm; FT-IR *ν* 2930, 2851, 1611, 1482, 1209, 1044, 749 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₈H₂₁NOS 299.1344, found 299.1344.

General procedure for azidation

Cyclic amine (0.15 mmol, 1.0 equiv.) and NaN₃ (0.3 mmol, 2.0 equiv.) were dissolved in 1 mL of nitromethane and PIFA (0.3 mmol, 2.0 equiv.) was cautiously added portionwise to the reaction mixture, and then the solution was stirred at room temperature for 30 min to 8 h, monitored by TLC. Then, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with 10 mL saturated solution of NaHCO₃ and 5 mL brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (hexane/EtOAc, 20:1) to afford the corresponding products.

1-(2-Azido-4-methoxyphenyl)piperidine (6a). Brown liquid, 78% yield (27.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 6.98 (d, J = 8.8 Hz, 1H), 6.63 (dd, J = 8.8, 2.8 Hz, 1H), 6.59 (d, J = 2.8 Hz, 1H), 3.77 (s, 3H), 2.89–2.83 (m, 4H), 1.74 (dt, J = 11.2, 5.7 Hz, 4H), 1.57–1.51 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.03, 139.79, 134.47, 121.17, 110.31, 106.15, 55.55, 53.76, 25.93, 24.17 ppm; FT-IR ν 2936, 2109, 1503, 1442, 1225, 1045 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₂H₁₆N₄O 232.1324, found 232.1328.

8-(2-Azido-4-methoxyphenyl)-1,4-dioxa-8-azaspiro[4.5]decane (6b). Brown liquid, 76% yield (33.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.02 (d, *J* = 8.7 Hz, 1H), 6.63 (dd, *J* = 8.7, 2.8 Hz, 1H), 6.60 (d, *J* = 2.8 Hz, 1H), 4.00 (s, 4H), 3.77 (s, 3H), 3.09–2.94 (m, 4H), 1.97–1.82 (m, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.30, 138.51, 134.45, 121.43, 110.31, 106.89, 106.16, 64.30, 55.55, 50.60, 34.96 ppm; FT-IR ν 2957, 2109, 1504, 1214, 1109, 1041, 735 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C₁₄H₁₈N₄O₃ 290.1379, found 290.1384.

1-(2-Azido-4-methoxyphenyl)-4-(5*H***-dibenzo[***a***,***d***][7]annulen-5ylidene)piperidine (6c). Brown viscous liquid, 68% yield (43.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.40–7.33 (m, 4H), 7.28–7.23 (m, 4H), 6.96 (s, 2H), 6.92 (d,** *J* **= 8.7 Hz, 1H), 6.65–6.57 (m, 2H), 3.78 (s, 3H), 3.07–3.00 (m, 2H), 2.68–2.60 (m, 2H), 2.55 (ddd,** *J* **= 13.4, 9.4, 4.0 Hz, 2H), 2.37–2.31 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.20, 139.08, 134.80, 131.00, 128.53, 128.20, 127.78, 126.29, 121.35, 110.30, 106.20, 55.54, 54.21, 30.16 ppm; FT-IR \nu 2937, 2108, 1504, 1221, 1044,** 737 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₂₇H₂₄N₄O 420.1950, found 420.1953.

4-(2-Azido-4-methoxyphenyl)morpholine (6d). Brown liquid, 72% yield (25.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 6.97 (d, J = 8.7 Hz, 1H), 6.66 (dd, J = 8.7, 2.8 Hz, 1H), 6.62 (d, J = 2.8 Hz, 1H), 3.89–3.84 (m, 4H), 3.78 (s, 3H), 2.95 (dd, J = 5.4, 3.8 Hz, 4H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 156.45, 137.94, 134.37, 120.91, 110.41, 106.30, 66.90, 55.57, 52.43 ppm; FT-IR ν 2959, 2110, 1504, 1219, 1115, 1035, 735 cm⁻¹; HRMS (EI, m/z): M⁺ calculated for C₁₁H₁₄N₄O₂ 234.1117, found 234.1120.

