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Abstract 

The creation of reaction networks capable of exhibiting responses that are properties of 

entire systems represents a significant challenge for the chemical sciences. The system-

level behavior of a reaction network is linked intrinsically to its topology and the 

functional connections between its nodes. A simple network of chemical reactions 

constructed from four reagents, in which each reagent reacts with exactly two others, can 

exhibit upregulation of two products even when only a single chemical reaction is 

addressed catalytically. We implement a system with this topology using two maleimides 

and two nitrones of different sizes—either short or long and each bearing complementary 

recognition sites—that react pairwise through 1,3-dipolar cycloaddition reactions to create 

a network of four length-segregated replicating templates. Comprehensive 1H NMR 

spectroscopy experiments unravel the network topology, confirming that, in isolation, 

three out of four templates self-replicate, with the shortest template exhibiting the highest 

efficiency. The strongest template effects within the network are the mutually 

crosscatalytic relationships between the two templates of intermediate size. The network 

topology is such that the addition of different preformed templates as instructions to a 

mixture of all starting materials elicits system-level behavior. Instruction with a single 

template up-regulates the formation of two templates in a predictable manner. These 

results demonstrate that the rules governing system-level behavior can be unraveled 

through the application of wholly synthetic networks with well-defined chemistries and 

interactions. 
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Introduction 

Complex systems1 are constructed from intricate networks of interconnected components, 

with their global functional and structural properties being determined by the nature of 

the recognition and reaction processes embedded within them. However, these systems 

often operate within environments that do not allow the individual interactions that give 

rise to the system-level behavior to be decoupled readily. Systems chemistry2 attempts to 

create complexity and emergent phenomena through the application of wholly synthetic 

chemical platforms. In this approach, a collection of synthetic chemical entities, designed 

to interact and react in programmed ways, can express complex dynamic phenomena. 

This approach targets the creation of synthetic chemical systems whose properties are not 

simply the linear sum of the attributes of the individual components. Central to this goal is 

the design and synthesis of chemical structures that are capable of copying themselves or 

complementary partners, i.e., molecular replicators. By examining the dynamic processes 

that govern replication in synthetic chemical systems, it is possible to maintain structural 

and interactional simplicity in network components and design systems with well-defined 

chemistries and interactions. In this manner, a better understanding of the principles 

governing the creation and function of systems that express emergent phenomena can be 

developed, ultimately shedding light on the origins of biological complexity. 

Currently, the general design principles2b,2c,3 required to create a self-replicating 

system and engineer its behavior are well understood. In its simplest form, a self-

replicating system is constructed from two molecules, where the product of their reaction 

acts a specific catalyst (template) for its own formation. Such templates allow the creation 

of systems that are responsive to feedback, i.e., the addition of pre-formed template acts as 

chemical input directing the synthesis of exact copies of that template. To date, self-

replication has been demonstrated experimentally in systems fabricated from a variety of 

building blocks, ranging from more prebioticaly relevant oligonucleotide4 and peptide5,6 

frameworks to completely synthetic, small organic7 molecules.  With the advances in 

analytic tools and methods, it is now possible to analyze and monitor the behavior of 

complex chemical networks and systems where multiple catalytic pathways function 

simultaneously. Despite the significant advances8 in the study of peptide replicator 
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networks, these systems are often very densely connected and susceptible to the reaction 

environment, e.g., pH. We have therefore become interested in exploiting systems 

constructed from synthetic replicators based on small organic molecules. Such systems9 

can, in principle, offer tight control over network topology through careful manipulation 

of chemical structure and, hence, catalytic relationships, thus allowing the fabrication of 

networks with system-level behavior that moves beyond simple information transfer. 

The emergent system-level2,3 behavior displayed by a network is linked intrinsically 

to the topology of the network and, in particular, to the functional connections between 

the network nodes. An example of this type of phenomenon can be displayed (Figure 1) 

even by a simple chemical reaction network. 

