

Carbohydrate Research 264 (1994) 253-269

CARBOHYDRATE RESEARCH

Synthetic studies toward pyruvate acetal-containing saccharides: en route to the efficient synthesis of *Rhizobium*-related exopolysaccharide fragments ☆

Elisabeth Eckhardt¹, Thomas Ziegler *

Institut für Organische Chemie und Isotopenforschung, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received 7 April 1994; accepted 24 May 1994

Abstract

The disaccharide building block benzyl O-{2,3-di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl) ethylidene]- β -D-galactopyranosyl}-(1 \rightarrow 3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]- α -D-glucopyranoside (13), related to a *Rhizobium* exopolysaccharide, was prepared by coupling various 4,6-O[(R)-1-(methoxycarbonyl)ethylidene]-D-galactosyl donors (benzoyl-protected)chloride 1, pivaloyl-protected chloride 2, and benzoyl-protected fluorides 3 and 4, and trichloroacetimidate 5) with benzyl 2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]- α -Dglucopyranoside (10) and the corresponding 2,3-O-tetraisopropyldisiloxane-protected glucoside 12. The best results, with respect to β -selectivity and yield of the coupling, were obtained with 5 and 10 in dichloromethane. The β -linked (13) and α -linked (14) disaccharides were efficiently converted via the 1-OH derivatives 17 and 21 into the corresponding trichloroacetimidates 18 and 22. The latter were used for the synthesis of the disaccharide ligands 4,6-(R)-pyruvate- β -D-Galp- $(1 \rightarrow 3)-4,6-(S)$ pyruvate- β -D-Glcp-O(CH₂)₅NH₂ (20), and 4,6-(R)-pyruvate- α -D-Galp-(1 \rightarrow 3)-4,6-(S)-pyruvate- β -D-Glcp-O(CH₂)₅NH₂ (24). The corresponding tri- and tetra-saccharide derivatives 4,6-(R)pyruvate- β -D-Galp- $(1 \rightarrow 3)$ -4,6-(S)-pyruvate- β -D-Glcp- $(1 \rightarrow 4)$ - β -D-Glcp- $O(CH_2)_5NH_2$ (28) and 4,6-(R)-pyruvate- β -D-Galp-(1 \rightarrow 3)-4,6-(S)-pyruvate- β -D-Glcp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 4)- β -D- $Glcp-O(CH_2)$ ₅NH₂ (36) were obtained similarly.

Keywords: Pyruvate acetal; Rhizobium bacteria; Exopolysaccharide

1. Introduction

Exopolysaccharides and lipooligosaccharides secreted by symbiotic bacteria of the genus *Rhizobium* display a unique structural diversity and are thought to be essential determinants

^{*} Rhizobial Saccharides, Part 1.

^{*} Corresponding author.

¹ Present address: Département de Chimie, Université de Montréal, PQ, Canada.

Entry	Donor	Acceptor	Conditions ^a	Products (yield)			
	1	10	AgOTf, sym-collidine, CH ₂ Cl ₂ , r.t. ^b	13 (trace)	14 (68%)		
2	2	10	AgOTf, sym-collidine, CH ₂ Cl ₂ , r.t.	. ,	15 (82%)		
3	1	10	Ag-silicate, CH ₂ Cl ₂ , r.t.	13 (28%)	16 (12%)		
4	3	12	1 equiv BF ₃ OEt ₂ , CH ₂ Cl ₂ , r.t. °	13 (trace)	14 (15%)	11 (45%)	
5	4	12	1 equiv BF ₃ OEt ₂ , CH ₂ Cl ₂ , r.t.		7 (33%)	8 (47%)	
6	5	10	catal. TMSOTf, CH ₃ CN, -20°C	13 (68%)	14 (12%)	6 (20%)	
7	5	10	catal. TMSOTf, CH ₂ Cl ₂ , 0°C	13 (80%)	14 (20%)		

Table 1 Condensation of donors 1–5 with acceptors 10 and 12, respectively

^a All reactions were performed until the educt was consumed completely.

^b r.t., Room temperature.

^e Work-up with Bu₄NF in THF, followed by BzCl-pyridine.

and signal factors for the highly specific interaction of these organisms with their host leguminous plants [1–4]. Synthetic saccharide fragments related to the distinct *Rhizobium* species should therefore be useful probes to obtain deeper insight into the mechanisms of this carbohydrate-mediated cell-cell interaction. Recently, the first chemical syntheses of the NodRm-IV factors (i.e., unique sulfated lipooligosaccharides, responsible for the root hair nodulation of the host plants [4]) have been performed [5] in order to provide sufficient pure material for further biological studies. A significant feature of the rhizobial exopolysaccharides is the presence of acidic pyruvate acetals in many of these carbohydrate structures. For example, the double-pyruvated disaccharide fragment 4,6-(R)-pyruvate- β -D-Galp- $(1 \rightarrow 3)$ -4,6-(S)-pyruvate- β -D-Glcp is relatively widespread among various *Rhizobium* species [6–15]. Therefore, this structure appears to be an attractive target for chemical syntheses. We now report on our recent approach to 5-aminopentyl di-, tri-, and tetra-saccharide glycosides derived from this double-pyruvated disaccharide key structure.

2. Results and discussion

Previously, the double-pyruvated laminaribiose derivative 4,6-(S)-pyruvate- β -D-Glcp- $(1 \rightarrow 3)$ -4,6-(S)-pyruvate- β -D-Glcp — a carbohydrate fragment related to a glycolipid of *Mycobacterium smegmatis* — was prepared by efficient coupling of a 4,6-pyruvated glucosyl donor (halide or trichloroacetimidate) to benzyl 2-O-benzoyl-4,6-O-[(S)-1-(meth-oxycarbonyl)ethylidene]- α -D-glucopyranoside (10) [16]. Furthermore, it was found that, in general, 4,6-pyruvated glucosyl donors were significantly less reactive than their galactosyl counterparts [16,17]. However, undesired side reactions occurred when the more reactive 4,6-pyruvated galactosyl donors were condensed with unreactive nucleophiles [18]. Therefore, a series of 4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-D-galactopyranosyl donors (i.e., chlorides 1 [17,18] and 2, fluorides 3 [18] and 4 [18], and trichloroacetimidate 5 [18]) were condensed with the pyruvated glucosyl acceptor 10 in order to find suitable conditions for the preparation of the β - $(1 \rightarrow 3)$ -linked disaccharide 13. Table 1 summarizes the results of these couplings. Rather unexpectedly, we found almost exclusively the α - $(1 \rightarrow 3)$ -linked disaccharide 14 in the silver trifluoromethanesulfonate-pro-

moted condensation of 1 and 10 (entry 1). Although it is known that benzoyl-protected galactosyl halides can give significant amounts of α -linked glycosylation products under similar coupling conditions [19], steric effects may be operative in this case since only traces of the β -product 13 could be detected on TLC of the crude mixture. Spijker and van Boeckel [20] ascribed that selectivity in comparable galactosylations to the formation of a "mismatched" ion pair between donor and acceptor during β -couplings. In contrast, a sterically favoured "matched" ion pair should be possible for the α -case. That such an influence of a "matched-mismatched" ion-pair mechanism may also be effective here was supported by the fact that the more hindered pivaloylated chloride 2 gave exclusively the α -linked disaccharide 15 (entry 2). No trace of the corresponding β -product could be detected on TLC. Furthermore, Nakahara and Ogawa [21] recently reported an unusually high α -selectivity when 4,6-O-isopropylidene-protected galactosyl donors were used. This was interpreted by the authors in terms of a preferred attack of the nucleophile from the convex side of the donor, leading to the α -linked glycosylation product. Since the 4,6pyruvated galactosyl donors used here were structurally related to the donors of Nakahara and Ogawa, a similar discrimination between the convex and concave side of the chlorides 1 and 2 seems reasonable in our case. In order to avoid the undesired formation of α - $(1 \rightarrow 3)$ -linked products, silver silicate [22,23] was next used as an insoluble promoter that was expected to give higher amounts of β -products. Indeed, when silver silicate was applied to the condensation of 1 and 10 (entry 3), the β -linked product 13 could be isolated besides the ortho ester 16. Although no α -linked product was found, yields of 13 were unsatisfactory for preparative purposes.

16

We then applied the fluorides 3 and 4 as pyruvated galactosyl donors and the 2,3-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-protected glucosyl acceptor 12. The latter was recently obtained from diol 9, and was used for the Lewis acid-catalyzed addition of pyruvated glucosyl fluorides via an efficient glycodesilylation protocol [24], to give double-pyruvated laminaribiosides related to Mycobacteria [25]. Originally, as outlined above, we expected the galactosyl fluorides 3 and 4 to be more reactive than the corresponding

pyruvated glucosyl fluorides [16,17]. However, the BF₃-etherate-catalyzed coupling of 3 and 4 with 12 (entries 4 and 5) followed by subsequent desilylation and rebenzoylation of the mixture for entry 4 gave only a small amount of disaccharide 13 in one case. The byproducts 7, 8, and 11, formed either by hydrolysis of the fluorides and the acceptor 12, respectively, followed by benzoylation during the work-up or by attack of the diethyl ether component of the catalyst, were similar to those previously obtained from Z-protected aminopentanol [18]. Obviously, the otherwise useful glycodesilylation protocol was not applicable for 4,6-pyruvated galactosyl fluorides.

Best results were obtained with the trichloroacetimidate 5 (entries 6 and 7). In acetonitrile as solvent, the disaccharides 13 and 14 were accompanied by the rearrangment product 6 as was previously observed [18] for glycosylations with donor 5. In dichloromethane, however, 80% of the desired β -(1 \rightarrow 3)-linked product 13 could be isolated. Thus, using the imidate 5 in dichloromethane was by far the most effective glycosylation system for the construction of saccharides containing 4,6-pyruvated galactosyl residues and should be used preferentially over other donor-solvent systems.

Further conversion of 13 into 5-aminopentyl di- and tri-saccharide glycosides as well as higher oligosaccharides was performed as previously described for the *Mycobacterium*-related laminaribiose derivatives [16]. Hydrogenolysis of 13 gave first the 1-OH compound 17 (88%), treatment of which with trichloroacetonitrile afforded the imidate 18 (90%). Coupling of the latter with 5-[(benzyloxycarbonyl)amino]pentanol [26] was, however, sluggish and gave compound 19 in poor (40%) yield. This was due to the previously observed reduced reactivity of the amino alcohol derivative in combination with trichloroacetimidates [16,18]. Final sequential deblocking [16] afforded the free ligand 20 (93%).

Similarly, the α -linked disaccharide 14 was converted via 21 into the imidate 22, condensation of which with 5-[(benzyloxycarbonyl)amino]pentanol afforded compound 23 (69%) as an inseparable 1:3 α , β -anomeric mixture at the glucose residue. The minor byproduct, having an α -glucose residue, could be removed after debenzoylation of 23. The final deblocking then gave the disaccharide ligand 24 (76%) which represented an "unnatural" anomeric isomer of the pyruvated rhizobial disaccharide fragment.

In order to demonstrate further the usefulness of the disaccharide donor 18 for the preparation of *Rhizobium*-related oligosaccharide structures the following tri- and tetrasaccharides were synthesized as well. Condensation of the imidate 18 with ethyl 2-Obenzoyl-3,6-di-O-benzyl-1-thio- β -D-glucopyranoside [16] (25) afforded the trisaccharide 26 (73%) that was coupled with 5-[(benzyloxycarbonyl)amino]pentanol to give the blocked aminopentyl glycoside 27 in 68% yield. Deblocking of the latter gave 4,6-(*R*)pyruvate- β -D-Galp-(1 \rightarrow 3)-4,6-(*S*)-pyruvate- β -D-Glcp-(1 \rightarrow 4)- β -D-Glcp-O(CH₂)₅NH₂ (28) in 75% yield.

OBn

BzÒ

25

SEt

HO

BnO

18

26 R¹ = SEt, R² = Bz, R³ = Bn, R⁴ = Me 27 R¹ = O(CH₂)₅NHZ, R² = Bz, R³ = Bn, R⁴ = Me 28 R¹ = O(CH₂)₅NH₂, R² = R³ = R⁴ = H

35 $R^1 = Z$, $R^2 = Bn$, $R^3 = Bz$, $R^4 = Me$ 36 $R^1 = R^2 = R^3 = R^4 = H$ For the construction of the double-pyruvated tetrasaccharide aminopentyl glycoside 36, the acceptor 34 was needed and prepared as follows. 5-[(Benzyloxycarbonyl) amino]pentanol was glucosylated with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosylbromide, to give first 29 (30%), debocking of which (Zemplén) afforded 30 in practically quantitative yield. Next, 30 was treated with benzaldehyde and zinc chloride, and the intermediate 31 (88%) was benzylated at positions 2 and 3, to give 32 (77%). As a byproduct of that benzylation, the 3-O-monobenzylated derivative 33 (21%) was obtained as well. Regioselective reduction of the benzylidene moiety of glucoside 32 with sodium cyanoborohydride [27] then afforded 34 in 70% yield. Finally, the tetrasaccharide 35 was obtained in 45% yield via N-iodosuccinimide-promoted condensation of donor 26 and acceptor 34. Deblocking of 35 then gave 4,6-(R)-pyruvate- β -D-Galp-(1 \rightarrow 3)-4,6-(S)-pyruvate- β -D-Glcp-(1 \rightarrow 4)- β -D-Glcp-O(CH₂)₅NH₂ (36) in 85% yield.

3. Experimental

General methods.-The NMR data in the Experimental section and in Table 2 were extracted from spectra measured in CDCl₃ solutions for blocked compounds (with Me₄Si as internal standard) and in D_2O for deblocked and partially deblocked compounds (with MeOH set to δ 49.3 as internal standard) at 25°C with a Bruker AC 250F spectrometer. ¹H NMR signal assignments of significant peaks were made by first-order analysis of the spectra. Of the two magnetically non-equivalent geminal protons at C-6, the one resonating at lower field was allocated H-6a and the one resonating at higher field H-6b. ¹³C NMR assignments were made by mutual comparison of the spectra, by DEPT spectra, and by comparison with spectra of related compounds. Optical rotations were measured at 25°C with a Perkin-Elmer automatic polarimeter, Model 241. Melting points were measured with a Büchi apparatus, Model SMP-20. Thin-layer chromatography (TLC) was performed on precoated plastic sheets, Polygram SIL UV₂₅₄, 40×80 mm (Macherey-Nagel) using appropriately adjusted mixtures of CCl₄-acetone for development. Detection was effected with UV light, where applicable, by I_2 , and by charring with 5% H_2SO_4 in EtOH. Preparative chromatography was performed by elution from columns of Silica Gel 60 (Merck) using CCl₄-acetone. Solutions in organic solvents were dried with anhyd Na₂SO₄, and concentrated at 2 kPa, $\leq 40^{\circ}$ C.

4,6-O-[(R)-1-(Methoxycarbonyl)ethylidene]-2,3-di-O-pivaloyl- α -D-galactopyranosyl chloride (2).—Freshly molten ZnCl₂ (15 mg) was added to a solution of methyl 4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-2,3-di-O-pivaloyl- α -D-galactopyranoside [28] (0.89 g, 2.0 mmol) and dichloromethyl methyl ether (5 mL) in CHCl₃ (20 mL), and the mixture was stirred for 10 h at 65°C. Concentration of the mixture and chromatography of the residue gave compound 2 (0.51 g, 57%); $[\alpha]_D$ + 188.3° (c 1.2, CHCl₃); ¹H NMR data: δ 6.44 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1), 5.42 (dd, 1 H, $J_{2,3}$ 10.5 Hz, H-2), 5.25 (dd, 1 H, $J_{3,4}$ 3.5 Hz, H-3), 4.42 (bd, 1 H, $J_{4,5}$ < 1 Hz, H-4), 4.03 (bs, 1 H, H-5), 4.04 (s, 2 H, H-6a,6b). Anal. Calcd for C₂₀H₃₁ClO₉: C, 53.27; H, 6.93; Cl, 7.86. Found: C, 53.21; H, 7.03; Cl, 8.06.