Late-stage azidation of brucine

Brucine 1r (0.1 g, 0.254 mmol) and NaN₃ (0.033 g, 0.508 mmol) were dissolved in 3 mL of nitromethane and PIFA (0.218 g, 0.508 mmol) was cautiously added portionwise to the reaction mixture, and then the solution was stirred at rt for 10 to 30 min, monitored by TLC. Then, the reaction mixture was diluted with water (3 mL) and extracted with chloroform (3 × 15 mL). The organic layer was washed with 10 mL saturated solution of NaHCO3 and 5 mL brine solution, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (MeOH/CH₂Cl₂, 1:20) to afford the desired product 6r as a light brown solid; mp above 250 °C; 79% yield (87.4 mg); ¹H NMR (600 MHz, $CDCl_3$) δ 7.69 (s, 1H), 5.91 (s, 1H), 4.76 (s, 1H), 4.28 (d, J = 8.4 Hz, 1H), 4.14 (dd, J = 13.8, 7.0 Hz, 1H), 4.06 (dd, J = 13.7, 6.0 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.73 (dd, J = 23.7, 12.6 Hz, 2H), 3.20 (dd, J = 9.4, 8.1 Hz, 1H), 3.16-3.06 (m, 2H), 2.88-2.70 (m, 2H), 2.62 (dd, J = 17.4, 3.3 Hz, 1H), 2.43–2.26 (m, 2H), 1.66 (dd, J = 12.5, 5.9 Hz, 1H), 1.48 (d, J = 14.5 Hz, 1H), 1.31–1.28 (m, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 169.14, 153.33, 139.90, 138.90, 129.42, 127.86, 114.00, 97.76, 77.55, 64.61, 61.77, 60.48, 56.34, 56.18, 52.67, 52.32, 49.24, 48.41, 42.40, 38.58, 31.21. 26.86 ppm; FT-IR ν 2907, 2104, 1660, 1397, 1045, 837 cm⁻¹; HRMS (ESI, m/z): $[M + H]^+$ calculated for $C_{2,3}H_{2,6}N_5O_4$ 436.1985, found 436.1978.

Thiocyanation of julolidine

Julolidine 1s (20.8 mg, 0.12 mmol) and NaSCN (19.4 mg, 0.24 mmol) were dissolved in a 1.0 mL mixture of nitromethane and water (9:1) and PIFA (103.2 mg, 0.24 mmol) was cautiously added portionwise to the reaction mixture, and then the solution was stirred at rt for 10 to 30 min, monitored by TLC. Then, the reaction mixture was diluted with water (3 mL) and extracted with ethyl acetate (3 \times 10 mL). The organic layer was washed with 10 mL saturated solution of NaHCO3 and 5 mL brine solution, dried over Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography (hexane/EtOAc, 20:1) to afford the desired product **4s** as a white solid; mp 99–100 °C; 71% yield (20.0 mg); ¹H NMR (600 MHz, acetone-d₆) δ 6.99 (s, 2H), 3.28-3.18 (m, 4H), 2.71 (t, J = 6.4 Hz, 4H), 1.96–1.86 (m, 4H) ppm; ¹³C NMR (150 MHz, acetone) δ 145.55, 132.65, 123.76, 113.02, 104.87, 50.23, 28.17, 22.00 ppm; FT-IR v 2849, 2145, 1516, 1313, 1202, 875 cm⁻¹; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₃H₁₅N₂S 231.0956, found 231.0950.

1 mmol scale synthesis of 4h. To a dried round-bottom flask were added 4-phenylmorpholine 1h (163.2 mg, 1.0 mmol) and NaSCN (162.1 mg, 2.0 mmol) and they were dissolved in a 6.0 mL mixture of nitromethane and water (9:1). [Bis(trifluoroacetoxy)iodo]benzene (PIFA) (860.0 mg, 2.0 mmol) was cautiously added portionwise to the reaction mixture at 0 °C and then the solution was stirred at rt for 10 to 30 min, monitored by TLC. Then, the reaction mixture was diluted with water (3 mL) and extracted with ethyl acetate (3×15 mL). The organic layer was washed with 10 mL saturated solution of NaHCO₃ and 5 mL brine solution, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (hexane/EtOAc, 20:1) to afford the desired product 4-(4-thiocyanatophenyl)morpholine 4h as a white solid, mp 90-92 °C, 81% yield (178.4 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.50-7.40 (m, 2H), 6.89 (dd, J = 9.6, 2.5 Hz, 2H), 3.93-3.79 (m, 4H), 3.24–3.15 (m, 4H) ppm; 13 C NMR (150 MHz, CDCl₃) δ 152.51, 133.72, 116.15, 111.90, 111.15, 66.54, 48.04 ppm; FT-IR ν 2960, 2155, 1494, 1204, 1115, 737 cm⁻¹; HRMS (EI, *m/z*): M⁺ calculated for C11H12N2OS 220.0670, found 220.0674, and di-SCN product 4-(2,4-dithiocyanatophenyl)morpholine 4ha as a light yellow solid; mp 82-83 °C; 7% yield (19.4 mg); ¹H NMR (600 MHz, $CDCl_3$) δ 7.76 (d, J = 2.1 Hz, 1H), 7.58 (dd, J = 8.3, 2.1 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 3.94–3.75 (m, 4H), 3.01–2.87 (m, 4H) ppm; 13 C NMR (150 MHz, CDCl₃) δ 150.38, 131.68, 128.71, 127.94, 123.69, 122.67, 110.10, 109.76, 66.88, 52.33 ppm; FT-IR v 2851, 2163, 2145, 1586, 1314, 1113, 876 cm⁻¹; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₂H₁₂N₃OS₂ 278.0422, found 278.0418.