 
Figure 1 (a) A simple network of interconnected reactions can be created by four reagents A to D. Four 
chemical transformations convert these starting materials into four products, AB, AC, BD, and CD. 
Although the rate of formation of an individual product, e.g., AB, is described by a simple second order rate 
law, the concentration terms in this differential equation are dependent intrinsically on two other reactions 
in the network. (b) If the values of all four rate constants are the same (kAB = kAC = kBD = kCD = 1), the final 
concentrations of all four products are identical. Increasing the value of one rate constant results in an 
increase in the final concentrations of two of the products. Thus, increasing kAB from 1 to 2 to 10, while kAC = 
kBD = kCD = 1, results ultimately in [AB] = [CD] = 8.1 and [AC] = [BD] = 1.9. 
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Within a network (Figure 1) constructed from four reagents that each react with 

exactly two others in the network, the rate of formation of an individual product, for 

example, AB, can be described (Figure 1a) by a second order rate law. However, each of 

the concentration terms within this rate law depends explicitly (Figure 1a) on two 

reactions in the network. For example, the change in concentration of A with respect to 

time depends on two reactions: A + B → AB and A + C → AC. Consequently, the transient 

concentrations of the reagents in any given reaction are connected either directly or 

indirectly to the transient concentrations of all of the other reagents in the network. 

Therefore, changes in the rate of consumption of one reagent must propagate throughout 

the entire network. If the values of all four rate constants (Figure 1b) are the same (kAB = kAC 

= kBD = kCD), these interconnections will not express themselves and the final concentrations 

of all four products are identical. By contrast, increasing the value of one rate constant, e.g., 

kAB, results in an increase (Figure 1b) in the final concentrations of two of the products, in 

this case AB and CD. 

In order for this network to operate in the manner described, it must be possible to 

address each of the four reactions individually and specifically in a catalytic manner. In 

this context, self-replicators provide the ideal vehicle for the implementation of this 

network topology, since they can act as specific catalysts for their own formation. We 

therefore envisaged (Figure 2) a network of four replicating templates that could be 

constructed through the combination of two pairs of reagents that each bear 

complementary recognition and reactive sites. These pairs of reagents are distinguished by 

the length of the spacer—either short (S) or long (L)—connecting the recognition site with 

the reactive site. Thus, the shortest self-replicator SNSM can be constructed by 

combination of SN and SM and would be expected to replicate itself through an 

autocatalytic cycle (Figure 2, SNSM → SNSM). Similarly, the longest self-replicator 

LNLM can be constructed by combination of LN and LM and would also be expected to 

template its own formation through an autocatalytic cycle (Figure2, LNLM → LNLM). As 

there is a large size difference between these two replicators, we envisaged that, although 

each would be capable of catalyzing its own formation, crosscatalysis between SNSM and 

LNLM would be impossible.  
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 6

By contrast, combination of SN with LM and LN with SM will lead to two self-

complementary templates of intermediate size. Thus, whilst we would expect SNLM and 

LNSM to function as autocatalytic templates (Figure 2, SNLM → SNLM and LNSM → 

LNSM), there is also the possibility that crosscatalytic relationships could exist between 

these templates (Figure 2, SNLM → LNSM and LNSM → SNLM). 

 

 
 

Figure 2 Four building blocks, SN, LN, SM, and LM, which all bear a recognition site and a reactive site 
connected by either a short (S) or a long (L) spacer, can react with each other in a pairwise fashion to afford 
four templates, SNSM, SNLM, LNSM, and LNLM. As a result of their different sizes, SNSM and LNLM 

can participate only in autocatalytic cycles (SNSM → SNSM and LNLM → LNLM) in which they catalyze 
their own formation. By contrast, SNLM and LNSM are of similar sizes. Therefore, in addition to catalyzing 
their own formation through autocatalytic cycles (SNLM → SNLM and LNSM → LNSM), they can 
potentially catalyze the formation of each other through crosscatalytic cycles (SNLM → LNSM and LNSM 

→ SNLM). 

