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An efficient method to prepare 2,3-diarylimidazo[1,2-a]pyridines is described. The procedure involves a
Suzuki cross-coupling reaction followed by a direct arylation at position 3. Imidazo[1,2-a]pyridin-2-yl tri-
flate was identified as a suitable coupling partner, permitting access to a variety of highly functionalized
2,3-diarylimidazo[1,2-a]pyridines.

� 2011 Elsevier Ltd. All rights reserved.
N

N R

R'

2

3

Figure 1. 2,3-Diarylimidazo[1,2-a]pyridines 1.
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Imidazo[1,2-a]pyridines are a class of nitrogen bridgehead het-
erocycles which have received considerable attention due to their
interesting biological activities.1 Moreover, 2,3-diarylimidazo[1,2-
a]pyridines 1 (Fig. 1) have shown antiprotozoal,2 antiviral,3 and
anti-apoptotic4 activities, and have attracted attention as liver X
receptor agonists5 and kinase inhibitors.6 The increased interest
in this class of compounds led us to envisage an efficient synthetic
method. To the best of our knowledge, the access to highly func-
tionalized 2,3-diarylimidazo[1,2-a]pyridines has not yet been de-
scribed in the literature.

Initially, 2-arylimidazo[1,2-a]pyridine cores must be built up.
The most common route for the preparation of such compounds in-
volves condensation between 2-aminopyridine and 2-bromoaceto-
phenone.7 However, such strategy is limited by the commercial
availability of 2-bromoacetophenones. Thus, we envisaged that a
Pd-catalysed Suzuki cross-coupling reaction could proceed at posi-
tion 2 with an appropriate coupling partner.

A retrosynthetic strategy for the synthesis of 2,3-diarylimi-
dazo[1,2-a]pyridines is outlined in Scheme 1. Targeted compounds
1 could be obtained from 2-halogenoimidazo[1,2-a]pyridines 3,
readily available from commercially-available 2-aminopyridine
ll rights reserved.
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followed by a two-step process including Pd-catalysed Suzuki–
Miyaura and direct arylation reactions.
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Scheme 1. Retrosynthetic pathway of 2,3-diarylimidazo[1,2-a]pyridines 1.
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Scheme 2. Synthesis of 3a–c. Reagents and conditions: (i) ClCH2CO2H, Et3N, H2O,
90 �C, 5 h, then EtOH, 5 �C, 2 h, 71%; (ii) X = Cl, POCl3, toluene, reflux, 16 h, 88%;
X = Br, POBr3, toluene, reflux, 16 h, 9%; (iii) BrCH2CO2Et, 0 �C?rt, 15 min, then EtOH,
reflux, 18 h; (iv) PhNTf2, Et3N, toluene, reflux, 20 h, 67% (two steps).
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Scheme 4. Synthesis of 7a–b from 2a.

Table 2
Synthesis of 7a–b via halogenation-Suzuki–Miyaura coupling sequence (path a)

Entry Substrate Conditions Product Yielda

(%)

1 2a NBS, MeCN, rt, 2 h 6a 95
2 2a NIS, MeCN, rt, 1 h 6b 73
3 6a PhB(OH)2, Pd(PPh3)4, Na2CO3,

dioxane–H2O 2:1, 110 �C, 2 h
7a 90

4 6a (4-Pyridyl)boronic acid pinacol ester,
Pd(PPh3)4, Na2CO3, dioxane–H2O 2:1,
110 �C, 2 h

7b 93

5 6b PhB(OH)2, Pd(PPh3)4, Na2CO3,
dioxane–H2O 2:1, sealed tube, reflux,
12 h

7a 93

6 6b (4-Pyridyl)boronic acid pinacol ester,
Pd(PPh3)4, Na2CO3, dioxane–H2O 2:1,
sealed tube, reflux, 12 h

7b 95

a Isolated yield.