Benzyl 2,3-di-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]- α -D-glucopyranoside (11).—BF₃-etherate (1.42 g, 10.0 mmol) was added at room temperature to a Table 2 ¹³C NMR data ^a

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Compound	Chemical shifts (δ)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C-1	C-2	C-3	C-4	C-5	C-6	Others		
	2	92.3	67.2 ^ь	67.4 ^b	68.3	64.1	64.7	98.7 C _{acctal} ; 52.6, 38.8, 27.0, 25.7 C _{Piv}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	96.2	69.5	74.8 ^b	74.7 ^b	62.5	64.8 ^d	99.1, 98.4 C _{acetal}		
		98.8	72.9 °	68.8	73.2 °	65.5	65.3 ^d	52.8, 52.3 COOMe; 25.3, 25.1 Me		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	95.6	68.6 °	76.9	72.0 ^ь	61.9 °	65.0 ^d	98.8, 98.4 C _{acetal} ; 69.7 Bn		
15 95.4 68.5 b 76.3 72.2 61.6 d 65.0 c 98.7 (98.2 Cacuta) 99.2 (98.4 Cacuta) 120.1 Carbo enter 16 95.8 67.9 b 67.0 b 71.4 60.8 d 64.8 c 52.4 (51.9 COMMe; 25.5, 25.1 Me 16 96.0 (73.8 66.9 (73.5 c) 71.1 b 62.2 d 65.2 c 99.2, 98.4 Cacuta) 120.1 Carbo enter 98.6 (73.3 c 68.8 (73.1 c) 62.2 d 65.5 c 52.8 (52.3 COMMe; 25.2 2 Me 18 '' 93.9 (95.5 (74.6 c) 74.0 (65.5 c) 64.7 c 99.3, 98.5 Cacuta); 90.7 CCl ₃ 98.5 (73.1 c) 68.8 (73.1 c) 65.9 c 65.0 c 52.9 (52.3 COMMe; 25.3, 25.1 Me 19 101.6 c 65.9 c 78.0 (77.2 c) 65.0 c 52.7 (52.3 COMMe; 25.4, 25.3 Me 20 h 104.0 (72.1 c) 80.8 (74.4 c) 65.9 c 65.0 c 22.7 (52.3 COMMe; 25.4, 25.3 Me 21 ' 90.9 (9.6 c) 77.2 (7.2 c) 67.1 d 65.0 c 22.7 (52.3 COMMe; 25.4, 25.3 Me 21 ' 90.1 (73.2 c) 80.8 (74.6 d) 65.9 c 22.7 (52.3 COMMe; 25.4, 25.3 Me 21 ' 90.1 (71.2 c) 80.8 (75.3 c) 72.9 c <td></td> <td>97.2</td> <td>68.6 °</td> <td>69.5 °</td> <td>73.0 ^ь</td> <td>61.1 °</td> <td>64.8 ^d</td> <td>52.1, 51.9 COOMe; 25.6, 24.8 Me</td>		97.2	68.6 °	69.5 °	73.0 ^ь	61.1 °	64.8 ^d	52.1, 51.9 COOMe; 25.6, 24.8 Me		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	95.4	68.5 ^b	76.3	72.2	61.6 ^d	65.0 °	98.7, 98.2 C _{acetal} ; 69.6 Bn		
16 96.0 73.8 66.9 77.2 62.2 99.2, 98.4 Cactal; 120.1 Controlester 98.7 70.5 70.1 72.1 63.6 65.4 52.9, 52.5 COOMe; 25.4, 24.3 Me 17 ⁴ 91.1 69.5 74.5 74.1 62.2 64.8 99.1, 98.4 Cactal 98.6 73.3 68.8 73.2 65.5 65.4 52.8, 52.3 COOMe; 25.2, 25.0 Me 18 ⁴ 99.6 77.4 74.3 65.8 64.7 99.3, 98.5 Cactal; 90.7 CCl ₃ 98.5 72.1 68.8 73.1 66.2 65.0 52.9, 52.3 COOMe; 25.3, 25.1 Me 19 101.6 69.5 78.0 77.2 64.7 69.3 98.5 Cactal; 60.5 OCL ₃ 99.1 73.2 68.8 73.9 65.9 65.0 52.7 52.3 COOMe; 25.4, 25.3 Me 20 ^h 104.0 72.1 80.8 74.9 65.9 52.7 52.3 COOMe; 25.6, 25.0 Me 21 ^f 90.9 69.6 77.2 72.6 61.7 64.9 98.9 9		9 5.8	67.9 ^b	67.0 ^ь	71.4	60.8 ^d	64.8 °	52.4, 51.9 COOMe; 25.5, 25.1 Me		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	96.0	73.8	66.9	77.2	62.2 ^d	65.2 °	99.2, 98.4 C _{acetal} ; 120.1 C _{ortho ester}		
		98.7	70.5 ^b	70.1 ^b	72.1	63.6 ^d	65.4 °	52.9, 52.5 COOMe; 25.4, 24.3 Me		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 ^f	91.1	69.5	74.5 ^b	74.1 ^b	62.2	64.8	99.1, 98.4 C _{acetal}		
		98.6	73.3 °	68.8	73.2 °	65.5	65.4	52.8, 52.3 COOMe, 25.2 2 Me		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 ^f	93.9	69.5	74.6	74.0	65.56 ^b	64.7 °	99.3, 98.5 C _{acetal} ; 90.7 CCl ₃		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		98.5	71.3	68.8	73.3	65.8 ^b	65.0 °	52.9, 52.3 COOMe, 25.2, 25.0 Me		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 ^g	95.6	68.9 ^ь	77.4	74.3	65.8 °	64.7 ^d	99.3, 98.5 C _{acetal} ; 90.7 CCl ₃		
		98.5	72.1	68.8 ^b	73.1	66.2 °	65.0 ^d	52.3 2 COOMe, 25.3, 25.1 Me		
99.1 73.2 68.8^{b} 74.9 65.9^{c} 65.0^{c} $52.7, 52.3 COOMe, 25.4, 25.3 Me 104.0 72.1c 80.8 75.4b 67.6d 66.2^{c} 103.2, 102.0 Cacctal 71.6 OCH2; 40.7 NCH2103.6 71.4c 75.3b 72.9 67.1^{d} 65.6^{c} 26.4, 25.7 Me; 29.5, 27.7, 23.4 CH221f 90.9 69.6^{b} 77.2 72.6c 61.7^{d} 64.9 98.9 98.5 Cacctal97.2 68.6^{b} 69.5^{c} 73.3c 61.2^{d} 64.9 92.0 98.9 (85.5 Cacctal; 90.7 CCl397.5 69.5 68.6 70.9 64.7 64.6 52.3, 52.0 COOMe; 25.6, 24.7 Me22g 96.0 68.5^{b} 75.9 75.9 61.5 64.9 99.0 98.4 Cacctal; 90.7 CCl397.4 69.3 68.5^{b} 71.6 66.2 64.6 52.1, 52.0 COOMe; 25.6, 24.7 Me23g 101.8 68.6^{b} 77.2 75.9 61.4 64.7 98.9, 98.5 Cacctal; 90.1 CCl397.4 69.3 68.5^{b} 71.6 66.2 64.6 52.1, 52.0 COOMe; 25.5, 24.7 Me23g 101.8 68.6^{b} 77.2 75.9 61.4 64.7 98.9, 98.5 Cacctal; 60.5 OCH2; 40.8 NCH297.4 69.4 68.5^{b} 72.8 65.7 64.7 52.3, 52.1 COOMe; 25.5, 24.7 Me24h 104.2 69.8^{b} 80.0 73.6c 63.9 66.3^{d} 102.8, 102.0 Cacctal; 71.7 OCH2; 40.7 NCH2100.8 69.3^{b} 78.1 72.7c 66.6 65.8^{d} 26.5, 25.9 Me, 29.4, 27.7, 23.4 CH226 83.4 71.8 81.7^{b} 78.5b 77.2 67.6 63.7 C7.5 23.7 SCH2; 14.8 SCH2CH3100.8 69.7^{c} 79.0b 77.2 65.8^{d} 64.8 98.8, 98.5 Cacctal; 74.9, 73.4 CH2Ph99.3 72.3 68.8^{c} 75.1 65.7^{c} 64.8 52.7, 52.3 COOMe; 25.5 2 Me27 101.1 73.2 80.3^{b} 76.6b 73.4c 67.5^{c} 69.3 Z; 66.5 OCH2; 40.8 NCH2100.9 69.7^{d} 78.5b 77.2 65.8^{c} 64.8 98.8, 98.5 Cacctal; 74.7 2 CH2Ph99.2 73.2 68.9^{d} 75.1c 65.7^{c} 64.8 52.7, 52.3 COOMe; 25.5 2 Me28h 105.7b 77.0 77.0 75.9 67.3^{c} 104.2, 103.1 Cacctal; 31.0, 29.3, 25.0 CH2104.9b 73.9c 73.1c 74.4c 69.1 67.8^{c} 27.9, 27.3 Me29 100.4 71.0b 72.5 68.2 71.4b 61.6 69.5 Z; 66.2 OCH2; 40.8 NCH231 103.2 74.5 73.2 80.4 66.3^{c} 66.3 68.6^{c} 101.7 Cacctal; 68.7 OCH2; 40.9 NCH232 103.8 81.9b 81.2b 80.6b 65.$	19	101.6	69.5 ^ь	78.0	77.2	64.7	65.8 °	99.1, 98.5 Cacetal; 66.5 OCH ₂ ; 40.7 NCH ₂		
		99.1	73.2	68.8 ^b	74.9	65.9 °	65.0 °	52.7, 52.3 COOMe, 25.4, 25.3 Me		
$ \begin{array}{cccccc} 103.6 & 71.4 & 75.3 & 72.9 & 67.1 & 65.6 & 26.4, 25.7 & Me; 29.5, 27.7, 23.4 & CH_2 \\ \hline 90.9 & 69.6 & 77.2 & 72.6 & 61.7 & 64.9 & 98.9, 98.5 & C_{accetal} \\ \hline 97.2 & 68.6 & 69.6 & 72.3 & 61.2 & 64.9 & 92.0, 98.5 & C_{accetal} \\ \hline 97.2 & 68.6 & 66.6 & 76.3 & 72.9 & 61.5 & 64.9 & 99.0, 98.5 & C_{accetal} & 97.5 & 69.5 & 68.6 & 70.9 & 64.7 & 64.6 & 52.3, 52.1 & COOMe; 25.6, 24.7 & Me \\ \hline 97.5 & 69.5 & 68.6 & 70.9 & 61.7 & 64.6 & 52.3, 52.1 & COOMe; 25.5, 24.7 & Me \\ \hline 22 & 96.0 & 68.5 & 75.9 & 75.9 & 61.5 & 64.5 & 99.0, 98.4 & C_{accetal} & 90.1 & CCl_3 \\ \hline 97.4 & 69.3 & 68.5 & 77.2 & 75.9 & 61.4 & 64.7 & 98.9, 98.5 & C_{accetal} & 60.5 & OCH_2; 40.8 & NCH_2 \\ \hline 97.4 & 69.4 & 68.5 & 72.8 & 65.7 & 64.7 & 52.3, 52.1 & COOMe; 25.5, 24.8 & Me \\ \hline 104.2 & 69.8 & 80.0 & 73.6 & 63.9 & 66.3 & 102.8, 102.0 & C_{acctal} & 71.7 & OCH_2; 40.7 & NCH_2 \\ \hline 100.8 & 69.3 & 78.1 & 72.7 & 66.6 & 65.8 & 26.5, 25.9 & Me, 29.4, 27.7, 23.4 & CH_2 \\ \hline 100.8 & 69.7 & 79.0 & 77.2 & 65.8 & 64.8 & 98.8, 98.5 & C_{acctal} & 74.9, 73.4 & CH_2 Ph \\ \hline 99.3 & 72.3 & 68.8 & 75.1 & 65.7 & 64.8 & 52.7, 52.3 & COOMe; 25.5 & 2 & Me \\ \hline 27 & 101.1 & 73.2 & 80.3 & 76.6 & 73.4 & 67.5 & 69.3 & Z; 66.5 & OCH_2; 40.8 & NCH_2 \\ \hline 100.9 & 69.7 & 78.5 & 77.2 & 65.8 & 64.8 & 98.8, 98.5 & C_{acctal} & 74.7 & 2CH_2 Ph \\ \hline 99.2 & 73.2 & 68.9 & 4 & 75.1 & 65.7 & 64.8 & 52.7, 52.3 & COOMe, 25.5 & 2 & Me \\ \hline 28 & 105.7 & 77.0 & 77.0 & 81.3 & 4 & 77.7 & 62.8 & 72.9 & OCH_2; 42.2 & NCH_2 \\ \hline 104.9 & 73.9 & 73.1 & 74.4 & 69.1 & 67.8 & 27.9 & 27.3 & Me \\ \hline 29 & 100.4 & 71.0 & 72.5 & 68.2 & 71.4 & 61.6 & 69.5 & Z; 66.3 & OCH_2; 40.8 & NCH_2 \\ \hline 103.8 & 73.1 & 80.4 & 81.8 & 66.1 & 66.6 & 103.7 & C_{acctal} & 66.7 & OCH_2; 40.9 & NCH_2 \\ \hline 31 & 103.2 & 74.5 & 73.2 & 80.4 & 66.3 & 66.3 & 100.7 & C_{acctal} & 66.7 & OCH_2; 40.9 & NCH_2 \\ \hline 31 & 103.8 & 73.1 & 80.4 & 81.8 & 66.1 & 66.6 & 103.7 & C_{acctal} & 66.7 & OCH_2; 40.9 & NCH_2 \\ \hline 31 & 103.8 & 73.1 & 80.4 & 81.8 & 66.1 & 66.6 & 103.7 & C_{acctal} & 68.7 & OCH_2; 40.9 & NCH_2 \\ \hline 31 & 103.6 & 81.7 & 84.0 &$	20 ^h	104.0	72.1 °	80.8	75.4 ^b	67.6 ^d	66.2 °	103.2, 102.0 Cacetal; 71.6 OCH ₂ ; 40.7 NCH ₂		