Tetrazole formation¹⁸

A dried round-bottom flask was charged with a solution of **4h** (1.0 equiv.) in isopropyl alcohol (3 mL). Then, NaN₃ (1.2 equiv.) and ZnCl_2 (1.0 equiv.) were added to the reaction mixture.

Di-tetrazole formation

A dried round-bottom flask was charged with a solution of **4ha** (1.0 equiv.) in isopropyl alcohol (3 mL). Then, NaN₃ (2.4 equiv.) and ZnCl_2 (2.0 equiv.) were added to the reaction mixture.

The reaction mixture was then continuously stirred at 50 °C for 1.5 to 3 h until **4h** or **4ha** was completely consumed (TLC). After completion of the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. Afterward, a solution of 5% NaOH (10 mL) was added to the mixture and it was stirred for 20 min at rt. The suspension of $Zn(OH)_2$ was filtered and washed with 5% NaOH (10 ml). Next, the pH of the combined filtrate was adjusted to 1.0 with con. HCl, but precipitation did not occur. Afterward, the filtrate was extracted with ethyl acetate (3 × 15 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (MeOH/CH₂Cl₂, 1:4) to afford the desired products.

4-(4-((1H-Tetrazol-5-yl)thio)phenyl)morpholine (10h). White solid, mp above 250 °C, 84% yield (22.0 mg); ¹H NMR (600 MHz, CD₃OD) δ 7.42–7.31 (m, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.85–3.74 (m, 4H), 3.19–3.09 (m, 4H) ppm; ¹³C NMR

(150 MHz, CD₃OD) δ 157.80, 153.18, 135.08, 120.68, 117.29, 67.82, 49.84 ppm; FT-IR ν 2838, 1500, 1235, 1116, 923, 817 cm⁻¹ HRMS (ESI, *m*/*z*): [M + H]⁺ calculated for C₁₁H₁₄N₅OS 264.0919, found 264.0913.

4-(2,4-Bis((1*H*-tetrazol-5-yl)thio)phenyl)morpholine (10ha). White solid, mp above 250 °C, 63% yield (23.0 mg); ¹H NMR (600 MHz, CD₃OD) δ 7.13–7.02 (m, 2H), 6.70 (s, 1H), 3.86–3.72 (m, 4H), 3.04–2.92 (m, 4H) ppm; ¹³C NMR (150 MHz, CD₃OD) δ 156.68, 154.99, 150.09, 134.86, 131.09, 130.52, 130.21, 122.35, 68.27, 53.20 ppm; FT-IR ν 2971, 1501, 1236, 1112, 930, 818 cm⁻¹; HRMS (ESI, *m*/*z*): [M + H]⁺ calculated for C₁₂H₁₄N₉OS₂ 364.0763, found 364.0760.

Tris(4-bromo-2-chlorophenyl)amine (2taa). 1t (0.03 mmol, 1.0 equiv.) and NaCl (0.06 mmol, 2.0 equiv.) were dissolved in a 1 mL mixture of nitromethane and water (9:1) and PIFA (0.06 mmol, 2.0 equiv.) was cautiously added portionwise to the reaction mixture, and then the solution was stirred at rt for 1 h, monitored by TLC. Then, the reaction mixture was diluted with chloroform, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography with hexane only to afford the corresponding product 2taa as a white solid; mp 56-58 °C; 51% yield (9.0 mg); ¹H NMR (600 MHz, $CDCl_3$) δ 7.55 (d, J = 2.2 Hz, 3H), 7.31–7.28 (m, 3H), 6.74 (d, J = 8.6 Hz, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 142.55, 133.94, 131.40, 130.74, 127.51, 118.18 ppm; FT-IR ν 2919, 2850, 1469, 1299, 1084, 813, 705 cm⁻¹; HRMS (ESI, *m/z*): $[M + H]^+$ calculated for $C_{18}H_{10}Br_3Cl_3N$ 583.7403, found 583.7405.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2017R1E1A1A01076642). It was also supported by the Gachon University Research fund of 2019 (GCU-2019-0328). C. M. would like to thank the CSIR, India.