 

 

 

 

Molecular design 
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 7

In order to create a functional version of the replicator network shown in Figure 2, it is 

necessary to identify the correct chemical building blocks that are capable of reacting 

together to form the four replicating templates, SNSM, SNLM, LNSM, and LNLM. 

In previous work, the replicating platform derived from nitrone SN and maleimide SM 

has been utilized7b,7e,9a,9e in a number of scenarios. Using this successful design as a basis 

for this work, we envisaged that we could create the required library of templates by 

simply incorporating an extended linker into the nitrone and maleimide components to 

afford long nitrone LN and long maleimide LM. Thus, pairwise combination of nitrones 

SN and LN with maleimides SM and LM affords two pairs of templates10—SNSM and 

LNLM, which have matched linker lengths, and SNLM and LNSM, which have 

mismatched linker lengths. 

 

 
  

Page 7 of 29

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

We envisaged that this design, incorporating the long diphenylacetylene linker in 

both LN and LM would limit the number of crosscatalytic opportunities within this 

network, described conceptually in Figure 2. Thus, only SNLM and LNSM can potentially 

participate in mutually crosscatalytic pathways as the combination of one short and one 

long linker renders these two templates approximately equivalent in size. By contrast, 

SNSM and LNLM—bearing either two short (phenyl) or two long (diphenylacetylene) 

linkers—are dramatically different in size. Therefore, we expect that they are 

fundamentally incompatible with each other and also with the linker mismatched pair 

(SNLM and LNSM). 

 

Behavior of individual templates 

Before exploring the network created by the four length-segregated templates in its 

entirety, it is necessary to establish the replicating efficiency of each of the four templates 

in isolation. To this end, we performed a series of kinetic experiments where the formation 

of each template was examined in CDCl3 at 273 K from its constituent components at 

starting concentrations of 10 mM. In addition, in each case, the same experiment was 

repeated with the addition of pre-formed template in order to establish the autocatalytic 

nature of each replicator. Finally, the baseline reactivities of the nitrone and maleimide 

components in the absence of the recognition elements were established, as series of 

reactions were performed on control maleimides that lacked the carboxylic acid 

recognition sites required for replication (Supplementary Figure S1 to S4). The results of 

these experiments are summarized in Figure 3. 
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 9

 
 

Figure 3 (a) Summary of kinetic data for individual templates determined by 500 MHz 1H NMR 
spectroscopy (273 K, CDCl3, 10 mM starting concentrations of reagents). In each case, the identity of the 
experiment is as follows: circles = uninstructed; triangles = autocatalytic template added; squares = 
crosscatalytic template added. (b) Schematic representation of the catalytic inter-relationships between the 
templates SNSM, SNLM, LNSM, and LNLM. An arrow indicates a catalytic relationship, e.g., LNSM → 
SNLM indicates that LNSM catalyzes the formation of SNLM. Efficiency: + = low (EMkinetic < 5 M); ++ = 
medium (5 M < EMkinetic < 15 M); +++ = high (EMkinetic > 15 M). 

 

From the kinetic results shown in Figure 3a, it is clear that three of the templates, 

SNSM, SNLM, and LNLM, show significant aptitudes for directing their own 

formation—i.e., the addition of the appropriate autocatalytic template at the start of each 

of the reactions results in significant enhancements of the rates of formation for each of 

these templates (triangles, Figure 3a). By contrast, LNSM in isolation did not display any 
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 10

obvious recognition-mediated reactivity and its rate of formation is close to that of the 

bimolecular background reaction (Supporting Figure S3). The solubility of this template 

limited the range of experiments that could be performed in order to establish the 

autocatalytic behavior of this template. Although we cannot discount completely the 

possibility that this template is capable of instructing its own formation, the efficiency of 

this process is undoubtedly extremely low. 