21 ^f 90.9 69.6 ^b 77.2 72.6 ^c 61.7 ^d 64.9 98.9, 98.5 C _{acetal} 97.2 68.6 ^b 69.6 ^b 72.3 ^c 61.2 ^d 64.9 92.3, 52.0 COOMe; 25.6, 25.0 Me 22 ^f 93.6 68.6 76.3 72.9 61.5 64.9 99.0, 98.5 C _{acetal} ; 90.7 CCl ₃ 97.5 69.5 68.6 70.9 64.7 64.6 52.3, 52.1 COOMe; 25.6, 24.7 Me 22 ^g 96.0 68.5 ^b 75.9 75.9 61.5 64.5 99.0, 98.4 C _{acetal} ; 90.1 CCl ₃ 97.4 69.3 68.5 ^b 71.6 66.2 64.6 52.1, 52.0 COOMe; 25.5, 24.7 Me 23 ^g 101.8 68.6 ^b 77.2 75.9 61.4 64.7 98.9, 98.5 C _{acetal} ; 65. OCH ₂ ; 40.8 NCH ₂ 97.4 69.4 68.5 ^b 72.8 65.7 64.7 52.3, 52.1 COOMe; 25.6, 24.8 Me 24 ^h 104.2 69.8 ^b 80.0 73.6 ^c 63.9 66.3 ^d 102.8, 102.0 C _{acetal} ; 71.7 OCH ₂ ; 40.7 NCH ₂ 100.8 69.3 ^b 78.1 72.7 ^c 66.6 65.8 ^d 26.5, 25.9 Me, 29.4, 27.7, 23.4 CH ₂ 100.8 69.7 ^c 79.0 ^b 77.2 65.8 ^d 64.8 98.8, 98.5 C _{acetal} ; 71.7 OCH ₂ ; 40.7 NCH ₂ 99.3 72.3 68.8 ^c 75.1 65.7 ^d 64.8 52.7, 52.3 COOMe; 25.5 2 Me 27 101.1 73.2 80.3 ^b 76.6 ^b 73.4 ^c 67.5 69.3 2; 66.5 OCH ₂ ; 40.8 NCH ₂ 100.9 69.7 ^d 78.5 ^b 77.2 65.8 ^c 64.8 98.8, 98.5 C _{acetal} ; 74.7 2 CH ₂ Ph 99.2 73.2 68.9 ^d 75.1 ^c 65.7 ^c 64.8 52.7, 52.3 COOMe, 25.5 2 Me 28 ^h 105.7 ^b 77.0 77.0 81.3 ^d 77.7 62.8 72.9 OCH ₂ ; 42.2 NCH ₂ 104.9 ^b 73.9 ^c 73.1 ^c 74.4 ^c 69.1 67.8 ^c 27.9 27.3 Me 29 100.4 71.0 ^b 72.5 68.2 71.4 ^c 61.6 69.5 Z; 66.2 OCH ₂ ; 40.6 NCH ₂ 31 103.2 74.5 73.2 80.4 ^b 65.7 66.3 68.6 101.7 C _{acetal} ; 68.5 OCH ₂ ; 40.8 NCH ₂ 31 103.2 74.5 73.2 80.4 ^b 65.7 66.3 100.8 C _{acetal} ; 68.5 OCH ₂ ; 40.6 NCH ₂ 33 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C _{acetal} ; 68.7 OCH ₂ ; 40.9 NCH ₂ 34 103.6 81.7 ^b 84.0 ^b 71.5 74.1 66.5 35 70.4 74.7 ^c 74.4 ^c 74.4 ^c 74.4 ^c 74.4 ^c 74.3 CH ₂ ; 40.8 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b		103.6	71.4 °	75.3 ^b	72.9	67.1 ^d	65.6 °	26.4, 25.7 Me; 29.5, 27.7, 23.4 CH ₂		
97.2 68.6^{b} 69.6^{b} 72.3^{c} 61.2^{d} 64.9 $52.3, 52.0$ COOMe; 25.6, 25.0 Me 93.6 68.6 76.3 72.9 61.5 64.9 $99.0, 98.5$ $C_{acetal}; 90.7$ CCl ₃ 97.5 69.5 68.6 70.9 64.7 64.6 $52.3, 52.1$ COOMe; 25.6, 24.7 Me 22 ^a 96.0 68.5^{b} 75.9 75.9 61.5 64.5 $99.0, 98.4$ $C_{acetal}; 90.1$ CCl ₃ 97.4 69.3 68.5^{b} 71.6 66.2 64.6 $52.1, 52.0$ COOMe; 25.5, 24.7 Me 23 ^a 101.8 68.6^{b} 77.2 75.9 61.4 64.7 $98.9, 98.5$ $C_{acetal}; 66.5$ OCH ₂ ; 40.8 NCH ₂ 97.4 69.4 68.5^{b} 72.8 65.7 64.7 $52.3, 52.1$ COOMe; 25.6, 24.8 Me 24 ^h 104.2 69.8^{b} 80.0 73.6^{c} 63.9 66.3^{d} $102.8, 102.0$ $C_{acetal}; 71.7$ OCH ₂ ; 40.7 NCH ₂ 100.8 69.3^{b} 78.1 72.7^{c} 66.6 65.8^{d} $265.5, 25.9$ Me; 29.4, 27.7, 23.4 CH ₂ 26 83.4 71.8 81.7^{b} 78.5^{b} 77.2 67.6 23.7 SCH ₂ ; 14.8 SCH ₂ CH ₃ 100.8 69.7^{c} 79.0^{b} 77.2 65.8^{d} 64.8 $98.8, 98.5$ $C_{acetal}; 74.9, 73.4$ CH ₂ Ph 99.3 72.3 68.8^{c} 75.1 65.7^{d} 64.8 $52.7, 52.3$ COOMe; 25.5 2 Me 27 101.1 73.2 80.3^{b} 76.6^{b} 73.4^{c} 67.5 69.3 2; 66.5 OCH ₂ ; 40.8 NCH ₂ 100.9 69.7^{d} 78.5^{b} 77.2 65.8^{c} 64.8 $98.8, 98.5$ $C_{acetal}; 74.7$ 2 CH ₂ Ph 99.2 73.2 68.9^{d} 75.1^{c} 65.7^{c} 64.8 $52.7, 52.3$ COOMe; 25.5 2 Me 28 ^h 105.7^{b} 77.0 71.0 81.3^{d} 77.7 62.8^{c} 27.9 27.3 Me 29 100.4 71.0^{b} 72.5^{c} 68.2 71.4^{b} 61.6^{c} 69.5 Z_{1} 66.2 OCH ₂ ; 40.5 NCH ₂ 30 ^h 104.4^{b} 73.9^{c} 73.2^{c} 74.4^{c} 69.1^{c} 67.3^{c} $104.2, 103.1$ $C_{acetal}; 31.0, 29.3, 25.0$ CH ₂ 31 103.2 74.5 73.2 80.4^{b} 66.5 65.7 66.3 101.7 $C_{acetal}; 66.5$ OCH ₂ ; 40.8 NCH ₂ 32 103.8 81.9^{b} 81.2^{b} 80.6^{b} 65.7 66.3 100.8 $C_{acetal}; 64.9$ OCH ₂ ; 40.9 NCH ₂ 33 103.8 73.1^{c} 80.4^{b} 71.5^{c} 74.1^{c} 69.5^{c} 70.3^{c} 67.3^{c} $104.2, 103.1^{c}$ $C_{acetal}; 64.5$ OCH ₂ ; 40.9 NCH ₂ 34 103	21 ^f	90.9	69.6 ^b	77.2	72.6 °	61.7 ^d	64.9	98.9, 98.5 Caretal		
22 ^f 93.6 68.6 76.3 72.9 61.5 64.9 99.0, 98.5 C_{acctal} ; 90.7 CCl ₃ 97.5 69.5 68.6 70.9 64.7 64.6 52.3, 52.1 COOMe; 25.6, 24.7 Me 22 ^g 96.0 68.5 ^b 75.9 75.9 61.5 64.5 99.0, 98.4 C_{acctal} ; 90.1 CCl ₃ 97.4 69.3 68.5 ^b 71.6 66.2 64.6 52.1, 52.0 COOMe; 25.5, 24.7 Me 23 ^g 101.8 68.6 ^b 77.2 75.9 61.4 64.7 98.9, 98.5 C_{acctal} ; 66.5 OCH ₂ ; 40.8 NCH ₂ 97.4 69.4 68.5 ^b 72.8 65.7 64.7 52.3, 52.1 COOMe; 25.6, 24.8 Me 24 ^h 104.2 69.8 ^b 80.0 73.6 ^c 63.9 66.6 ^d 102.8, 102.0 C_{acctal} ; 71.7 OCH ₂ ; 40.7 NCH ₂ 100.8 69.3 ^b 78.1 72.7 ^c 66.6 65.8 ^d 26.5 25.9 Me, 29.4, 27.7, 23.4 CH ₂ 100.8 69.7 ^c 79.0 ^b 77.2 65.8 ^d 64.8 98.8, 98.5 C_{acctal} ; 74.9, 73.4 CH ₂ Ph 99.3 72.3 68.8 ^c 75.1 65.7 ^d 64.8 52.7, 52.3 COOMe; 25.5 2 Me 27 101.1 73.2 80.3 ^b 76.6 ^b 73.4 ^c 67.5 69.3 2; 66.5 OCH ₂ ; 40.8 NCH ₂ 100.9 69.7 ^d 78.5 ^b 77.2 65.8 ^e 64.8 98.8, 98.5 C_{acctal} ; 74.9, 73.4 CH ₂ Ph 99.2 73.2 68.9 ^d 75.1 ^c 65.7 ^c 64.8 52.7, 52.3 COOMe; 25.5 2 Me 28 ^h 105.3 ^b 68.5 82.2 ^d 77.0 75.9 67.3 ^c 104.9 ^b 73.9 ^c 73.1 ^c 74.4 ^c 69.1 67.8 ^c 27.9, 27.3 Me 29 104.9 ^b 73.9 ^c 73.1 ^c 74.4 ^c 69.1 67.8 ^c 27.9, 27.3 Me 29 104.4 75.1 ^b 77.9 ^b 71.7 78.1 ^b 62.8 70.7 2; 67.3 OCH ₂ ; 40.6 NCH ₂ 30 ^h 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C_{acctal} ; 64.8 NCH ₂ 103.8 81.9 ^b 81.2 ^b 80.6 ^b 65.7 66.3 100.8 C_{acctal} ; 64.9 NCH ₂ 31 103.2 74.5 73.2 80.4 66.3 68.6 101.7 C_{acctal} ; 66.5 OCH ₂ ; 40.8 NCH ₂ 31 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C_{acctal} ; 66.5 OCH ₂ ; 40.8 NCH ₂ 32 103.8 81.9 ^b 81.2 ^b 80.6 ^b 65.7 66.3 100.8 C_{acctal} ; 66.6 OCH ₂ ; 40.8 NCH ₂ 33 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C_{acctal} ; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 74.4 ^b 70.0 ^b 77. ^c 69.5 7, 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 74.4 ^b 76.0 ^b 67.7 ^c 69.5 7, 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 74.4 ^b 76.0 ^b 67.7 ^c 69.5 7, 66.5 OC		97.2	68.6 ^b	69.6 ^b	72.3 °	61.2 ^d	64.9	52.3, 52.0 COOMe; 25.6, 25.0 Me		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 ^f	93.6	68.6	76.3	72.9	61.5	64.9	99.0. 98.5 Counti 90.7 CCla		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		97.5	69.5	68.6	70.9	64.7	64.6	52.3. 52.1 COOMe: 25.6. 24.7 Me		
97.4 69.3 68.5 ^b 71.6 66.2 64.6 52.1, 52.0 COOMe; 25.5, 24.7 Me 23 ^g 101.8 68.6 ^b 77.2 75.9 61.4 64.7 98.9, 98.5 C _{acetal} ; 66.5 OCH ₂ ; 40.8 NCH ₂ 97.4 69.4 68.5 ^b 72.8 65.7 64.7 52.3, 52.1 COOMe; 25.6, 24.8 Me 24 ^h 104.2 69.8 ^b 80.0 73.6 ^c 63.9 66.3 ^d 102.8, 102.0 C _{acetal} ; 71.7 OCH ₂ ; 40.7 NCH ₂ 100.8 69.3 ^b 78.1 72.7 ^c 66.6 65.8 ^d 26.5, 25.9 Me, 29.4, 27.7, 23.4 CH ₂ 26 83.4 71.8 81.7 ^b 78.5 ^b 77.2 67.6 23.7 SCH ₂ ; 14.8 SCH ₂ CH ₃ 100.8 69.7 ^c 79.0 ^b 77.2 65.8 ^d 64.8 98.8, 98.5 C _{acetal} ; 74.9, 73.4 CH ₂ Ph 99.3 72.3 68.8 ^c 75.1 65.7 ^d 64.8 52.7, 52.3 COOMe, 25.5 2 Me 27 101.1 73.2 80.3 ^b 76.6 ^b 73.4 ^c 67.5 69.3 Z; 66.5 OCH ₂ ; 40.8 NCH ₂ 100.9 69.7 ^d 78.5 ^b 77.2 65.8 ^c 64.8 98.8, 98.5 C _{acetal} ; 74.7 2 CH ₂ Ph 99.2 73.2 68.9 ^d 75.1 ^c 65.7 ^c 64.8 52.7, 52.3 COOMe, 25.5 2 Me 28 ^h 105.7 ^b 77.0 77.0 81.3 ^d 77.7 62.8 72.9 OCH ₂ ; 42.2 NCH ₂ 104.9 ^b 73.9 ^c 73.1 ^c 74.4 ^c 69.1 67.8 ^c 27.9, 27.3 Me 29 100.4 71.0 ^b 72.5 68.2 71.4 ^b 61.6 69.5 Z; 66.2 OCH ₂ ; 40.6 NCH ₂ 30 ^h 104.4 75.1 ^b 77.9 ^b 71.7 78.1 ^b 62.8 70.7 Z; 67.3 OCH ₂ ; 40.6 NCH ₂ 31 103.2 74.5 73.2 80.4 66.3 68.6 101.7 C _{acetal} ; 66.5 OCH ₂ ; 40.8 NCH ₂ 33 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C _{acetal} ; 68.7 OCH ₂ ; 40.6 NCH ₂ 34 103.6 81.7 ^b 84.0 ^b 71.5 74.1 66.5 70.3 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.9 ^b 75.2 ^c 67.3 ^c 74.9 74.5 73.2 (6.7 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z; 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.	22 ^g	96.0	68.5 ^b	75.9	75.9	61.5	64.5	99.0. 98.4 Creater: 90.1 CCla		
23 ^B 101.8 68.6 ^b 77.2 75.9 61.4 64.7 98.9, 98.5 C_{acetal} ; 66.5 OCH ₂ ; 40.8 NCH ₂ 97.4 69.4 68.5 ^b 72.8 65.7 64.7 52.3, 52.1 COOMe; 25.6, 24.8 Me 24 ^h 104.2 69.8 ^b 80.0 73.6 ^c 63.9 66.3 ^d 102.8 , 102.0 C_{acetal} ; 71.7 OCH ₂ ; 40.7 NCH ₂ 100.8 69.3 ^b 78.1 72.7 ^c 66.6 65.8 ^d 26.5 , 25.9 Me, 29.4, 27.7, 23.4 CH ₂ 26 83.4 71.8 81.7 ^b 78.5 ^b 77.2 67.6 23.7 SCH ₂ ; 14.8 SCH ₂ CH ₃ 100.8 69.7 ^c 79.0 ^b 77.2 65.8 ^d 64.8 98.8, 98.5 C_{acetal} ; 74.9, 73.4 CH ₂ Ph 99.3 72.3 68.8 ^c 75.1 65.7 ^d 64.8 52.7, 52.3 COOMe, 25.5 2 Me 27 101.1 73.2 80.3 ^b 76.6 ^b 73.4 ^c 67.5 69.3 Z; 66.5 OCH ₂ ; 40.8 NCH ₂ 100.9 69.7 ^d 78.5 ^b 77.2 65.8 ^e 64.8 98.8, 98.5 C_{acetal} ; 74.7 2 CH ₂ Ph 99.2 73.2 68.9 ^d 75.1 ^c 65.7 ^e 64.8 52.7, 52.3 COOMe, 25.5 2 Me 28 ^h 105.7 ^b 77.0 77.0 81.3 ^d 77.7 62.8 72.9 OCH ₂ ; 42.2 NCH ₂ 105.3 ^b 68.5 82.2 ^d 77.0 75.9 67.3 ^c 104.2, 103.1 C_{acetal} ; 31.0, 29.3, 25.0 CH ₂ 104.9 ^b 73.9 ^c 73.1 ^c 74.4 ^c 69.1 67.8 ^c 27.9, 27.3 Me 29 100.4 71.0 ^b 72.5 68.2 71.4 ^b 61.6 69.5 Z; 66.2 OCH ₂ ; 40.6 NCH ₂ 30 ^h 104.4 75.1 ^b 77.9 ^b 71.7 78.1 ^b 62.8 70.7 Z; 67.3 OCH ₂ ; 40.6 NCH ₂ 31 103.2 74.5 73.2 80.4 66.3 68.6 101.7 C_{acetal} ; 66.6 OCH ₂ ; 40.8 NCH ₂ 32 103.8 81.9 ^b 81.2 ^b 80.6 ^b 65.7 66.3 100.8 Cacetal; 66.5 OCH ₂ ; 40.9 NCH ₂ 33 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C_{acetal} ; 68.7 OCH ₂ ; 40.9 NCH ₂ 34 103.6 81.7 ^b 84.0 ^b 71.5 74.1 66.5 70.3 Z, 69.7 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z, 66.5 OCH ₂ ; 40.8 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z, 66.5 OCH ₂ ; 40.8 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z, 66.5 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z, 66.5 OCH ₂ ; 40.8 NCH ₂ 100.4 73.5 ^c 81.4 ^b 76.9 ^b 77.5 ^c 74.7 76.9 ^c 73.4 73.4 73.4 73.4 CH Pb		97.4	69.3	68.5 ^b	71.6	66.2	64.6	52.1. 52.0 COOMe: 25.5. 24.7 Me		