Notes and references

 (a) J.-X. Tian, M. Wang, L. Xu, Y. Tian, R. Song, F.-G. Xu and Z.-J. Zhang, *Bioanalysis*, 2014, 6, 137; (b) A. Balwan, D. P. Nicolau, M. Wungwattana, J. B. Zuckerman and V. Waters, *Antimicrob. Agents Chemother.*, 2016, 60, 1; (c) H. Sakamoto, T. Tsukaguchi, S. Hiroshima, T. Kodama, T. Kobayashi, T. A. Fukami, N. Oikawa, T. Tsukuda, N. Ishii and Y. Aoki, *Cancer Cell*, 2011, 19, 679; (d) S. A. Nielsen, M. B. McDonald and P. A. Majmudar, *Clin. Ophthalmol.*, 2013, 7, 149; (e) D. R. Camidge, D.-W. Kim, M. Tiseo, C. J. Langer, M.-J. Ahn, A. T. Shaw, R. M. Huber, M. J. Hochmair, D. H. Lee, L. A. Bazhenova, K. A. Gold, S.-H. I. Ou, H. L. West, W. Reichmann, J. Haney, T. Clackson, D. Kerstein and S. N. Gettinger, *J. Clin. Oncol.*, 2018, **36**, 2693; (*f*) S. M. R. Hashemian, T. Farhadi and M. Ganjparvar, *Drug Des., Dev. Ther.*, 2018, **12**, 1759.

- 2 (a) J.-M. Qin, P.-H. Yin, Q. Li, Z.-Q. Sa, X. Sheng, L. Yang, T. Huang, M. Zhang, K.-P. Gao, Q.-H. Chen, J.-W. Ma and H.-B. Shen, *Int. J. Nanomed.*, 2012, 7, 369; (b) X. Deng, F. Yin, X. Lu, B. Cai and W. Yin, *Toxicol. Sci.*, 2006, 91, 59; (c) W. Yin, T.-S. Wang, F.-Z. Yin and B.-C. Cai, *J. Ethnopharmacol.*, 2003, 88, 205.
- 3 (a) J.-M. Qin, P.-H. Yin, Q. Li, Z.-Q. Sa, X. Sheng, L. Yang, T. Huang, M. Zhang, K.-P. Gao, Q.-H. Chen, J.-W. Ma and H.-B. Shen, *Int. J. Nanomed.*, 2012, 7, 369; (b) X. Deng, F. Yin, X. Lu, B. Cai and W. Yin, *Toxicol. Sci.*, 2006, 91, 59; (c) W. Yin, T.-S. Wang, F.-Z. Yin and B.-C. Cai, *J. Ethnopharmacol.*, 2003, 88, 205.
- 4 (a) P. Gharagozloo, S. Lazareno, A. Popham and N. J. M. Birdsall, *J. Med. Chem.*, 1999, 42, 438;
 (b) N. J. Birdsall, T. Farries, P. Gharagozloo, S. Kobayashi, S. Lazareno and M. Sugimoto, *Mol. Pharmacol.*, 1999, 55, 778; (c) R. Rees and H. Smith, *J. Med. Chem.*, 1967, 10, 624.
- 5 T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal and S. W. Krska, *Chem. Soc. Rev.*, 2016, **45**, 546.
- 6 C.-L. Sun and Z.-J. Shi, Chem. Rev., 2014, 114, 9219.
- 7 (a) A. Mishra, T. K. Vats, M. P. Nair, A. Das and I. Deb, J. Org. Chem., 2017, 82, 12406; (b) J. Cheng, X. Deng, G. Wang, Y. Li, X. Cheng and G. Li, Org. Lett., 2016, 18, 4538; (c) C. Min, A. Sanchawala and D. Seidel, Org. Lett., 2014, 16, 2756.
- 8 (a) A. Yoshimura and V. V. Zhdankin, *Chem. Rev.*, 2016, 116, 3328; (b) J. Sun, D. Zhang-Negrerie, Y. Du and K. Zhao, *Rep. Org. Chem.*, 2016, 6, 25; (c) Y. Li, D. P. Hari, M. V. Vita and J. Waser, *Angew. Chem., Int. Ed.*, 2016, 55, 4436.
- 9 (a) P. D. Nahide, V. Ramadoss, K. A. Juárez-Ornelas, Y. Satkar, R. Ortiz-Alvarado, J. M. Cervera-Villanueva, Á. J. Alonso-Castro, J. R. Zapata-Morales, M. A. Ramírez-Morales, A. J. Ruiz-Padilla, M. A. Deveze-Alvarez and C. R. Solorio-Alvarado, Eur. J. Org. Chem., 2018, 4, 485; (b) Y. Kita, T. Takada, S. Mihara, B. A. Whelan and H. Tohma, J. Org. Chem., 1995, 60, 7144; (c) Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka and T. Yakura, Tetrahedron Lett., 1991, 32, 4321; (d) C. Tian, X. Yao, W. Ji, Q. Wang, G. An and G. Li, Eur. J. Org. Chem., 2018, 5972; (e) H. Liu, X. Wang and Y. Gu, Org. Biomol. Chem., 2011, 9, 1614; (f) U. Kloeckner and B. J. Nachtsheim, Chem. Commun., 2014, 50, 10485; (g) D. R. Indukuri, G. R. Potuganti and M. Alla, Synlett, 2019, 30, 1573; (h) V. Himabindu, S. P. Parvathaneni and V. J. Rao, New J. Chem., 2018, 42, 18889; (i) C. Mudithanapelli, L. P. Dhorma and M.-H. Kim, Org. Lett., 2019, 21, 3098.
- 10 (a) B. Xu, D. Li, L. Lu, D. Wang, Y. Hu and Q. Shen, Org. Chem. Front., 2018, 5, 2163; (b) L. Yang, D. Zhang-Negrerie, K. Zhao and Y. Du, J. Org. Chem., 2016, 81, 3372; (c) K. Morimoto, Y. Ohnishi, D. Koseki, A. Nakamura, T. Dohi and Y. Kita, Org. Biomol. Chem., 2016, 14, 8947;