Despite the lack of obvious autocatalytic activity exhibited by LNSM, a powerful 

crosscatalytic relationship exists between SNLM and LNSM. The addition of SNLM to the 

reaction between LN and SM results in a dramatic increase in the rate of formation of 

LNSM (Figure 3a, squares, left). Similarly, the addition of LNSM to the reaction between 

SN and LM results in a significant increase in the rate of formation of SNLM (Figure 3, 

squares, right)—close in magnitude to that observed for the template-directed 

autocatalytic formation of SNLM (Figure 3a, triangles, bottom right). Simulation and 

fitting (see Supporting Information for details) of the kinetic profiles shown in Figure 3a 

(and Supporting Figs. S1 to S4) allowed us to extract key kinetic parameters for these 

replicators (Figure 3a, data in boxes). A measure of the efficiency of each replicator comes 

from its value of EMkinetic, i.e., the effective molarity for the cycloaddition reaction achieved 

by the replicating template within the relevant catalytically-important ternary complex. 

The catalytic relationships within this network are summarized in Figure 3b. 

SNSM (EMkinetic = 10.8 M) and LNLM (EMkinetic = 3.6 M) replicate independently, with 

SNSM being the more efficient of these two templates. As expected, the rate of formation 

of the linker-matched template SNSM is unaffected by the addition of LNLM. Similarly, 

the rate of formation of the linker-matched template LNLM is also unaffected by the 

addition of SNSM, confirming the absence of crosscatalysis between these two templates.  

Only one of the linker-mismatched pair of templates, SNLM (EMkinetic = 3.0 M), is 

capable of self-replication and the mutual crosscatalytic relationships that exist between 

SNLM (EMkinetic = 18.7 M for the formation of LNSM) and LNSM (EMkinetic = 31.1 M for the 

formation of LNSM) are the most powerful catalytic connections within this network.  

In order to gain an insight into the profound difference in the autocatalytic 

performance of SNLM compared to LNSM, we performed a series of calculations at the 

Page 10 of 29

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 11

ωB97X/def2-SVP level of theory (see Supporting Information for details). The results of 

these calculations are summarized in Figure 4. 

 

 
Figure 4 Stick representations of the calculated structures of the transition states accessed by (a) 
[LN•SM•LNSM] and (b) [SN•LM•SNLM] leading to the corresponding template duplexes. Calculations 
were performed at the ωB97X/def2-SVP level of theory using the PCM solvation model for chloroform. 
Hydrogen bonds are represented by dashed lines. Colored shaded areas indicated by letters are discussed in 
the main text. Carbon atoms are colored gray, nitrogen atoms blue, oxygen atoms red and hydrogen atoms 
white. Most hydrogen atoms are omitted for clarity. (c) Computed relationship (dashed line) between 
geometry and complex stability for the association of acetic acid and 2-acetoamido-6-methylpyridine. The 
colored data points represent the values observed for the angle ω in the associations between the 
amidopyridines and carboxylic acids in [LN•SM•LNSM]‡ (•) and [SN•LM•SNLM]‡ (•). Calculations were 
performed at the ωB97X/def2-TZVP level of theory using the PCM solvation model for chloroform. 

 

The calculations reveal that plausible transition states are accessible from both the 

[LN•SM•LNSM] (Figure 4a) and [SN•LM•SNLM] (Figure 4b) ternary complexes, 

suggesting that both SNLM and LNSM should be capable of acting as templates for their 

own formation. Comparison of the transition state geometries accessed by the 

[LN•SM•LNSM] and [SN•LM•SNLM] ternary complexes with the geometry transition 

state calculated11 for the parent reaction between diphenyl nitrone and N-phenyl 

maleimide reveals (see Supporting Information, Fig. S8) little evidence of significant 

distortions that might result in the reaction within the [LN•SM•LNSM] ternary complex 