$\begin{array}{ccccc} 97.4 & 69.4 & 68.5 \ ^{b} & 72.8 & 65.7 & 64.7 & 52.3, 52.1 \ COOMe; 25.6, 24.8 \ Me\\ 104.2 & 69.8 \ ^{b} & 80.0 & 73.6 \ ^{c} & 63.9 & 66.3 \ ^{d} & 102.8, 102.0 \ C_{acctal}; 71.7 \ OCH_2; 40.7 \ NCH_2\\ 100.8 & 69.3 \ ^{b} & 78.1 & 72.7 \ ^{c} & 66.6 & 65.8 \ ^{d} & 26.5, 25.9 \ Me, 29.4, 27.7, 23.4 \ CH_2\\ 100.8 & 69.7 \ ^{c} & 79.0 \ ^{b} & 77.2 & 67.6 & 23.7 \ SCH_2; 14.8 \ SCH_2CH_3\\ 100.8 & 69.7 \ ^{c} & 79.0 \ ^{b} & 77.2 & 65.8 \ ^{d} & 64.8 & 98.8, 98.5 \ C_{acctal}; 74.9, 73.4 \ CH_2Ph\\ 99.3 & 72.3 & 68.8 \ ^{c} & 75.1 & 65.7 \ ^{d} & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me\\ 27 & 101.1 & 73.2 & 80.3 \ ^{b} & 76.6 \ ^{b} & 73.4 \ ^{c} & 67.5 & 69.3 \ Z; 66.5 \ OCH_2; 40.8 \ NCH_2\\ 100.9 & 69.7 \ ^{d} & 78.5 \ ^{b} & 77.2 & 65.8 \ ^{c} & 64.8 & 98.8, 98.5 \ C_{acctal}; 74.7 \ 2 \ CH_2Ph\\ 99.2 & 73.2 & 68.9 \ ^{d} & 75.1 \ ^{c} & 65.7 \ ^{c} & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me\\ 28 \ ^{h} & 105.7 \ ^{b} & 77.0 & 77.0 & 81.3 \ ^{d} & 77.7 & 62.8 & 72.9 \ OCH_2; 42.2 \ NCH_2\\ 105.3 \ ^{b} & 68.5 & 82.2 \ ^{d} & 77.0 & 75.9 & 67.3 \ ^{c} & 104.2, 103.1 \ C_{acctal}; 31.0, 29.3, 25.0 \ CH_2\\ 104.9 \ ^{b} & 73.9 \ ^{c} & 73.1 \ ^{c} & 74.4 \ ^{c} \ 69.1 & 67.8 \ ^{c} & 27.9 \ 27.3 \ Me\\ 29 & 100.4 & 71.0 \ ^{b} & 72.5 \ 68.2 & 71.4 \ ^{b} \ 61.6 & 69.5 \ Z; \ 66.5 \ OCH_2; 40.6 \ NCH_2\\ 31 & 103.2 & 74.5 & 73.2 \ 80.4 \ 66.3 \ 68.6 & 101.7 \ C_{acctal}; 66.6 \ OCH_2; 40.8 \ NCH_2\\ 32 & 103.8 \ 81.9 \ ^{b} \ 81.2 \ ^{b} \ 80.6 \ ^{b} \ 65.7 \ ^{c} \ 66.3 \ 100.8 \ C_{acctal}; 68.7 \ OCH_2; 40.9 \ NCH_2\\ 33 & 103.8 \ 73.1 \ 80.4 \ ^{b} \ 81.8 \ ^{b} \ 66.1 \ 66.6 \ 103.7 \ C_{acctal}; 68.7 \ OCH_2; 40.9 \ NCH_2\\ 103.1 \ 74.1 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, \ 65.7 \ CH_2; \ 40.8 \ NCH_2\\ 103.1 \ 74.1 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, \ 66.5 \ OCH_2; \ 40.8 \ NCH_2\\ 103.1 \ 74.1 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, \ 67.5 \ CH_2; \ 40.8 \ NCH_2\\ 103.1 \ 74.1 \ ^{c} \ 82.8 \ $	23 ^g	101.8	68.6 ^b	77.2	75.9	61.4	64.7	98.9. 98.5 Commit 66.5 OCHa: 40.8 NCHa		
$ \begin{array}{cccccc} 24^{h} & 104.2 & 69.8^{b} & 80.0 & 73.6^{c} & 63.9 & 66.3^{d} & 102.8, 102.0 \ C_{acctal}; 71.7 \ OCH_2; 40.7 \ NCH_2 \\ 100.8 & 69.3^{b} & 78.1 & 72.7^{c} & 66.6 & 65.8^{d} & 26.5, 25.9 \ Me, 29.4, 27.7, 23.4 \ CH_2 \\ 26 & 83.4 & 71.8 & 81.7^{b} & 78.5^{b} & 77.2 & 67.6 & 23.7 \ SCH_2; 14.8 \ SCH_2CH_3 \\ 100.8 & 69.7^{c} & 79.0^{b} & 77.2 & 65.8^{d} & 64.8 & 98.8, 98.5 \ C_{acctal}; 74.9, 73.4 \ CH_2Ph \\ 99.3 & 72.3 & 68.8^{c} & 75.1 & 65.7^{d} & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me \\ 27 & 101.1 & 73.2 & 80.3^{b} & 76.6^{b} & 73.4^{c} & 67.5 & 69.3 \ Z; 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.9 & 69.7^{d} & 78.5^{b} & 77.2 & 65.8^{c} & 64.8 & 98.8, 98.5 \ C_{acctal}; 74.7 \ 2 \ CH_2Ph \\ 99.2 & 73.2 & 68.9^{d} & 75.1^{c} & 65.7^{c} & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me \\ 28^{h} & 105.7^{b} & 77.0 & 77.0 & 81.3^{d} & 77.7 & 62.8 & 72.9 \ OCH_2; 42.2 \ NCH_2 \\ 105.3^{b} & 68.5 & 82.2^{d} & 77.0 & 75.9 & 67.3^{c} & 104.2, 103.1 \ C_{acctal}; 31.0, 29.3, 25.0 \ CH_2 \\ 104.9^{b} & 73.9^{c} & 73.1^{c} & 74.4^{c} \ 69.1 & 67.8^{c} & 27.9, 27.3 \ Me \\ 29 & 100.4 & 71.0^{b} & 72.5 & 68.2 & 71.4^{b} & 61.6 & 69.5 \ Z; 66.2 \ OCH_2; 40.6 \ NCH_2 \\ 31 & 103.2 & 74.5 & 73.2 & 80.4 & 66.3 & 68.6 & 101.7 \ C_{acctal}; 66.6 \ OCH_2; 40.8 \ NCH_2 \\ 32 & 103.8 & 81.9^{b} & 81.2^{b} \ 80.6^{b} & 65.7 & 66.3 & 100.8 \ C_{acctal}; 68.7 \ OCH_2; 40.9 \ NCH_2 \\ 33 & 103.8 & 73.1 & 80.4^{b} & 81.8^{b} \ 66.1 & 66.6 & 103.7 \ C_{acctal}; 68.7 \ OCH_2; 40.9 \ NCH_2 \\ 34 & 103.6 & 81.7^{b} & 84.0^{b} \ 71.5 & 74.1 & 66.5 & 70.3 \ Z, 66.5 \ OCH_2; 40.9 \ NCH_2 \\ 103.1 & 74.1^{c} & 82.8^{b} \ 78.4^{b} \ 76.0^{b} \ 67.7^{c} & 69.2 \ 74.9 \ 74.6 \ 73.4 \ CH_2 \ 74.9 \ NCH_2 \\ 100.4 & 73.5^{c} & 81.4^{b} \ 76.0^{b} \ 67.7^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 103.1 & 74.1^{c} & 82.8^{b} \ 78.4^{b} \ 76.0^{b} \ 67.7^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 103.1 & 74.1^{c} & 82.8^{b} \ 78.4^{b} \ 76.0^{b} \ 67.7^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.4 & 73.5^{c} \ 81.4^{b} \ 76.0^{b} \ 67.7^{c} \ 69.5 \ Z, 6$		97.4	69.4	68.5 ^b	72.8	65.7	64.7	52.3. 52.1 COOMe: 25.6. 24.8 Me		
$ \begin{array}{ccccc} 100.8 & 69.3 \ ^{b} & 78.1 & 72.7 \ ^{c} & 66.6 & 65.8 \ ^{d} & 26.5, 25.9 \ Me, 29.4, 27.7, 23.4 \ CH_2 \\ 100.8 & 69.7 \ ^{c} & 79.0 \ ^{b} & 77.2 & 65.8 \ ^{d} & 64.8 & 98.8, 98.5 \ C_{acctal}, 74.9, 73.4 \ CH_2 \ Ph \\ 99.3 & 72.3 & 68.8 \ ^{c} & 75.1 & 65.7 \ ^{d} & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me \\ 27 & 101.1 & 73.2 & 80.3 \ ^{b} & 76.6 \ ^{b} & 73.4 \ ^{c} & 67.5 & 69.3 \ Z; 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.9 & 69.7 \ ^{d} & 78.5 \ ^{b} & 77.2 & 65.8 \ ^{c} & 64.8 & 98.8, 98.5 \ C_{acctal}, 74.7 \ 2 \ CH_2 \ Ph \\ 99.2 & 73.2 & 68.9 \ ^{d} & 75.1 \ ^{c} & 65.7 \ ^{c} & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me \\ 28 \ ^{h} & 105.7 \ ^{b} & 77.0 & 77.0 & 81.3 \ ^{d} & 77.7 & 62.8 & 72.9 \ OCH_2; 42.2 \ NCH_2 \\ 105.3 \ ^{b} & 68.5 & 82.2 \ ^{d} & 77.0 & 75.9 & 67.3 \ ^{c} & 104.2, 103.1 \ C_{acctal}, 31.0, 29.3, 25.0 \ CH_2 \\ 104.9 \ ^{b} & 73.9 \ ^{c} & 73.1 \ ^{c} & 74.4 \ ^{c} & 69.1 & 67.8 \ ^{c} & 27.9 \ 27.3 \ Me \\ 29 & 100.4 & 71.0 \ ^{b} & 72.5 \ & 68.2 & 71.4 \ ^{b} & 61.6 & 69.5 \ Z; 66.2 \ OCH_2; 40.6 \ NCH_2 \\ 31 & 103.2 & 74.5 & 73.2 \ & 80.4 \ & 66.3 \ & 68.6 & 101.7 \ C_{acctal}, 66.6 \ OCH_2; 40.8 \ NCH_2 \\ 32 & 103.8 \ & 81.9 \ ^{b} \ 81.2 \ ^{b} \ 80.6 \ ^{b} \ 65.7 \ & 66.3 \ & 100.8 \ C_{acctal}, 68.7 \ OCH_2; 40.9 \ NCH_2 \\ 33 & 103.8 \ & 73.1 \ & 80.4 \ & 81.8 \ ^{b} \ & 66.1 \ & 66.6 \ & 103.7 \ C_{acctal}, 68.7 \ OCH_2; 40.9 \ NCH_2 \\ 34 & 103.6 \ & 81.7 \ ^{b} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 103.1 \ & 74.1 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.4 \ & 73.5 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 103.1 \ & 74.1 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 103.1 \ & 74.1 \ ^{c} \ 82.8 \ ^{b} \ 78.4 \ ^{b} \ 76.0 \ ^{b} \ 67.7 \ ^{c} \ 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.4 \ & 73.5 \ ^{c} \ 81.4 \ ^{b} \ 76.0 \$	24 ^h	104.2	69.8 ^b	80.0	73.6 °	63.9	66.3 ^d	102.8, 102.0 C: 71.7 OCH ₂ : 40.7 NCH ₂		
2683.471.881.7 b 77.267.623.7SCH_2; 14.8SCH_2CH_3100.869.779.077.265.864.898.8, 98.5Cacetai; 74.9, 73.4CH_2Ph99.372.368.875.165.764.852.7, 52.3COOMe, 25.52 Me27101.173.280.376.673.467.569.32; 66.5OCH_2; 40.8NCH_2100.969.778.577.265.864.898.8, 98.5Cacetai; 74.72 CH_2Ph99.273.268.975.165.764.852.7, 52.3COOMe, 25.52 Me28105.777.077.081.377.762.872.9OCH_2; 42.2NCH_2105.368.582.277.075.967.3104.2, 103.1Cacetai; 31.0, 29.3, 25.0CH_2104.973.973.174.469.167.827.9, 27.3Me29100.471.072.568.271.461.669.52; 66.2OCH_2; 40.6NCH_230104.475.177.971.778.162.870.72; 67.3OCH_2; 40.8NCH_231103.274.573.280.466.368.6101.7Cacetai; 66.6OCH2; 40.8NCH_232103.881.981.280.665.766.3100.8Cacetai; 68.7OCH2; 40.9NCH_233103.274.573.280.4 <t< td=""><td></td><td>100.8</td><td>69.3 ^b</td><td>78.1</td><td>72.7 °</td><td>66.6</td><td>65.8 ^d</td><td>26.5. 25.9 Me. 29.4. 27.7. 23.4 CH₂</td></t<>		100.8	69.3 ^b	78.1	72.7 °	66.6	65.8 ^d	26.5. 25.9 Me. 29.4. 27.7. 23.4 CH ₂		
$ \begin{array}{ccccc} 100.8 & 69.7 & 79.0 & 77.2 & 65.8 & 64.8 & 98.8, 98.5 & C_{acctal}, 74.9, 73.4 & CH_2Ph \\ 99.3 & 72.3 & 68.8 & 75.1 & 65.7 & 64.8 & 52.7, 52.3 & COOMe, 25.5 & 2 & Me \\ 101.1 & 73.2 & 80.3 & 76.6 & 73.4 & 67.5 & 69.3 & Z; 66.5 & OCH_2; 40.8 & NCH_2 \\ 100.9 & 69.7 & 78.5 & 77.2 & 65.8 & 64.8 & 98.8, 98.5 & C_{acctal}, 74.7 & 2 & CH_2Ph \\ 99.2 & 73.2 & 68.9 & 75.1 & 65.7 & 64.8 & 52.7, 52.3 & COOMe, 25.5 & 2 & Me \\ 105.7 & 77.0 & 77.0 & 81.3 & 77.7 & 62.8 & 72.9 & OCH_2; 42.2 & NCH_2 \\ 105.3 & 68.5 & 82.2 & 77.0 & 75.9 & 67.3 & 104.2, 103.1 & C_{acctal}, 31.0, 29.3, 25.0 & CH_2 \\ 104.9 & 73.9 & 73.1 & 74.4 & 69.1 & 67.8 & 27.9, 27.3 & Me \\ \hline 29 & 100.4 & 71.0 & 72.5 & 68.2 & 71.4 & 61.6 & 69.5 & Z; 66.2 & OCH_2; 40.6 & NCH_2 \\ 30 & 104.4 & 75.1 & 77.9 & 71.7 & 78.1 & 62.8 & 70.7 & Z; 67.3 & OCH_2; 41.7 & NCH_2 \\ \hline 31 & 103.2 & 74.5 & 73.2 & 80.4 & 66.3 & 68.6 & 101.7 & C_{acctal}, 66.6 & OCH_2; 40.8 & NCH_2 \\ \hline 33 & 103.8 & 81.9 & 81.2 & 80.6 & 65.7 & 66.3 & 100.8 & C_{acctal}, 68.5 & OCH_2; 40.9 & NCH_2 \\ \hline 34 & 103.6 & 81.7 & 84.0 & 71.5 & 74.1 & 66.5 & 70.3 & Z, 69.7 & OCH_2; 40.9 & NCH_2 \\ \hline 103.1 & 74.1 & 82.8 & 78.4 & 76.0 & 67.7 & 69.5 & Z, 66.5 & OCH_2; 40.8 & NCH_2 \\ \hline 100.4 & 73.5 & 81.4 & 56.0 & 67.7 & 69.5 & Z, 66.5 & OCH_2; 40.8 & NCH_2 \\ \hline 103.1 & 74.1 & 82.8 & 78.4 & 76.0 & 67.7 & 69.5 & Z, 66.5 & OCH_2; 40.8 & NCH_2 \\ \hline 100.4 & 73.5 & 81.4 & 56.0 & 67.7 & 69.5 & Z, 66.5 & OCH_2; 40.8 & NCH_2 \\ \hline 103.1 & 74.1 & 82.8 & 78.4 & 76.0 & 67.7 & 69.5 & Z, 66.5 & OCH_2; 40.8 & NCH_2 \\ \hline 103.1 & 74.1 & 67.5 & 75.2 &$	26	83.4	71.8	81.7 ^b	78.5 ^b	77.2	67.6	23.7 SCH ₂ : 14.8 SCH ₂ CH ₂		