Table 3
Synthesis of 7a–b via direct arylation (path b)

Entry Substrate Conditions Product Yielda

(%)

1 2a PhBr, Pd(OAc)2, PPh3, K2CO3, dioxane–
EtOH, MW, 130 �C, 1 h

7a 37b

2 2a PhBr, Pd(OAc)2, PCy3�HBF4, PivOH,
K2CO3, DMA, sealed tube, 100 �C, 16 h

7a 95

3 2a 4-Bromopyridine hydrobromide,
Pd(OAc)2, PCy3.HBF4, PivOH, K2CO3,
DMA, sealed tube, 100 �C, 16 h

7b 85

a Isolated yield.
b Significant amount of starting material (41%, UPLC-MS) was remaining.
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We first started with the synthesis of 2-halogenoimidazo[1,2-
a]pyridines from 2-aminopyridine (Scheme 2). 2-Aminopyridine
was reacted with chloroacetic acid to afford acetic acid derivative
4 in a good yield. Subsequent cyclization with POCl3 and POBr3,
respectively, led to 2-chloroimidazo[1,2-a]pyridine 3a and its bro-
minated analogue 3b.8 These conditions proved to be successful for
3a but afforded a very low yield of 3b (extraction failure). We next
decided to prepare imidazo[1,2-a]pyridin-2-yl triflate9 3c which
could be an efficient coupling partner in the Suzuki–Miyaura
cross-coupling reaction. Thus, 2-aminopyridine reacted with ethyl
bromoacetate to give 5, as a mixture of the expected product and a
non-cyclized intermediate. Subsequent treatment with N-phenyl-
bis(trifluoromethanesulfonimide) led to 3c in a satisfactory yield
(67%, two steps).10

With these suitable substrates in our hand, the Suzuki–Miyaura
reaction of 3a, 3b and 3c with phenylboronic acid afforded 2-
phenylimidazo[1,2-a]pyridine 2a (Scheme 3 and Table 1).

We noticed that 2-chloroimidazo[1,2-a]pyridine 3a was less
reactive than the corresponding bromide 3b (Table 1, entries 1
and 2). Interestingly, triflate 3c proved to be effective in the cou-
pling reaction carried out in a sealed tube with a shorter time (en-
try 3). No difference was observed when the reaction was
performed in 1,4-dioxane (entry 4). Thus these results prompted
us to employ imidazo[1,2-a]pyridin-2-yl triflate 3c as a substrate
for further Suzuki–Miyaura cross-coupling reaction at position 2
of the scaffold.
Table 1
Synthesis of 2a

Entry Substrate Conditions Yield of 2aa

(%)

1 3a DME–H2O 2:1, reflux, sealed tube, 6 h 25
2 3b DME–H2O 2:1, reflux, sealed tube, 6 h 51
3 3c DME–H2O 2:1, 100 �C, sealed tube, 4 h 46
4 3c Dioxane–H2O 2:1, 100 �C, sealed tube,

7 h
43

a Isolated yield.
We next investigated the preparation of 2,3-diarylimidazo[1,2-
a]pyridines 1 through two methods. Initially, we thought that a
halogenation-Suzuki–Miyaura coupling sequence11 could give the
desired products (Scheme 4, path a). Halogenation with NBS or
NIS in acetonitrile afforded easily the compounds 6a and 6b, pre-
cursors for a Suzuki–Miyaura coupling reaction (Table 2, entries
1 and 2). This reaction was carried out using phenylboronic acid
and (4-pyridyl)boronic acid pinacol ester as Suzuki coupling part-
ners in a heterogeneous mixture of 1,4-dioxane, water, sodium car-
bonate, in the presence of catalytic amount of
tetrakis(triphenylphosphine)palladium(0). The corresponding cou-
pling products 7a and 7b were both isolated in excellent yields
(90–95%) (entries 3–6).

In addition, this method was compared to a palladium-cata-
lysed direct arylation reaction starting from 2-phenylimi-
dazo[1,2-a]pyridine 2a (Scheme 4, path b). Following the
procedure described by Guillaumet,12 we observed that a signifi-
cant amount of the starting material remained (Table 3, entry 1).
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Scheme 5. Synthesis of 1a–p from triflate 3c through Suzuki coupling-direct arylation sequence.

Table 4
Synthesis of 1a-pa

Entry Compd Ar Time Yieldb (%) Compd (het) Ar0 Time Yieldb (%)

1 2a C6H5 7 h 43 1a 4-(NO2)C6H4 36 h 93
2 2b 3-ClC6H4 6 h 45 1b C6H5 21 h 83
3 2c 3,5-(Cl)2C6H3 45 min 35 1c C6H5 18 h 83
4 1d 3-Pyridyl 15 h 69
5 2d 2-FC6H4 1 h 97 1ec C6H5 31 h 64
6 1f 3-Pyridyl 14 h 85
7 2e 4-FC6H4 1 h 41 1g C6H5 15 h 60
8 1h 3-Pyridyl 15 h 56
9 1i 3-(NO2)C6H4 16 h 92
10 1jd 3-(MeO)C6H4 72 h 44
11 2f 4-(CO2Et)C6H4 45 min 9 1k C6H5 13 h 27
12 2g 4-(NO2)C6H4 4 h 26 1lc C6H5 18 h 15
13 2h 4-(MeO)C6H4 45 min 78 1m C6H5 10 h 81
14 1n 3-(NO2)C6H4 18 h 67
15 1od 3-(MeO)C6H4 72 h 40
16 2i 2-(MeO)C6H4 1 h 94 1pe C6H5 21 h 84