being less efficient than the corresponding reaction within the [SN•LM•SNLM] complex. 
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However, there are three significant structural differences between the two transition 

states accessed from these ternary complexes. Firstly, both alkynes present in the 

transition state accessed from the [LN•SM•LNSM] ternary complex exhibit bending 

away from linearity (4° and 8°, highlight A in Figure 4a). By contrast, in the transition state 

accessed from the [SN•LM•SNLM] ternary complex, there is almost no bending (<2°) in 

either of the alkyne spacers. Whilst the bending potential for alkynes is somewhat soft, the 

presence of this bending could serve to disfavor reaction from [LN•SM•LNSM]. 

Secondly, the alkene protons present in the SM component of the transition state accessed 

from [LN•SM•LNSM] are located within a pocket that contains other hydrogen atoms 

that bear partial positive charges (highlight B in Figure 4a). These electrostatic interactions 

will serve to destabilize [LN•SM•LNSM]‡. Finally, and perhaps most significantly, there 

are significant differences between the geometries observed for the recognition elements 

present in the transition states accessed from two ternary complexes. In the case of 

[LN•SM•LNSM]‡, both carboxylic acid units are twisted by more than 30° with respect to 

the mean plane of the pyridine ring to which they are hydrogen bonded. By contrast, 

within [SN•LM•SNLM]‡, the twists are only 12° and 23°. In order to assess the likely 

impact of these differences in geometry within the recognition elements of these two 

complexes, we performed a series of calculations at the ωB97X/def2-TZVP level of theory 

in which the angle ω (Figure 4c) subtended between mean plane of the COOH fragment of 

acetic acid and the mean plane of the pyridine ring to which the acid is hydrogen bonded 

is increased. These calculations reveal that, as expected, the lowest energy geometry is the 

coplanar arrangement of the two recognition elements (ω = 0°), as this arrangement allows 

the optimum geometry for both hydrogen bonds present in this complex. As ω increases, 

the complex becomes significantly less stable. Based solely on the different geometries of 

the recognition elements observed in the two transition state structures computed for 

[LN•SM•LNSM]‡ and [SN•LM•SNLM]‡, the geometries observed in recognition 

elements of [LN•SM•LNSM]‡ are expected, at this level of theory, to be 4.64 kJ mol–1 less 

stable than those observed in [SN•LM•SNLM]‡. If this difference is expressed fully in the 

kinetics of these reaction processes, the expected autocatalytic rate constant for the 

formation of LNSM would be around 7 times smaller than that for SNLM, suggesting that 
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the EMkinetic for the formation of LNSM would be << 1 M. This expectation is consistent 

with the observed data and it is therefore possible that the inability of LNSM to template 

its own formation efficiently arises from destabilization of the [LN•SM•LNSM] ternary 

complex as it enters the transition state for the formation of the self-complementary 

template. 

 

Network behavior 

Having established the catalytic relationships between and kinetic parameters for the 

individual templates, we were able to create a kinetic model capable of simulating the 

behavior of the complete network shown in Figure 2. These simulations revealed (Figure 

5, center) that, in the absence of any template instruction, simply mixing the two nitrones 

and two maleimides at starting concentrations of 10 mM results in a population of 

replicators after 16 hours in which all four replicators have significant representations—

the predicted ratio of SNSM : SNLM : LNSM : LNLM is 1.8 : 1.3 : 1.5 : 1. 

In order to benchmark our simulation, we performed an experiment in which SN, 

LN, SM and LM were dissolved at starting concentrations of 10 mM in CDCl3 at 273 K. 

The formation of the four corresponding templates was monitored by 500 MHz 1H NMR 

spectroscopy over 16 hours (see Figure S5 for an example spectrum) and these data were 

used to construct the concentration-time profiles for each replicator within this mixture. 

Pleasingly, there is excellent agreement (Figure 5, center) between the experimental data 

(the observed ratio of SNSM : SNLM : LNSM : LNLM is 1.7 : 1.5 : 1.4 : 1) and those 

calculated using our kinetic simulation. 