(*d*) N. Chatterjee, D. Bhatt and A. Goswami, *Org. Biomol. Chem.*, 2015, **13**, 4828.

- 11 (a) X.-Z. Shu, X.-F. Xia, Y.-F. Yang, K.-G. Ji, X.-Y. Liu and Y.-M. Liang, *J. Org. Chem.*, 2009, 74, 7464; (b) K. Matcha and A. P. Antonchick, *Angew. Chem., Int. Ed.*, 2013, 52, 2082.
- 12 (a) B. Hu, Y. Cao, B. Zhang, D. Zhang-Negrerie and Y. Du, Adv. Synth. Catal., 2017, 359, 2542; (b) C. Depken, F. Kraetzschmar and A. Breder, Org. Chem. Front., 2016, 3, 314.
- 13 (a) U. Karmakar and R. Samanta, J. Org. Chem., 2019, 84, 2850; (b) R. J. Griffiths, W. C. Kong, S. A. Richards, G. A. Burley, M. C. Willis and E. P. A. Talbot, Chem. Sci., 2018, 9, 2295; (c) F. Wang, X. Yu, Z. Qi and X. Li, Chem. Eur. J., 2016, 22, 511.
- 14 K. Morimoto, D. Koseki, T. Dohi and Y. Kita, *Synlett*, 2017, 28, 2941.
- 15 (a) X. Liu, H. Zhang, F. Yang and B. Wang, Org. Biomol. Chem., 2019, 17, 7564; (b) C. Tian, Q. Wang, X. Wang, G. An and G. Li, J. Org. Chem., 2019, 84, 14241; (c) C. Tian, L.-M. Yang, H.-T. Tian, G.-H. An and G.-M. Li, J. Fluor. Chem., 2019, 219, 23.
- 16 (a) J. Li, J. S. Cisar, C. Y. Zhou, B. Vera, H. Williams, A. D. Rodríguez, B. F. Cravatt and D. Romo, *Nat. Chem.*, 2013, 5, 510; (b) Á. L. F. d. Arriba, E. Lenci, M. Sonawane, O. Formery and D. J. Dixon, *Angew. Chem., Int. Ed.*, 2017, 56, 3655.
- 17 (a) A. Nano, M. P. Gullo, B. Ventura, N. Armaroli, A. Barbieri and R. Ziessel, Chem. Commun., 2015, 51, 3351; (b) M. W. Kryman, G. A. Schamerhorn, J. E. Hill, D. Calitree, K. S. Davies, M. K. Linder, B. T. Y. Ohulchanskyy and M. R. Detty, Organometallics, 2014, 33, 2628; (c) P. Xiao, M. Frigoli, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier and J. Lalevée, Macromolecules, 2014, 47, 106; (d) G. Wu, F. Kong, J. Li, X. Fang, Y. Li, S. Dai, Q. Chen and X. Zhang, J. Power Sources, 2013, 243, 131. For julolidine skeleton natural products, see. (e) Y.-B. Zhang, L. Yang, D. Luo, N.-H. Chen, Z.-N. Wu, W.-C. Ye, Y.-L. Li and G.-C. Wang, Org. Lett., 2018, 20, 5942.
- 18 S. Vorona, T. Artamonova, Y. Zevatskii and L. Myznikov, *Synthesis*, 2014, **46**, 781.
- 19 C. G. Neochoritis, T. Zhao and A. Dömling, *Chem. Rev.*, 2019, **119**, 1970.
- 20 Y. Ge, A. Kazi, F. Marsilio, Y. Luo, S. Jain, W. Brooks, K. G. Daniel, W. C. Guida, S. M. Sebti and H. R. Lawrence, *J. Med. Chem.*, 2012, 55(5), 1978.
- 21 K. A. Rinderspacher, Y. U. Wai, K. Duff, D. Landry and S. X. Deng, U.S. Patent Application No 15/480220, 2017.
- 22 J. Louie, J. F. Hartwig and A. J. Fry, *J. Am. Chem. Soc.*, 1997, **119**, 11695.
- 23 (a) X. Wang and A. Studer, Acc. Chem. Res., 2017, 50, 1712;
 (b) L. Wang, Y. Zhang, F. Li, X. Hao, H.-Y. Zhang and J. Zhao, Adv. Synth. Catal., 2018, 360, 3969; (c) T. Dohi, M. Ito, N. Yamaoka, K. Morimoto, H. Fujioka and Y. Kita, Tetrahedron, 2009, 65, 10797; (d) M. Reitti, P. Villo and B. Olofsson, Angew. Chem., Int. Ed., 2016, 55, 8928;
 (e) S. A. Moteki, S. Selvakumar, T. Zhang, A. Usui and