$\begin{array}{ccccc} 99.3 & 72.3 & 68.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		100.8	69.7 °	79.0 ^b	77.2	65.8 ^d	64.8	98.8. 98.5 C: 74.9. 73.4 CH_Ph		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		99.3	72.3	68.8 °	75.1	65.7 ^d	64.8	52.7. 52.3 COOMe. 25.5.2 Me.		
$ \begin{array}{ccccc} 100.9 & 69.7 & 78.5 & 77.2 & 65.8 & 64.8 & 98.8, 98.5 \ C_{acctal}; 74.7 & 2 \ CH_2 Ph \\ 99.2 & 73.2 & 68.9 & 75.1 & 65.7 & 64.8 & 52.7, 52.3 \ COOMe, 25.5 & 2 \ Me \\ 105.7 & 77.0 & 77.0 & 81.3 & 77.7 & 62.8 & 72.9 \ OCH_2; 42.2 \ NCH_2 \\ 105.3 & 68.5 & 82.2 & 77.0 & 75.9 & 67.3 & 104.2, 103.1 \ C_{acctal}; 31.0, 29.3, 25.0 \ CH_2 \\ 104.9 & 73.9 & 73.1 & 74.4 & 69.1 & 67.8 & 27.9, 27.3 \ Me \\ \begin{array}{c} 29 \\ 100.4 & 71.0 & 72.5 & 68.2 & 71.4 & 61.6 & 69.5 \ Z; 66.2 \ OCH_2; 40.6 \ NCH_2 \\ 31 \\ 103.2 & 74.5 & 73.2 & 80.4 & 66.3 & 68.6 & 101.7 \ C_{acctal}; 66.6 \ OCH_2; 40.8 \ NCH_2 \\ 32 \\ 103.8 & 81.9 & 81.2 & 80.6 & 65.7 & 66.3 & 100.8 \ C_{acctal}; 68.5 \ OCH_2; 40.9 \ NCH_2 \\ 34 \\ 103.6 & 81.7 & 84.0 & 71.5 & 74.1 & 66.5 & 70.3 \ Z, 66.7 \ OCH_2; 40.9 \ NCH_2 \\ 103.1 & 74.1 & 82.8 & 78.4 & 76.0 & 67.7 & 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.4 & 73.5 & 81.4 & 76.9 & 77.7 & 67.3 & 74.9 \ 74.6 \ 74.9 \ 74.9 \ 74.1 \ CH_2 \\ 103.1 & 74.1 & 82.8 & 78.4 & 76.0 & 67.7 & 69.5 \ Z, 66.5 \ OCH_2; 40.8 \ NCH_2 \\ 100.4 & 73.5 & 81.4 & 76.9 & 75.2 & 67.3 & 74.9 \ $	27	101.1	73.2	80.3 ^b	76.6 ^b	73.4 °	67.5	69.3 7: 66.5 OCH _a : 40.8 NCH _a		
$\begin{array}{ccccc} 99.2 & 73.2 & 68.9 \ d & 75.1 \ c & 65.7 \ c & 64.8 & 52.7, 52.3 \ COOMe, 25.5 \ 2 \ Me \\ 105.7 \ b & 77.0 & 77.0 & 81.3 \ d & 77.7 & 62.8 & 72.9 \ OCH_2; \ 42.2 \ NCH_2 \\ 105.3 \ b & 68.5 & 82.2 \ d & 77.0 & 75.9 & 67.3 \ c & 104.2, \ 103.1 \ C_{acctal}; \ 31.0, \ 29.3, \ 25.0 \ CH_2 \\ 104.9 \ b & 73.9 \ c & 73.1 \ c & 74.4 \ c & 69.1 & 67.8 \ c & 27.9, \ 27.3 \ Me \\ \hline 29 & 100.4 & 71.0 \ b & 72.5 & 68.2 & 71.4 \ b & 61.6 & 69.5 \ Z; \ 66.2 \ OCH_2; \ 40.6 \ NCH_2 \\ \hline 30 \ h & 104.4 & 75.1 \ b & 77.9 \ b & 71.7 & 78.1 \ b & 62.8 & 70.7 \ Z; \ 67.3 \ OCH_2; \ 41.7 \ NCH_2 \\ \hline 31 & 103.2 & 74.5 & 73.2 & 80.4 & 66.3 & 68.6 & 101.7 \ C_{acctal}; \ 66.6 \ OCH_2; \ 40.8 \ NCH_2 \\ \hline 32 & 103.8 & 81.9 \ b & 81.2 \ b & 80.6 \ b & 65.7 & 66.3 & 100.8 \ C_{acctal}; \ 68.5 \ OCH_2; \ 40.9 \ NCH_2 \\ \hline 33 & 103.8 & 73.1 & 80.4 \ b & 81.8 \ b & 66.1 & 66.6 & 103.7 \ C_{acctal}; \ 68.7 \ OCH_2; \ 40.9 \ NCH_2 \\ \hline 34 & 103.6 & 81.7 \ b & 84.0 \ b & 71.5 & 74.1 & 66.5 & 70.3 \ Z, \ 69.7 \ OCH_2; \ 40.8 \ NCH_2 \\ \hline 100.4 & 73.5 \ c & 81.4 \ b & 76.9 \ c & 77.2 \ c & 67.3 \ c & 74.9 \ 74.1 \ CH \ 2H \ 100.4 \ c & 73.5 \ c & 81.4 \ b & 76.9 \ c & 77.2 \ c & 74.9 \ 74.1 \ c & 74.9 \ NCH_2 \\ \hline 100.4 & 73.5 \ c & 81.4 \ b & 76.9 \ c & 75.2 \ b & 67.7 \ c & 69.5 \ Z, \ 66.5 \ OCH_2; \ 40.8 \ NCH_2 \\ \hline 100.4 & 73.5 \ c & 81.4 \ b & 76.9 \ c & 75.2 \ b & 67.7 \ c & 69.5 \ Z, \ 66.5 \ OCH_2; \ 40.8 \ NCH_2 \\ \hline 100.4 & 73.5 \ c & 81.4 \ b & 76.9 \ c & 75.2 \ b & 67.7 \ c & 69.5 \ Z, \ 67.5 \ C & 74.4 \ C & 73.4 \ CH_2 \$		100.9	69.7 ^d	78.5 ^b	77.2	65.8 °	64.8	98.8. 98.5 C 74.7 2 CH_Ph		
28 h 105.7 b 77.0 81.3 d 77.7 62.8 72.9 OCH ₂ ; 42.2 NCH ₂ 105.3 b 68.5 82.2 d 77.0 75.9 67.3 c 104.2, 103.1 C _{acctal} ; 31.0, 29.3, 25.0 CH ₂ 104.9 b 73.9 c 73.1 c 74.4 c 69.1 67.8 c 27.9, 27.3 Me 29 100.4 71.0 b 72.5 68.2 71.4 b 61.6 69.5 Z; 66.2 OCH ₂ ; 40.6 NCH ₂ 30 h 104.4 75.1 b 77.9 b 71.7 78.1 b 62.8 70.7 Z; 67.3 OCH ₂ ; 41.7 NCH ₂ 31 103.2 74.5 73.2 80.4 66.3 68.6 101.7 C _{acctal} ; 66.6 OCH ₂ ; 40.8 NCH ₂ 32 103.8 81.9 b 81.2 b 80.6 b 65.7 66.3 100.8 C _{acctal} ; 68.5 OCH ₂ ; 40.6 NCH ₂ 33 103.8 73.1 80.4 b 81.8 b 66.1 66.6 103.7 C _{acctal} ; 68.7 OCH ₂ ; 40.9 NCH ₂ 34 103.6 81.7 b 84.0 b 71.5 74.1 66.5 70.3 Z, 69.7 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 c 82.8 b 78.4 b 67.0 c 67.3 c 69.5 Z, 66.5 OCH ₂ ; 40.9 NCH ₂ 1		99.2	73.2	68.9 ^d	75.1 °	65.7°	64.8	52.7, 52.3 COOMe 25.5.2 Me		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 ^h	105.7 ^b	77.0	77.0	81.3 d	77.7	62.8	72.9 OCH ₂ : 42.2 NCH ₂		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		105.3 ^b	68.5	82.2 ^d	77.0	75.9	67.3 °	104.2. 103.1 C: 31.0. 29.3. 25.0 CH		
29 100.4 71.0^{b} 72.5 68.2 71.4^{b} 61.6 69.5 Z; 66.2 OCH ₂ ; 40.6 NCH ₂ 30 ^b 104.4 75.1^{b} 77.7 78.1^{b} 62.8 70.7 Z; 67.3 OCH ₂ ; 41.7 NCH ₂ 31 103.2 74.5 73.2 80.4 66.3 68.6 101.7 Cacetai; 66.6 OCH ₂ ; 40.8 NCH ₂ 32 103.8 81.9^{b} 81.2^{b} 80.6^{b} 65.7 66.3 100.8 Cacetai; 68.5 OCH ₂ ; 40.6 NCH ₂ 33 103.8 73.1 80.4^{b} 81.8^{b} 66.1 66.6 103.7 Cacetai; 68.7 OCH ₂ ; 40.9 NCH ₂ 34 103.6 81.7^{b} 84.0^{b} 71.5 74.1 66.5 70.3 Z, 69.7 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1^{c} 82.8^{b} 78.4^{b} 67.7^{c} 69.5 Z, 66.5 OCH ₂ ; 40.8 NCH ₂ 100.4 73.5^{c} 81.4^{b} 76.0^{b} 67.7^{c} 69.5 Z, 66.5 OCH ₂ ; 40.8 NCH ₂ 100.4 73.5^{c} 81.4^{b} 76.0^{b} 67.3^{c} 74.9 74.6 73.4 73.4 73.4 <td></td> <td>104.9 ^b</td> <td>73.9 °</td> <td>73.1 °</td> <td>74.4 °</td> <td>69.1</td> <td>67.8°</td> <td>27.9. 27.3 Me</td>		104.9 ^b	73.9 °	73.1 °	74.4 °	69.1	67.8°	27.9. 27.3 Me		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	100.4	71.0 ^b	72.5	68.2	71.4 ^b	61.6	69 5 7: 66 2 OCH -: 40 6 NCH		
31 103.2 74.5 73.2 80.4 66.3 68.6 101.7 C_{acetal} ; 66.6 OCH_2 ; 40.8 NCH_2 32 103.8 81.9 ^b 81.2 ^b 80.6 ^b 65.7 66.3 100.8 C_{acetal} ; 68.5 OCH_2 ; 40.8 NCH_2 33 103.8 73.1 80.4 ^b 81.8 ^b 66.1 66.6 103.7 C_{acetal} ; 68.7 OCH_2 ; 40.9 NCH_2 34 103.6 81.7 ^b 84.0 ^b 71.5 74.1 66.5 70.3 Z, 69.7 OCH_2 ; 40.9 NCH_2 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z, 66.5 OCH_2 ; 40.8 NCH_2 103.2 73.5 ^c 81.4 ^b 76.9 ^b 75.2 ^b 67.3 ^c 74.9 74.6 73.4 73.1 CH Pb	30 ^h	104.4	75.1 ^b	77.9 ^b	71 7	78 1 ^b	62.8	70 7 7: 67 3 OCH-: 41 7 NCH-		
32 103.8 81.9^{b} 81.2^{b} 80.6^{b} 65.7 66.3 $100.8 C_{acctal}$ $68.5 OCH_2$; $40.6 NCH_2$ 33 103.8 73.1 80.4^{b} 81.8^{b} 66.1 66.5 $100.8 C_{acctal}$; $68.5 OCH_2$; $40.9 NCH_2$ 34 103.6 81.7^{b} 84.0^{b} 71.5 74.1 66.5 $70.3 Z_{c}$ $69.7 OCH_2$; $40.9 NCH_2$ 103.1 74.1^{c} 82.8^{b} 78.4^{b} 76.0^{b} 67.7^{c} $69.5 Z_{c}$ $66.5 OCH_2$; $40.8 NCH_2$ 100.4 73.5^{c} 81.4^{b} 76.9^{b} 67.3^{c} $74.9 74.6$ $73.4 73.4 CH_2$	31	103.2	74.5	73.2	80.4	66 3	68.6	101 7 C		
33 103.8 73.1 80.4 b 81.8 b 66.1 66.6 103.7 Cacetali 68.7 OCH2; 40.9 NCH2 34 103.6 81.7 b 84.0 b 71.5 74.1 66.5 70.3 Z, 69.7 OCH2; 40.9 NCH2 103.1 74.1 c 82.8 b 78.4 b 67.7 c 69.5 Z, 66.5 OCH2; 40.8 NCH2 100.4 73.5 c 81.4 b 76.9 b 77.2 c 74.9 74.6 73.4 73.1 CH Pb	32	103.8	81.9 b	81.2 0	80.6 *	65 7	66 3	100.8 C		
34 103.6 81.7 ^b 84.0 ^b 71.5 74.1 66.5 70.3 Z, 69.7 OCH ₂ ; 40.9 NCH ₂ 103.1 74.1 ^c 82.8 ^b 78.4 ^b 76.0 ^b 67.7 ^c 69.5 Z, 66.5 OCH ₂ ; 40.8 NCH ₂ 100.4 73.5 ^c 81.4 ^b 76.9 ^b 75.2 ^b 67.3 ^c 74.9 74.6 73.4 73.1 CH Pb	33	103.8	73 1	80 4 5	81 8 5	66 1	66.6	$103.7 \text{ C} \rightarrow 68.7 \text{ OCH} \rightarrow 40.9 \text{ NCH}$		
$\begin{array}{c} 103.1 & 74.1^{\circ} & 82.8^{\circ} & 78.4^{\circ} & 76.0^{\circ} & 67.7^{\circ} & 69.5 \text{ Z}, 66.5 \text{ OCH}_2; 40.8 \text{ NCH}_2\\ 100.4 & 73.5^{\circ} & 81.4^{\circ} & 76.9^{\circ} & 57.3^{\circ} & 74.9 & 74.6 & 73.4 & 73.1 \text{ CH Pb} \end{array}$	34	103.6	81 7 ^b	84 ∩ Þ	71 5	74 1	66.5	70 3 7 69 7 OCH- 40 9 NCH		
100.4 735° 814° 760° 752° 673° 740 746 734 731 CH Ph	÷ ·	103.1	74.1 °	82.8 0	784	76 በ ^b	67.7 °	69 5 7, 66 5 OCH 40 8 NCH		
		100.4	73 5 9	81 4 ^b	76 Q b	75 2 b	67 3 *	74 9 74 6 73 4 73 1 CH Ph		
$100.2 69.6^{\circ} 80.1^{\circ} 76.7^{\circ} 65.6 64.8 08.8 08.5 C$		100.7	69 6 ^d	80 1 ^b	76.7 0	65.6	64.8	98 8 98 5 C		
99.3 73.3 ° 68.8 ° 76.1 ° 65.6 64.8 52.6 52.2 COOMe 25.4.25.3 Me		99.3	73.3 °	68.8 ^d	76.1 ^b	65.6	64.8	52.6. 52.2 COOMe: 25.4. 25.3 Me		