a Direct arylation conditions: 2a–i 1 equiv, (het) Ar0Br 1 equiv, Pd(OAc)2 2 mol %, PCy3.HBF4 4 mol %, PivOH 0.3 equiv, K2CO3 1.5 equiv, DMA, sealed tube, 100 �C.
b Isolated yield.
c Reagents and conditions: Pd(OAc)2 4 mol %, PCy3.HBF4 8 mol %, PivOH 0.6 equiv.
d Reagents and conditions: (het) Ar0Br 3.0 equiv, Pd(OAc)2 8 mol %, PCy3.HBF4 16 mol %, PivOH 1.2 equiv, K2CO3 2.0 equiv.
e Reagents and conditions: (het) Ar0Br 1.3 equiv, Pd(OAc)2 4 mol %, PCy3�HBF4 8 mol %.
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The reaction did not proceed to completion even after 2 h. We tried
to improve the yield of this direct arylation using Fagnou’s condi-
tions.13 The yield was significantly increased (95%) using bromo-
benzene in a sealed tube for 16 h (entry 2). Heteroarylation using
4-bromopyridine hydrobromide occurred in the same way (entry
3). Finally, although the two methods afforded similar results for
the access to 2,3-diarylimidazo[1,2-a]pyridines 1, direct arylation
single-step remained preferable.

With optimal conditions in hand, we explored the scope of the
Suzuki–Miyaura coupling-direct arylation sequence starting from
imidazo[1,2-a]pyridin-2-yl triflate 3c with a variety of aryl boronic
acids and aryl bromides (Scheme 5 and Table 4).14 The Suzuki
cross-coupling is compatible with a variety of aryl groups and pro-
ceeded in various yields (9–97%) depending on the influence of the
electronic properties of the coupling partner. The electron-defi-
cient aryl boronic acids were coupled in low to moderate yields.
For instance, compounds bearing halogens (2b, 2c, 2e) were ob-
tained in moderate yields (35–45%) whereas 2-fluorophenyl boro-
nic acid afforded unexpectedly 2d in an excellent yield (97%, entry
5). Ester 2f and nitro derivative 2g proceeded in low yields (entries
11 and 12). Nevertheless, compounds 2h and 2i bearing a methoxy
donating group were obtained in good yields (78–94%, entries 13
and 16).

We next explored direct arylation of substrates 2a–i with vari-
ous aryl bromides. Reactions proceeded in good yields with bromo-
benzene and 3-bromopyridine (Table 4, entries 2–6). When 2-
phenylimidazo[1,2-a]pyridine 2a reacted with an electron-defi-
cient aryl bromide (i.e., 4-nitrobenzene), direct arylation was
accomplished in a better yield (entry 1). Substrates 2e and 2h
underwent direct arylation with various aryl bromides to probe
the influence of an electron-deficient group on the phenyl ring or
an electron-rich one. It is noteworthy that 3-bromonitrobenzene
and bromobenzene were suitable coupling partners under classical
conditions to provide products 1g, 1i, 1m and 1n in good yields
(entries 7, 9, 13 and 14). In contrast, with both substrates, use of
3-bromoanisole gave the corresponding products in lower yields
(40% and 44%) even if an excess of reagents was added (entries
10 and 15). Finally, compounds 2 bearing electron-poor substitu-
ent (i.e. ester or nitro group) were found to proceed in lower yields
for direct arylation with bromobenzene (entries 11 and 12). Based
on these results, C-3 direct arylation of 2-arylimidazo[1,2-a]pyri-
dines 2 is influenced by electronic effects of the ring in position 2.

In summary, we have developed a straightforward method for
the synthesis of 2,3-diarylimidazo[1,2-a]pyridines from imi-
dazo[1,2-a]pyridin-2-yl triflate readily available from 2-aminopyr-
idine. These compounds were prepared via a Suzuki–Miyaura
cross-coupling reaction and a subsequent direct arylation, making
the route attractive for accessing these functionalized heterocycles.
Further applications to the synthesis of bioactive compounds is in
progress in our laboratory.
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