Next, we examined the behavior of the network in response to the addition of either 

a single template or to two templates added simultaneously. For each scenario, we 

calculated the upregulation or down-regulation of the formation of a given template 

(Enhancement factor, %EF, Figure 5) relative to a baseline, either experimental or 

simulated, where there was no template input (Figure 5, center). In each simulation, the 

amount of the instructing template reflected the concentrations of the individual templates 

in CDCl3 that were achievable experimentally.  
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Figure 5 A reagent pool containing two nitrones (SN and LN) and two maleimides (SM and LM) is 
instructed by the addition of one (Single Input) or two (Dual Input) replicating templates. In all cases, the 
system responds in specific and predictable ways to the template input and there is good agreement 
between the behavior of the system predicted from kinetic simulation and experiment. Experiments: 273 K, 
CDCl3, 10 mM. For details of simulations, see Methods. Data points and bars are shaded according to their 
association with a specific template—SNSM (white), LNSM (light gray), SNLM (dark gray), LNLM (black). 
The enhancement factor (%EF) is calculated relative to the uninstructed experiment (No input) using the 
equation shown for each of the four templates.   
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In the case of single template inputs, either SNSM or SNLM, (Figure 5, top half), it 

is evident from the simulations that the instruction of the network by the appropriate 

template results in the upregulation (%EF > 0, Figure 5) of not only the added template but 

also its linker-length related partner. Thus, when SNSM provides the instruction, LNLM 

is also up-regulated, since it is created from the two long components that are not required 

for the formation of SNSM. In other words, the addition of a linker-length matched 

template (SNSM) results in the upregulation of both templates in this group (SNSM and 

LNLM). Similarly, when SNLM provides the instruction, LNSM is up-regulated as it is 

created from the short and long components that are not required for the formation of 

SNLM. In order to verify these predictions experimentally, we performed two 

experiments in which SN, LN, SM, and LM were dissolved at starting concentrations of 10 

mM in CDCl3 at 273 K. In one experiment, SNSM was added at a concentration of 3.7 mM 

and in the second experiment, SNLM was added at a concentration of 3.2 mM. In both 

cases, the formation of the four templates was monitored by 500 MHz 1H NMR 

spectroscopy over 16 hours and these data were used to construct the concentration-time 

profiles for each replicator within this mixture. Subsequently, these profiles were used to 

compute the corresponding %EF for each replicator (Figure 5, top half). Pleasingly, there is 

a good agreement between the behavior of the network predicted by the simulations and 

that observed experimentally. In constructing the kinetic model, certain simplifications 

were made with respect to single point recognition events and the rate constants 

associated with bimolecular reactions (see Supporting Information for details) and, most 

likely, it is these decisions that are responsible for the slight differences between the 

experiments and simulations.  

In the case of dual template inputs (Figure 5, bottom half), the situation is more 

complex. Simulations predict that the simultaneous addition of both linker-matched 

templates, SNSM and LNLM, will reinforce the instruction to the network to make only 

linker-matched templates. In order to verify this prediction experimentally, we performed 

an experiment in which SN, LN, SM, and LM were dissolved at starting concentrations of 

10 mM in CDCl3 at 273 K and templates SNSM and LNLM were added at concentrations 

of 1.4 mM and 3.4 mM, respectively. Once again, the formation of the four templates was 
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monitored by 500 MHz 1H NMR spectroscopy over 16 hours. The data acquired were used 

to construct the concentration-time profiles for each replicator and to compute the 

corresponding enhancements (Figure 5, bottom half). Once again, there is a good 

agreement between the behavior of the network predicted by the simulations and that 

observed experimentally. Finally, we examined the response of the network to two 

contradictory instructions, namely SNLM and LNLM. The addition of SNLM should 

instruct the network to form linker-mismatched templates, whereas the addition of LNLM 