Compound	Chemical shifts (δ)								
	C-1	C-2	C-3	C-4	C-5	C-6	Others		
36 ^h	105.8 ^b 105.2 ^b 105.2 ^b 105.0 ^b	77.0 77.1 68.6 74.3 °	77.0 77.7 82.0 ^d 75.9 ^c	81.5 ^d 81.1 ^d 75.9 ^c 73.8 ^c	77.7 77.7 75.9 ° 69.1	63.0 63.0 68.6 ° 68.1 °	73.2 OCH ₂ ; 42.2 NCH ₂ 31.5, 29.3, 25.0 CH ₂ 104.2, 103.2 COO <i>Me</i> 28.0, 27.3 Me		

Table 2 (continued)

^a For solutions in $CDCl_3$ unless otherwise indicated. Data in the 1st row of each entry refer to sugar residue 1; data in the 2nd, 3rd, and 4th row, if present, refer to sugar residue 2, 3, and 4, respectively.

be Assignments may be reversed.

^f Signals of the α anomer.

⁸ Signals of the β anomer.

^h For solutions in D₂ O.

solution of benzyl 2,3-di-O-benzoyl- α -D-glucopyranoside [29] (2.36 g, 4.93 mmol) and methyl pyruvate (1.01 g, 10.0 mmol) in MeCN (5 mL), and the mixture was stirred for 2 h, diluted with CH₂Cl₂, and washed with aq NaHCO₃. Concentration of the solution and chromatography of the residue gave compound **11** (1.96 g, 76%), identical in all respects to the previously described compound [17,30].

Benzyl 4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-2,3-O-(1,1,3,3-tetraisopropyl-1,3disiloxane-1,3-diyl)- α -D-glucopyranoside (12).—Compound 11 (1.14 g, 2.0 mmol) was debenzoylated (Zemplén) as previousely described [16], to give crude compound 9. 1,3-Dichloro-1,1,3,3-tetraisopropyldisiloxane [31,32] (0.64 mL, 2.0 mmol) was added at room temperature to a solution of crude compound 9 and imidazole (0.55 g, 8.13 mmol) in DMF (20 mL), and the mixture was stirred for 1.5 h, poured onto water, and extracted with CH₂Cl₂. The organic layers were washed with aq NaHCO₃ and concentrated. Chromatography of the residue gave compound 12 (0.94 g, 77%); [α]_D + 70.1° (*c* 4.3, CHCl₃). For NMR data see Ref [25]. Anal. Calcd for C₂₉H₄₈O₉Si₂: C, 58.36; H, 8.11. Found: C, 58.39; H, 8.17.

Benzyl O-{2,3-di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]- β -(13), and α -D-galactopyranosyl}-(1 \rightarrow 3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]- α -D-glucopyranoside (14).—(a) A solution of compound 1 [17,18] (1.0 g, 2.0 mmol) and sym-collidine (146 mg, 1.21 mmol) in CH₂Cl₂ (5 mL) was added at room temperature to a suspension of compound 10 [16] (0.69 g, 1.5 mmol), silver trifluoromethanesulfonate (0.65 g, 2.51 mmol), and 3A molecular sieves (0.5 g) in CH₂Cl₂ (5 mL), and the mixture was stirred for 0.5 h. Pyridine (2 mL) and BzCl (0.5 mL) were added, and stirring was continued for 0.5 h. The mixture was diluted with CH₂Cl₂, filtered, washed with aq Na₂S₂O₃, HCl and aq NaHCO₃, and concentrated. Chromatography of the residue gave compound 14 (0.94 g, 68%); $[\alpha]_D + 223.0^{\circ}$ (c 1.1, CHCl₃); ¹H NMR data: δ 5.93 (d, 1 H, J_{1,2} 3.4 Hz, H-1²), 5.62 (dd, 1 H, J_{3,4} 3.4 Hz, H-3²), 5.49 (dd, 1 H, J_{2,3} 10.9 Hz, H-2²), 5.18–5.14 (m, 2 H, H-1¹, H-2¹), 4.70, 4.47 (2 d, 2 H, J – 12.2 Hz, CH₂Ph), 4.44 (t, 1 H, J_{4,5} 9.1 Hz, H-4¹), 3.56, 3.15 (2 s, 6 H, 2 COOMe), 1.52, 1.41 (s, 6 H, 2 Me). Anal. Calcd for C₄₈H₄₈O₁₈: C, 63.15; H, 5.30. Found: C, 63.04; H, 5.35.

(b) A solution of compound 1 (0.86 g, 1.75 mmol) in CH_2Cl_2 (5 mL) was added at $-15^{\circ}C$ to a suspension of compound 10 (0.60 g, 1.3 mmol), silver silicate [22,23] (1.2

g), and 3A molecular sieves (1.2 g) in CH₂Cl₂ (7 mL), and the mixture was stirred at room temperature for 10 h. The suspension was filtered through a layer of Celite, washed with aq NaHCO₃, and concentrated. Chromatography of the residue gave first compound **16** (0.14 g, 12%); $[\alpha]_D$ +132.3° (*c* 1.1, CHCl₃); ¹H NMR data: δ 6.26 (d, 1 H, $J_{1,2}$ 4.6 Hz, H-1²), 5.21 (dd, 1 H, $J_{3,4}$ 4.4 Hz, H-3²), 5.05 (dd, 1 H, $J_{2,3}$ 9.4 Hz, H-2¹), 4.97 (d, 1 H, $J_{1,2}$ 3.9 Hz, H-1¹), 4.95 (dd, 1 H, $J_{2,3}$ 5.5 Hz, H-2²), 4.65, 4.42 (2 d, 2 H, J – 12.4 Hz, CH₂Ph), 4.55 (t, 1 H, $J_{4,5}$ 9.3 Hz, H-4¹), 4.37 (dd, 1 H, $J_{5,6a}$ 2.5 Hz, H-5²), 4.04 (dd, 1 H, $J_{5,6b}$ 2.7 Hz, H-6b²), 3.87 (dd, 1 H, $J_{5,6b}$ 4.8 Hz, H-6b¹), 3.82, 3.64 (2 s, 6 H, 2 COOMe), 3.78–3.65 (m, 2 H, H-4², H-5¹), 3.46 (t, 1 H, $J_{2,3}$ 9.3 Hz, H-3¹), 1.49, 1.44 (s, 6 H, 2 Me). FABMS: m/z 853 (M – COOMe) ⁺; 936 (M – Na) ⁺. Anal. Calcd for C₄₈H₄₈O₁₈: C, 63.15; H, 5.30. Found: C, 62.63; H, 5.19.

Eluted next was compound **13** (0.34 g, 28%); $[\alpha]_D + 107.7^\circ$ (*c* 1.0, CHCl₃); ¹H NMR data: δ 5.72 (dd, 1 H, $J_{2,3}$ 10.3 Hz, H-2²), 5.15 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1²), 5.14–5.10 (m, 1 H, H-2¹), 5.10 (d, 1 H, $J_{1,2}$ 3.9 Hz, H-1¹), 5.10 (dd, 1 H, $J_{3,4}$ 3.6 Hz, H-3²), 4.67, 4.43 (2 d, 2 H, J - 12.2 Hz, CH_2 Ph), 4.52–4.44 (m, 2 H, H-3¹, H-4²), 4.18 (dd, 1 H, $J_{5,6a}$ 1.4, $J_{6a,6b} - 12.7$ Hz, H-6a), 3.67 (dd, 1 H, $J_{5,6b}$ 2.5 Hz, H-6b), 3.54 (s, 1 H, H-5), 3.88, 3.62 (2 s, 6 H, 2 COOMe), 1.45, 1.37 (2 s, 6 H, 2 Me). Anal. Calcd for C₄₈H₄₈O₁₈: C, 63.15; H, 5.30. Found: C, 62.88; H, 5.25.

(c) BF₃-etherate (65 μ L, 0.52 mmol) was added at room temperature to a solution of compounds **3** [18] (0.49 g, 1.03 mmol) and **12** (0.61 g, 1.03 mmol) in CH₂Cl₂, and the mixture was stirred for 24 h. The solution was diluted with CH₂Cl₂, washed with aq NaHCO₃, and concentrated. The residue was dissolved in THF (10 mL) and treated with a catalytic amount of Bu₄NF · 3H₂O for 3 h at room temperature. The solution was concentrated and the residue was dissolved in a mixture of pyridine (5 mL) and BzCl (2 mL). TLC revealed the formation of traces of compound **13**. After standing for 24 h at room temperature, the mixture was worked up as described under (*a*). Chromatography of the residue gave first compound **14** (0.14 g, 15%).

Eluted next was compound 11 (0.26 g, 45%).

(d) Compounds 4 [18] (87 mg, 0.19 mmol) and 12 (113 mg, 0.19 mmol) were treated in CH₂Cl₂ (8 mL) with BF₃-etherate (8 μ L, 76 μ mol) for 42 h at room temperature as described under (c), however, without treatment with Bu₄NF and BzCl. Chromatography gave first compound 7 (32 mg, 33%), identical in all respects to the previously described compound [18].

Eluted next was compound 8 (42.7 mg, 47%), identical in all respects to the previousely described compound [18].

(e) TMSOTf (20 μ L, 0.11 mmol) was added at -20° C to a solution of compound 10 (0.91 g, 1.0 mmol) in MeCN (7 mL), followed by a solution of compound 5 [18] (0.68 g, 1.1 mmol) in MeCN (2 mL). The mixture was stirred at -20° C for 0.5 h and neutralized by addition of pyridine (1 mL). Benzoyl chloride (0.5 mL) was added, and the mixture was stirred at room temperature for 2 h. Work-up and chromatography as described under (a) gave first compound 14 (0.11 g, 12%).

Eluted next was compound 6 (0.14 g, 20%), identical in all respects to the previously described compound [18].

Eluted next was compound 13 (0.62 g, 68%).

(f) Compounds 5 (0.5 g, 0.81 mmol) and 10 (0.23 g, 0.5 mmol) were treated in CH₂Cl₂ (2 mL) with TMSOTf (10 μ L, 0.05 mmol) at 0°C for 15 min, as described under (e). Chromatography gave first compound 14 (90 mg, 20%).

Eluted next was compound 13 (0.36 g, 78%).

Benzyl O-{4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-2,3-di-O-pivaloyl- α -D-galactopyranosyl}-(1 \rightarrow 3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranoside (15).—A solution of compound 2 (0.31 g, 0.69 mmol) and sym-collidine (56 mg, 0.47 mmol) in CH₂Cl₂ (6 mL) was added at room temperature to a suspension of compound 10 (0.23 g, 0.5 mmol), silver trifluoromethanesulfonate (0.22 g, 0.86 mmol), and 3A molecular sieves (0.5 g) in CH₂Cl₂ (3 mL), and the mixture was stirred for 0.5 h. Workup as described for compound 13 under (a) gave compound 15 (0.36 g, 82%); [α]_D + 182.8° (c 1.0, CHCl₃); ¹H NMR data: δ 5.70 (d, 1 H, J_{1,2} 3.5 Hz, H-1²), 5.27 (dd, 1 H, J_{2,3} 10.8 Hz, H-2²), 5.13–5.05 (m, 2 H, H-1¹, H-2¹), 4.96 (dd, 1 H, J_{3,4} 3.7 Hz, H-3²), 4.70, 4.49 (2 d, 2 H, J – 12.3 Hz, CH₂Ph), 3.80, 3.66 (2 s, 6 H, 2 COOMe), 1.51, 1.47 (2 s, 6 H, 2 Me), 1.23, 1.16 (2 s, 18 H, 2 Piv). Anal. Calcd for C₄₄H₅₆O₁₈: C, 60.54; H, 6.47. Found: C, 60.40; H, 6.54.

O-{2,3-Di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-β-D-galactopyranosyl}-(1→3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranose (17).—A suspension of compound 13 (0.6 g, 0.65 mmol) and a catalytic amount of Pd (10% on charcoal) in EtOAc (75 mL) was treated with H₂ (2000–2500 hPa) at room temperature for 20 h. The mixture was filtered and concentrated. Chromatography of the residue gave compound 17 (0.47 g, 88%); ¹H NMR data (α anomer): δ 5.73 (dd, 1 H, J_{2,3} 10.2 Hz, H-2²), 5.46 (d, 1 H, J_{1,2} 3.6 Hz, H-1¹), 5.17 (d, 1 H, J_{1,2} 8.0 Hz, H-1²), 5.12 (dd, 1 H, J_{2,3} 9.9 Hz, H-2²), 5.10 (dd, 1 H, J_{3,4} 3.7 Hz, H-3²), 4.71 (d, 1 H, J_{1,2} 8.0 Hz, β-H-1¹), 4.47 (t, 1 H, J_{3,4} 9.8 Hz, H-3¹), 4.46 (bs, 1 H, J_{4,5} < 1 Hz, H-4²), 4.18 (dd, 1 H, J_{6a,6b} – 12.7 Hz, H-6a), 3.96 (dd, 1 H, J_{5,6b} 2.0 Hz, H-6b), 3.82 (t, 1 H, J_{4,5} 9.5 Hz, H-4¹), 3.67 (bs, 1 H, J_{5,6a} 1.4 Hz, H-5), 3.54 (bs, 1 H, H-5), 3.87, 3.61 (s, 2 α-COOMe), 3.86, 3.60 (2 s, 2 β-COOMe), 1.42, 1.33 (2 s, 2 Me). Anal. Calcd for C₄₁H₄₂O₁₈: C, 59.85; H, 5.15. Found: C, 59.84; H, 5.03.

O-{2,3-Di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-β-D-galactopyranosyl}-(1 → 3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranosyl trichloroacetimidate (**18**).—A mixture of compound **17** (0.32 g, 0.39 mmol), Cl₃CCN (0.12 mL, 1.12 mmol), and K₂CO₃ (91 mg, 0.66 mmol) in CH₂Cl₂ (3 mL) was stirred at room temperature for 2 h. The mixture was centrifuged and decanted, and the solution was concentrated. Chromatography of the residue gave compound **18** (0.34 g, 90%); ¹H NMR data (α anomer): δ 8.51 (s, 1 H, NH), 6.50 (d, 1 H, J_{1,2} 3.8 Hz, H-1¹), 5.73 (dd, 1 H, J_{2,3} 10.9 Hz, H-2²), 5.45 (dd, 1 H, J_{2,3} 10.1 Hz, H-2¹), 5.23 (d, 1 H, J_{1,2} 7.8 Hz, H-1²), 5.11 (t, 1 H, J_{4,5} 10.5 Hz, H-4¹), 4.54 (t, 1 H, J_{3,4} 9.9 Hz, H-3¹), 4.47 (d, 1 H, J_{4,5} < 1 Hz, H-4²), 3.75 (dd, 1 H, J_{3,4} 3.7 Hz, H-3²), 3.89, 3.62 (2 s, 2 COOMe), 1.42, 1.34 (2 s, 2 Me); ¹H NMR data (β anomer): δ 8.53 (s, 1 H, NH), 6.02 (d, 1 H, J_{1,2} 6.2 Hz, H-1²), 5.77 (dd, 1 H, J_{2,3} 10.3 Hz, H-2¹), 5.57 (t, 1 H, J_{2,3} 6.3 Hz, H-2²), 5.12 (d, 1 H, J_{1,2} 8.1 Hz, H-1¹), 5.09 (dd, 1 H, J_{3,4} 3.6 Hz, H-3²), 4.47 (d, 1 H, J_{4,5} < 1 Hz, H-4²), 3.76, 3.62 (2 s, 2 COOMe), 1.49, 1.43 (2 s, 2 Me). Anal. Calcd for C₄₃H₄₂Cl₃NO₁₈: C, 53.40; H, 4.39; Cl, 11.00; N, 1.45. Found: C, 53.29; H, 4.50; Cl, 11.02; N, 1.44. 5-[(Benzyloxycarbonyl)amino]pentyl O-{2,3-di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-β-D-galactopyranosyl}-(1 → 3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-α-D-glucopyranoside (19).—A solution of compound 18 (0.24 g, 0.25 mmol) in CH₂Cl₂ (3 mL) was added at -20° C during 20 min to a solution of 5-[(benzyloxycarbonyl)amino]pentanol [26] (0.12 g, 0.5 mmol) and TMSOTf (10 µL, 0.05 mmol) in CH₂Cl₂ (5 mL), and the mixture was stirred for 1 h. Pyridine (1 mL) and BzCl (0.25 mL) were added, and stirring was continued for 2 h at room temperature. Workup as described for compound 13 under (*a*) and chromatography gave compound 19 (0.10 g, 40%); [*α*]_D + 51.8° (*c* 1.0, CHCl₃); ¹H NMR data: δ 5.70 (dd, 1 H, *J*_{2,3} 10.2 Hz, H-2²), 5.27 (dd, 1 H, *J*_{2,3} 8.6 Hz, H-2¹), 5.09–4.59 (m, 4 H, CH₂Ph, H-1², H-3²), 4.50 (d, 1 H, *J*_{1,2} 7.5 Hz, H-1¹), 4.44 (d, 1 H, *J*_{4,5} < 1 Hz, H-4²), 4.23 (bd, 1 H, *J*_{6a,6b} − 11.5 Hz, H-6a²), 4.12 (t, 1 H, *J*_{3,4} 9.1 Hz, H-3¹), 4.09 (dd, 1 H, *J*_{6a,6b} − 10.9, *J*_{5,6a} 5.7 Hz, H-6a¹), 3.94 (dd, 1 H, *J*_{5,6b} 1.7 Hz, H-6b²), 3.84 (t, 1 H, *J*_{4,5} 9.5 Hz, H-4¹), 3.81, 3.62 (2 s, 6 H, 2 COOMe), 1.47, 1.46 (2 s, 6 H, 2 Me). Anal. Calcd for C₅₉H₅₉NO₂₀: C, 62.24; H, 5.71; N, 1.34. Found: C, 62.48; H, 5.85; N, 1.28.