K. Maruoka, Asian J. Org. Chem., 2014, 3, 932;
(f) V. A. Nikiforov, V. S. Karavan, S. A. Miltsov,
S. I. Selivanov, E. Kolehmainen, E. Wegelius and
M. Nissinen, ARKIVOC, 2003, 6, 191.

- 24 M. D. Charles, P. Schultz and S. L. Buchwald, *Org. Lett.*, 2005, 7, 3965.
- 25 (a) A. Ruffoni, F. Juliá, T. D. Svejstrup, A. J. McMillan,
 J. Douglas and D. Leonori, *Nat. Chem.*, 2019, 11, 426;
 (b) T. D. Quach and R. A. Batey, *Org. Lett.*, 2003, 5, 4397;
 (c) T. Dang-Bao, C. Pradel, I. Favier and M. Gómez, *Adv. Synth. Catal.*, 2017, 359, 2832; (d) Y. Wang, C. Wei, R. Tang,
 H. Zhan, J. Lin, Z. Liu, W. Tao and Z. Fang, *Org. Biomol.*

Chem., 2018, **16**, 6191; (e) B. Lue, P. Li, C. Fu, L. Xue, Z. Lin and S. Ma, *Adv. Synth. Catal.*, 2011, **353**, 100; (f) Z. Zhang, C. Miao, C. Xia and W. Sun, *Org. Lett.*, 2016, **18**, 1522; (g) J. Almena, F. Foubelo and M. Yus, *Tetrahedron*, 1996, **52**, 8545; (h) W. Huang and S. L. Buchwald, *Chem. – Eur. J.*, 2016, **22**, 14186; (i) J. Meneyrol, P. Helissey, C. Tratrat, S. Giorgi-Renault and H.-P. Husson, *Synth. Commun.*, 2001, **31**, 987; (j) I. D. Inaloo and S. Majnooni, *ChemistrySelect*, 2019, **4**, 7811; (k) S.-Y. Moon, U. B. Kim, D.-B. Sung and W.-S. Kim, *J. Org. Chem.*, 2015, **80**, 1856; (l) D. Gwon, H. Hwang, H. K. Kim, S. R. Marder and S. Chang, *Chem. – Eur. J.*, 2015, **21**, 17200.