should instruct the network to form linker-matched templates. Simulations predict that 

the addition of these two templates should result in the upregulation of SNLM, LNSM, 

and LNLM and the down-regulation of SNSM. We verified this prediction experimentally 

in the same type of experiment as described previously, in which SNLM and LNLM were 

added at concentrations of 4.4 mM and 5.7 mM to a mixture of SN, LN, SM, and LM at 

starting concentrations of 10 mM in CDCl3 at 273 K. The data acquired were used to 

construct the concentration-time profiles for each replicator and to compute the 

corresponding %EF (Figure 5, bottom half). As before, there is good agreement between 

the behavior of the network predicted by the simulations and that observed 

experimentally. 

The system-level behavior expressed by this network of synthetic replicators in 

response to template inputs is summarized in Figure 6. When a mixture of the building 

blocks SN, LN, SM, and LM is instructed by a single template (Figure 6, entries 1 to 4), the 

network topology determines the output, i.e., all templates of the same linker type, 

matched or mismatched, are up-regulated. For example, addition of SNSM catalyzes the 

formation of this template, removing SN and SM rapidly from solution. Since, SNLM and 

LNSM both require one of the short components, these two templates are down-regulated 

(%EF < 0, Figure 6). Since LNLM requires only the long components LN and LM, it 

benefits from the template-directed formation of SNSM and is up-regulated. This 

behavior is identical to that exhibited by the simple network shown in Figure 1. 

In the case of dual inputs, the situation is more complex, but the behavior of the 

system remains predictable. When two templates are added that are either both linker-

matched or both linker-mismatched (for example, Figure 6, addition of SNSM and LNLM 
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and Figure 6, entry 5) the template effects are reinforcing. When two templates are added 

that belong to different linker classes (for example, the addition of SNLM and LNLM, 

Figure 6, entry 6) the template effects are, in principle, in competition. As a result of the 

crosscatalytic relationships between SNLM and LNSM, both of these templates are up-

regulated. The addition of LNLM mitigates the effect of this crosscatalytic connection by 

providing a catalytic pathway for the formation of LNLM. Therefore, the only species in 

solution whose formation is not enhanced directly in a catalytic manner is SNSM. 

Consequently, this template is down-regulated. A similar outcome is observed when 

SNSM and SNLM are added simultaneously at the start of the reaction (Figure 6, entry 7 

and Figure S7). In this case LNLM is the only species in solution whose formation is not 

enhanced directly in a catalytic manner and, consequently, it is this template that is down-

regulated. 

 

 

 
Figure 6 The output of the replicator network shown in Figure 2 is determined by the nature of the 
instructing template that is added. Entries 1 to 4 show single inputs where the network topology determines 
that the input of a single template of a particular linker type, matched or mismatched, results in the up-
regulation of both templates of the same linker type. Entries 5 to 7 illustrate more complex cases where more 
than one instructing template is added.  
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Conclusions 

Networks of replicating templates that interact and react in well-defined ways can serve as 

models for the kind of primitive metabolic pathways that may have arisen12 on the early 

Earth. In this work, we have demonstrated that it is possible to create such a network, 

whose behavior can be directed specifically by the introduction of instructional templates 

that possess a very limited structural and interactional lexicon. By maintaining tight 

control over the structural complexity of the network components, it is possible to 

quantify the relative contributions of each replicator to the overall operation of the 

network. Ultimately, the topology of this network is such that it is capable of expressing 

system-level behavior through the introduction of instructional replicating templates and 

the addition of a single input instruction elicits upregulation of more than one product in a 

programmed manner. The programmability of the network also extends to situations 

where multiple instructional templates are added simultaneously. This work creates a 

foundation for the construction and exploitation of replicator networks under conditions 

where dynamic covalent libraries9e,13 or diffusion phenomena7b are coupled with 

interconnected replication processes. These studies are currently in progress in our 

laboratory. 
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