5-Aminopentyl O-{4,6-O-[(R)-1-carboxyethylidene]- β -D-galactopyranosyl}-(1 \rightarrow 3)-4,6-O-[(S)-1-carboxyethylidene]- β -D-glucopyranoside (20).—A solution of compound 19 (60 mg, 57 mmol) in 2:1 toluene–MeOH (5 mL) was treated with a catalytic amount of NaOMe at room temperature for 24 h, neutralized by addition of ion-exchange resign (H⁺ form), filtered, and concentrated. The residue was chromatographed on silica gel (10:1 CH₂Cl₂-MeOH); carbohydrate-containing fractions were pooled and concentrated. The residue was dissolved in MeOH (10 mL) and treated with aq NaOH (0.1 M, 1 mL) at 40°C for 3 h. The mixture was neutralized as described above and filtered. A catalytic amount of Pd (10% on charcoal) was added to the filtrate, and the mixture was treated with H₂ (100 hPa) for 12 h. Filtration of the mixture, concentration of the filtrate, and chromatography of the residue on Bio-Gel P2 (water) gave compound 20 (30.4 mg, 93%); [α]_D - 12.0° (c 0.1, H₂O). FABMS: m/z 566 (M - H⁺).

O-{2,3-Di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-α-D-galactopyranosyl}-(1→3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranose (21).—A suspension of compound 14 (0.8 g, 0.88 mmol) and a catalytic amount of Pd (10% on charcoal) in EtOAc (50 mL) was treated with H₂ (2000–2500 hPa) at room temperature for 10 h. The mixture was filtered and concentrated. Chromatography of the residue gave compound 21 (0.7 g, 97%); ¹H NMR data (significant signals of the α anomer): δ 5.94 (d, 1 H, $J_{1,2}$ 3.4 Hz, H-1²), 5.66 (dd, 1 H, $J_{2,3}$ 10.9 Hz, H-2²), 5.49 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1¹), 5.47 (dd, 1 H, $J_{3,4}$ 3.4 Hz, H-3²), 4.43 (t, 1 H, $J_{3,4}$ 9.5 Hz, H-3¹), 3.56, 3.13 (2 s, 2 COOMe), 1.51, 1.41 (2 s, 2 Me); (significant signals of the β anomer): δ 5.88 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1²), 5.19 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1¹), 4.84 (t, 1 H, $J_{2,3}$ 8.5 Hz, H-2¹), 3.56, 3.17 (2 s, 2 COOMe), 1.48, 1.37 (2 s, 2 Me). Anal. Calcd for C₄₁H₄₂O₁₈: C, 59.85; H, 5.15. Found: C, 59.62; H, 5.16.

O-{2,3-Di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]-α-D-galactopyranosyl}-(1→3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranosyl trichloroacetimidate (22).—A mixture of compound 21 (0.51 g, 0.61 mmol), Cl₃CCN (0.18 mL, 1.76 mmol), and K₂CO₃ (142 mg, 1.03 mmol) in CH₂Cl₂ (2 mL) was stirred at room temperature for 2 h. The mixture was centrifuged and decanted, and the solution was concentrated. Chromatography of the residue gave first the α anomer of compound 22 (0.11 g, 18%); $[\alpha]_D + 219.7^{\circ}$ (c 0.6, CHCl₃); ¹H NMR data: δ 8.53 (s, 1 H, NH), 6.57 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1¹), 5.95 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1²), 5.61 (dd, 1 H, $J_{2,3}$ 11.0 Hz, H-2²), 5.49 (dd, 1 H, $J_{3,4}$ 3.4 Hz, H-3²), 5.41 (dd, 1 H, $J_{2,3}$ 9.8 Hz, H-2¹), 4.52 (t, 1 H, $J_{3,4}$ 9.3 Hz, H-3¹), 4.16 (d, 1 H, $J_{4,5} < 1$ Hz, H-4²), 3.72 (bs, 1 H, $J_{5,6a}$ 1.2 Hz, H-5²), 3.85 (bd, 1 H, $J_{6a,6b} - 12.9$ Hz, H-6a²), 3.56, 3.17 (2 s, 2 COOMe), 1.52, 1.42 (2 s, 2 Me). Anal. Calcd for C₄₃H₄₂Cl₃NO₁₈: C, 53.40; H, 4.39; Cl, 11.00; N, 1.45. Found: C, 53.64; H, 4.44; Cl, 10.82; N, 1.34.

Eluted next was the β anomer of compound **22** (0.42 g, 73%); $[\alpha]_D + 158.8^{\circ}$ (c 1.3, CHCl₃); ¹H NMR data: δ 8.72 (s, 1 H, NH), 6.08 (d, 1 H, $J_{1,2}$ 7.4 Hz, H-1¹), 5.89 (d, 1 H, $J_{1,2}$ 3.4 Hz, H-1²), 5.66 (dd, 1 H, $J_{2,3}$ 10.9 Hz, H-2²), 5.60 (t, 1 H, $J_{2,3}$ 8.0 Hz, H-2¹), 5.51 (dd, 1 H, $J_{3,4}$ 3.4 Hz, H-3²), 4.22 (t, 1 H, $J_{3,4}$ 9.3 Hz, H-3¹), 4.19 (d, 1 H, $J_{4,5} < 1$ Hz, H-4²), 4.12 (bd, 1 H, $J_{5,6a}$ 3.8 Hz, H-5¹), 3.99 (t, 1 H, $J_{4,5}$ 9.1 Hz, H-4¹), 3.77 (bd, 1 H, $J_{6a,6b} - 10.2$ Hz, H-6a¹), 3.63 (bs, 1 H, $J_{5,6a}$ 1.0 Hz, H-5²), 3.37 (bd, 1 H, $J_{5,6b}$ 1.0 Hz, H-6b²), 3.58, 3.23 (2 s, 2 COOMe), 1.50, 1.37 (2 s, 2 Me). Anal. Calcd for C₄₃H₄₂Cl₃NO₁₈: C, 53.40; H, 4.39; Cl, 11.00; N, 1.45. Found: C, 53.34; H, 4.35; Cl, 10.85; N, 1.31.

5-[(Benzyloxycarbonyl)amino]pentyl O-{2,3-di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]- α -D-galactopyranosyl}-(1 \rightarrow 3)-2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]-D-glucopyranoside (23).—A solution of an anomeric mixture of compound 22 (0.44 g, 0.45 mmol) in CH₂Cl₂ (5 mL) was added at -20° C to a solution of 5-[(benzyloxycarbonyl)amino]pentanol (0.24 g, 1 mmol) and BF₃-etherate (40 μ L, 0.32 mmol) in CH₂Cl₂ (3 mL), and the mixture was stirred for 30 min. Work-up as described for compound 13 under (c) and chromatography gave compound 23 (0.32 g, 69%), as a 1:3 α , β -mixture of anomers at the glucose residue; ¹H NMR data (significant signals of the α anomer): δ 6.42 (d, 1 H, J_{1,2} 3.9 Hz, H-1¹), 5.93 (d, 1 H, J_{1,2} 3.3 Hz, H-1²), 5.77 (dd,

1 H, $J_{2,3}$ 10.9 Hz, H-2²), 5.69 (dd, 1 H, $J_{3,4}$ 3.3 Hz, H-3²), 4.29 (bs, 1 H, $J_{4,5} < 1$ Hz, H-4²), 3.56, 3.16 (2 s, 2 COOMe), 1.48, 1.36 (2 s, 2 Me); (significant signals of the β anomer): δ 5.86 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1²), 5.59 (dd, 1 H, $J_{2,3}$ 10.9 Hz, H-2²), 5.47 (dd, 1 H, $J_{3,4}$ 3.4 Hz, H-3²), 5.26 (dd, 1 H, $J_{2,3}$ 9.2 Hz, H-2¹), 4.60 (bd, 1 H, $J_{4,5} < 1$ Hz, H-4²), 4.59 (d, 1 H, $J_{1,2}$ 7.7 Hz, H-1¹), 3.56, 3.16 (2 s, 2 COOMe), 1.48, 1.36 (2 s, 2 Me). Anal. Calcd for C₅₉H₅₉NO₂₀: C, 62.24; H, 5.71; N, 1.34. Found: C, 62.19; H, 5.95; N, 1.13.

5-Aminopentyl $O-\{4,6-O-[(R)-1-carboxyethylidene]-\alpha-D-galactopyranosyl\}-(1 \rightarrow 3)-4,6-O-[(S)-1-carboxyethylidene]-\beta-D-glucopyranoside (24).—A solution of compound 23 (360 mg, 0.34 mmol) in 2:1 toluene–MeOH (20 mL) was treated with a catalytic amount of NaOMe at room temperature for 12 h, neutralized by addition of ion-exchange resign (H⁺ form), filtered, and concentrated. The residue was chromatographed on silica gel (30:1 CH₂Cl₂–MeOH), and carbohydrate-containing fractions were pooled and concentrated. First eluted was the <math>\alpha$ anomer at the glucose residue which was discharged. Eluted next was the β anomer at the glucose residue (0.19 g) which was dissolved in MeOH (20 mL) and treated with aq NaOH (0.1 M, 7.8 mL) at room temperature for 48 h and then at 50°C for 48 h. The mixture was neutralized as described above and filtered. A catalytic amount of Pd (10% on charcoal) was added to the filtrate, and the mixture was treated with H₂ (100 hPa) for 12 h. Filtration of the mixture, concentration of the filtrate, and chromatography of the residue on Bio-Gel P2 (water) gave compound 24 (147.3 mg, 76%); $[\alpha]_D + 250^\circ$ (c 0.1 Hz, H₂O). FABMS: m/z 566 (M – H⁺).

Ethyl $O-\{2,3-di-O-benzoyl-4,6-O-I(R)-1-(methoxycarbonyl)ethylidene]-\beta-D-galacto$ pyranosyl}-(1 \rightarrow 3)-O-{2-O-benzoyl-4,6-O-[(S)-1-(methoxycarbonyl)ethylidene]- β -D-glucopyranosyl}- $(1 \rightarrow 4)$ -2-O-benzoyl-3,6-di-O-benzyl-1-thio- β -D-glucopyranoside (26). TMSOTF (11 μ L, 0.06 mmol) was added at -20° C to a solution of compound 25 [16] (0.26 g, 0.51 mmol) in CH₂Cl₂ (5 mL). A solution of compound **18** (0.58 g, 0.6 mmol) in CH₂Cl₂ (5 mL) was added during 20 min to this mixture, and stirring was continued at -20° C for 2 h. The mixture was neutralized with pyridine, diluted with CH₂Cl₂, washed with aq NaHCO₃, and concentrated. Chromatography of the residue gave compound 26 $(0.48 \text{ g}, 73\%); [\alpha]_{D} + 34.0^{\circ} (c 1.1, \text{CHCl}_{3}); ^{1}\text{H NMR data: } \delta 5.65 (dd, 1 \text{ H}, J_{2.3} 10.6 \text{ Hz},$ H-2³), 5.29 (t, 1 H, J_{2,3} 8.5 Hz, H-2²), 5.19 (t, 1 H, J_{2,3} 9.3 Hz, H-2¹), 5.06 (dd, 1 H, J_{3,4} $3.5 \text{ Hz}, \text{H}-3^3$, $5.00 (d, 1 \text{ H}, J_{1,2} 7.9 \text{ Hz}, \text{H}-1^3), 4.76, 4.54 (2 d, 2 H, J - 11.2 \text{ Hz}, CH_2\text{Ph}),$ 4.65 (d, 1 H, $J_{1,2}$ 7.9 Hz, H-1²), 4.58, 4.39 (2 d, 2 H, J - 12.1 Hz, CH_2Ph), 4.44 (d, 1 H, $J_{4.5} < 1$ Hz, H-4³), 4.32 (d, 1 H, $J_{1.2}$ 9.9 Hz, H-1¹), 4.28 (dd, 1 H, $J_{6a.6b} - 12.6, J_{5.6a}$ 2.5 Hz, H-6a), 4.05 (t, 1 H, J_{3,4} 9.3 Hz, H-3¹), 3.83, 3.62 (2 s, 6 H, 2 COOMe), 3.39 (dd, 1 H, J_{6a,6b} - 10.5, J_{5,6b} 5.5 Hz, H-6b), 2.61 (m, 2 H, SCH₂), 1.50, 1.48 (2 s, 6 H, 2 Me), 1.14 (t, 3 H, J 7.5 Hz, SCH₂CH₃). Anal. Calcd for C₇₀H₇₂O₂₃S: C, 64.01; H, 5.53; S, 2.44. Found: C, 63.63; H, 5.50; S, 2.27.

5-[(Benzyloxycarbonyl)amino]pentyl O-{2,3-di-O-benzoyl-4,6-O-[(R)-1-(methoxycarbonyl)ethylidene]- β -D-galactopyranosyl}-(1 \rightarrow 3)-O-{2-O-benzoyl-4,6-O-[(S)-1-(methoxvcarbonyl)ethylidene]- β -D-glucopyranosyl}-(1 \rightarrow 4)-2-O-benzoyl-3,6-di-O-benzyl- β -D-glucopyranoside (27).—A solution of N-iodosuccinimide (56 mg, 0.25 mmol) and trifluoromethanesulfonic acid (3 mL, 27 mmol) in 1:1 CH₂Cl₂-diethyl ether (3 mL) was added at -40° C to a suspension of compound **26** (0.29 g, 0.22 mmol), 5-[(benzyloxycarbonyl)amino]pentanol (60 mg, 0.25 mmol), and 4A molecular sieves (0.29 g) in CH₂Cl₂ (5 mL), and the mixture was stirred at -25° C for 2 h. The suspension was diluted with CH_2Cl_2 , filtered, and the filtrate was washed with aq NaHCO₃ and aq Na₂S₂O₃. Concentration of the solution and chromatography of the residue gave compound 27 (0.22 g, 68%); $[\alpha]_{\rm D}$ + 28.0° (c 1.0, CHCl₃); ¹H NMR data: δ 5.66 (dd, 1 H, $J_{2,3}$ 10.2 Hz, H-2³), 5.29 (t, 1 H, $J_{2,3}$ 8.9 Hz, H-2²), 5.12 (dd, 1 H, $J_{2,3}$ 9.2 Hz, H-2¹), 5.06 (dd, 1 H, $J_{3,4}$ 3.5 Hz, H-3³), 5.04 (s, 2 H, Z-CH₂Ph), 5.00 (d, 1 H, $J_{1,2}$ 7.9 Hz, H-1³), 4.74, 4.54 (2 d, 2 H, J - 11.3Hz, CH₂Ph), 4.62 (d, 1 H, J_{1.2} 7.9 Hz, H-1²), 4.58, 4.27 (2 d, 2 H, J – 12.1 Hz, CH₂Ph), 4.44 (d, 1 H, $J_{4.5} < 1$ Hz, H-4³), 4.28 (d, 1 H, $J_{1.2}$ 8.2 Hz, H-1¹), 3.83, 3.61 (2 s, 6 H, 2 COOMe), 1.50, 1.47 (2 s, 6 H, 2 Me). FABMS: m/z 1489 (M+H)⁺. Anal. Calcd for C₈₁H₈₅NO₂₆: C, 65.36; H, 5.76; N, 0.94. Found: C, 64.80; H, 5.76; N, 0.87.

5-Aminopentyl O-{4,6-O-[(R)-1-carboxyethylidene]- β -D-galactopyranosyl}-(1 \rightarrow 3)-O-{4,6-O-[(S)-1-carboxyethylidene]- β -D-glucopyranosyl}-(1 \rightarrow 4)- β -D-glucopyranoside (28).—A solution of compound 27 (104.2 mg, 70 mmol) in MeOH (15 mL) was treated with a catalytic amount of NaOMe at 40°C for 24 h, neutralized by addition of ion-exchange resign (H⁺ form), filtered, and concentrated. The residue was chromatographed on silica gel (20:1 CH₂Cl₂-MeOH), and carbohydrate-containing fractions were pooled and concentrated. The residue was dissolved in MeOH (10 mL), and the solution diluted with water (1 mL) and treated with aq KOH (1 M, 0.1 mL) at 40°C for 24 h. The mixture was neutralized as described above and filtered. Pd (10% on charcoal, 300 mg) was added to the filtrate, and the mixture was treated with H₂ (100 hPa) for 4 days. The mixture was filtered and the catalyst which still contained the saccharide bound to the charcoal was washed with water. Carbohydrates were eluted from the charcoal by washing with aq AcOH (80%) and the combined filtrates were concentrated. Chromatography of the residue on Bio-Gel P2 (water) gave compound **28** (35.9 mg, 70%); $[\alpha]_D - 22.0^\circ$ (c 1.0 Hz, H₂O). FABMS: m/z 730 (M+H⁺).

5-[(Benzyloxycarbonyl)amino]pentyl2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (29). --2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl bromide (7.87 g, 19.14 mmol) was added at room temperature to a suspension of 5-[(benzyloxycarbonyl) amino]pentanol (4.51 g, 19.0 mmol), Ag₂CO₃ (7.6 g, 27.6 mmol), and CaSO₄ (20 g) in CHCl₃ (90 mL), and the mixture was stirred for 20 h and filtered through a layer of Celite. The filtrate was washed with aq NaHCO₃ and aq Na₂S₂O₃ and concentrated. The residue was chromatographed and carbohydrate-containing fractions were concentrated. Crystallization of the residue from EtOH gave compound **29** (3.36 g, 30%); mp 74–76°C; $[\alpha]_D - 15.8^\circ$ (*c* 1.3, CHCl₃); ¹H NMR data: δ 4.49 (d, 1 H, $J_{1,2}$ 7.9 Hz, H-1), 4.97 (dd, 1 H, $J_{2,3}$ 9.4 Hz, H-2), 5.21 (t, 1 H, $J_{3,4}$ 9.5 Hz, H-3), 5.07 (t, 1 H, $J_{4,5}$ 9.6 Hz, H-4), 3.68 (ddd, 1 H, $J_{5,6a}$ 4.6, $J_{5,6b}$ 2.4 Hz, H-5), 4.26 (dd, 1 H, $J_{6a,6b} - 12.3$ Hz, H-6a), 4.12 (dd, 1 H, H-6b). Anal. Calcd for C₂₇H₂₇NO₁₂: C, 57.14; H, 6.57; N, 2.47. Found: C, 57.21; H, 6.56; N, 2.43.

5-[(Benzyloxycarbonyl)amino]pentyl β -D-glucopyranoside (**30**).—A solution of compound **29** (3.7 g, 6.4 mmol) and a catalytic amount of NaOMe in MeOH (75 mL) was stirred at room temperature for 24 h, neutralized with ion-exchange resign (H⁺ form), filtered, and concentrated. Crystallization of the residue from EtOAc gave compound **30** (1.6 g, 63%); mp 115–116°C; [α]_D – 13.3° (*c* 1.0, MeOH). Anal. Calcd for C₁₉H₂₉NO₈: C, 57.13; H, 7.32; N, 3.51. Found: C, 57.11; H, 7.31; N, 3.41.

5-[(Benzyloxycarbonyl)amino]pentyl 4,6-O-benzylidene-β-D-glucopyranoside (31).— Freshly molten ZnCl₂ (0.2 g) was added to a suspension of compound **30** (1.21 g, 3.03 mmol) in benzaldehyde (3 mL), and the mixture was stirred at room temperature for 48 h. A second catalytic amount of ZnCl₂ was added, and stirring was continued for 6 days. The mixture was poured into water and extracted with CH₂Cl₂. The combined organic layers were washed with aq NaHCO₃, and concentrated. Chromatography of the residue, concentration of carbohydrate-containing fractions, and crystallization of the residue from EtOH gave compound **31** (1.3 g, 88%); mp 113–116°C; [α]_D – 33.3° (*c* 1.0, CHCl₃); ¹H NMR data: δ 4.39 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1), 3.78 (t, 1 H, $J_{2,3}$ 8.8 Hz, H-2), 3.56 (t, 1 H, $J_{3,4}$ 9.1 Hz, H-3), 3.89 (t, 1 H, $J_{4,5}$ 9.6 Hz, H-4), 4.33 (dd, 1 H, $J_{6a,6b}$ – 10.4 Hz, H-6a), 3.87–3.96, 3.40–3.49 (2 m, 4 H, H-5,6b, OCH₂). Anal. Calcd for C₂₆H₃₃NO₈: C, 64.05; H, 6.82; N, 2.87. Found: C, 63.81; H, 6.87; N, 2.78.

5-[(Benzyloxycarbonyl)amino]pentyl2,3-di-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (32) and 5-[(benzyloxycarbonyl)amino]pentyl 3-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (33).—A suspension of compound 31 (1.7 g, 3.48 mmol), benzyl bromide (2.5 mL, 20.9 mmol), and powdered KOH (1.21 g, 21.6 mmol) in DMF (10 mL) was stirred at 0°C for 1 h. Methanol was added in order to destroy the excess of benzyl bromide, and stirring was continued for 30 min. The mixture was poured into water, and the precipitate was collected by filtration. The filtrate was extracted with EtOAc and the extracts were combined with a solution of the solid material from the filtration in EtOAc (300 mL). The solution was washed with water and concentrated. Chromatography of the residue gave first compound 32 (1.78 g, 77%); mp 113–117°C (EtOH); $[\alpha]_D - 30.8°$ (c 1.0, CHCl₃); ¹H NMR data: δ 4.46 (d, 1 H, J_{1,2} 7.7 Hz, H-1), 3.32–3.39 (m, 4 H, H-2,3, OCH₂), 3.41–3.48 (m, 3 H, H-4,5,6b), 4.31 (dd, 1 H, $J_{6a,6b}$ – 10.4 Hz, H-6a), 5.05 (s, 2 H, CH₂Ph), 4.90, 4.78 (2 d, 2 H, J – 11.5 Hz, CH₂Ph), 4.87, 4.76 (2 d, 2 H, J – 11.1 Hz, CH₂Ph). Anal. Calcd for C₄₀H₄₅NO₈: C, 71.94; H, 6.79; N, 2.10. Found: C, 71.81; H, 6.75; N, 2.02.

Eluted next was compound **33** (0.42 g, 21%); mp 113–114°C (EtOH); $[\alpha]_D - 19.5^{\circ}$ (c 1.1, CHCl₃); ¹H NMR data: δ 4.47 (d, 1 H, $J_{1,2}$ 7.7 Hz, H-1), 3.32 (dd, 1 H, $J_{2,3}$ 8.8 Hz, H-2), 3.81 (t, 1 H, $J_{3,4}$ 9.0 Hz, H-3), 3.51 (t, 1 H, $J_{4,5}$ 9.1 Hz, H-4), 3.40 (dd, 1 H, $J_{5,6a}$ 4.9, $J_{5,6b}$ 9.8 Hz, H-5), 3.31 (dd, 1 H, $J_{6a,6b} - 10.4$ Hz, H-6a), 3.74 (dd, 1 H, H-6b). Anal. Calcd for $C_{33}H_{39}NO_8$: C, 68.61; H, 6.80; N, 2.42. Found: C, 68.80; H, 6.89; N, 2.34.

5-[(Benzyloxycarbonyl)amino]pentyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside (**34**).— A solution of HCl in diethyl ether was added in small portions at room temperature to a solution of compound **32** (0.84 g, 1.26 mmol), sodium cyanoborohydride (0.99 g, 15.8 mmol), and 3A molecular sieves (1 g) in THF (20 mL) until no more evolution of H₂ could be observed. The solution was diluted with CH₂Cl₂, washed with aq NaHCO₃, and concentrated. Chromatography of the residue gave compound **34** (0.59 g, 70%); mp 65–67°C (acetone–*n*-hexane); $[\alpha]_D = -10.8^\circ$ (*c* 1.2, CHCl₃); ¹H NMR data: δ 4.38 (d, 1 H, $J_{1,2}$ 7.4 Hz, H-1), 3.36–3.61 (m, 6 H, H-2,3,4,5, OCH₂). Anal. Calcd for C₄₀H₄₇NO₈: C, 71.73; H, 7.07; N, 2.09. Found: C, 71.58; H, 7.20; N, 2.00.

(methoxycarbonyl)ethylidene]-β-D-glucopyranosyl}-(1→4)-O-(2-O-benzoyl-3,6-di-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (35).—A solution of N-iodosuccinimide (95 mg, 0.42 mmol) and trifluoromethanesulfonic acid (4 μL, 45 μmol) in 1:1 CH₂Cl₂-diethyl ether (5 mL) was added at -40°C to a suspension of compounds **26** (0.55 g, 0.42 mmol) and **34** (0.28 g, 0.42 mmol) and 4A molecular sieves (0.49 g) in CH₂Cl₂ (5 mL), and the mixture was stirred at -40°C for 3 h. Work-up as described for compound **27** gave compound **35** (0.37 g, 45%); [α]_D + 23.0° (*c* 1.0, CHCl₃); ¹H NMR data: δ 5.67 (dd, 1 H, J_{1,2} 8.0, J_{2,3} 10.2 Hz, H-2³), 5.29 (t, 1 H, J_{2,3} 8.6 Hz, H-2²), 5.04 (s, 2 H, CH₂Ph), 4.97 (d, 1 H, J_{1,2} 7.9 Hz, H-1³), 4.32 (d, 1 H, J_{3,4} 3.7, J_{4,5} <1 Hz, H-4³), 3.82, 3.62 (2 s, 6 H, 2 COOMe), 1.51, 1.47 (2 s, 6 H, 2 Me). FABMS: *m*/z 1921 (M)⁺. Anal. Calcd for C₁₀₈H₁₁₃NO₃₁: C, 67.52; H, 5.93; N, 0.73. Found: C, 67.08; H, 5.96; N, 0.64.

5-Aminopentyl O-{4,6-O-[(R)-1-carboxyethylidene]- β -D-galactopyranosyl}-(1 \rightarrow 3)-O-{4,6-O-[(S)-1-carboxyethylidene]- β -D-glucopyranosyl}-(1 \rightarrow 4)-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside (36).—A solution of compound 35 (105.7 mg, 55 μ mol) in MeOH (20 mL) was treated exactly as described for compound 28. Chromatography on Bio-Gel P2 (water) gave compound 36 (42 mg, 85%); $[\alpha]_D - 26.5^\circ$ (c 0.6, H₂O). FABMS: m/z 892 (M+H⁺).

Acknowledgements

We thank Professor Dr. Dr. h.c. F. Effenberger for helpful discussions and for providing the laboratory facilities, Dr. P. Fischer and J. Rebell for measuring the NMR spectra, and Dr. J. Opitz for performing the elemental analyses and the MS spectra. This work was financially supported by the Deutsche Forschungsgemeinschaft.

References

- W.F. Dudman, in C. Veeger and W.E. Newton (Eds.), Advances in Nitrogen Fixation Research, Martinus Nijhoff, The Hague, Netherlands, 1984, pp 397–404.
- [2] L.P.T.M. Zevenhuizen, in E.A. Dawes (Ed.), Novel Biodegradable Microbial Polymers, Kluwer, Dordrecht, Netherlands, 1990, pp 387–402.
- [3] J.X. Gray and B.G. Rolfe, Mol. Microbiol., 4 (1990) 1425–1431.
- [4] G. Truchet, P. Roche, P. Lerouge, J. Vasse, S. Camut, F. de Billy, J.-C. Promé, and J. Dénarié, Nature, 351 (1991) 670–673.
- [5] K.C. Nicolaou, N.J. Bockovich, D.R. Carcanague, C.W. Hummel, and L.F. Even, J. Am. Chem. Soc., 114 (1992) 8701–8702.
- [6] H.C.J.C. Cremers, K. Stevens, B.J.J. Lugtenberg, C.A. Wijffelman, M. Batley, J.W. Redmond, M.W. Breedvelt, and L.P.T.M. Zevenhuizen, *Carbohydr. Res.*, 218 (1991) 185–200.
- [7] M. McNeil, J. Darvill, A.G. Darvill, and P. Albersheim, Carbohydr. Res., 146 (1986) 307-326.
- [8] W.F. Dudman, L.-E. Franzén, M. McNeil, A.G. Darvill, and P. Albersheim, Carbohydr. Res., 117 (1983) 169–183.
- [9] M.-S. Kuo and A.J. Mort, Carbohydr. Res., 145 (1986) 247-265.
- [10] A. Gil-Serrano, I. González-Jiménez, P. Tejero-Mateo, A. Sanchez del Junco, M. Megias, and M.J. Romero-Vázquez, Carbohydr. Res., 225 (1992) 169–174.
- [11] A.S. Chaudhari, C.T. Bishop, and W.F. Dudman, Carbohydr. Res., 28 (1973) 221-231.
- [12] A. Gil-Serrano, A. Sanchez del Junco, P. Teijero-Mateo, M. Megias, and M.A. Caviedes, Carbohydr. Res., 204 (1990) 103-107.
- [13] A. Amemura and T. Harada, Carbohydr. Res., 112 (1983) 85-93.
- [14] P.-E. Jansson, B. Lindberg, and H. Ljunggren, Carbohydr. Res., 75 (1979) 207-220.
- [15] R.I. Hollingsworth, F.B. Dazzo, K. Hallenga, and B. Musselman, Carbohydr. Res., 172 (1988) 97-112.
- [16] T. Ziegler, E. Eckhardt, and V. Birault, J. Org. Chem., 58 (1993) 1090-1099.
- [17] T. Ziegler, E. Eckhardt, and G. Herold, Liebigs Ann. Chem., (1992) 441-451.
- [18] T. Ziegler, E. Eckhardt, J. Strayle, and H. Herzog, Carbohydr. Res., 253 (1994) 167-183.
- [19] T. Ziegler, B. Adams, P. Kovac, and C.P.J. Glaudemans, J. Carbohydr. Chem., 9 (1990) 135-158.
- [20] N.M. Spijker and C.A.A. van Boeckel, Angew. Chem., 103 (1991) 179–182; Angew. Chem. Int. Ed. Engl., 30 (1991) 180–183.
- [21] Y. Nakahara and T. Ogawa, Tetrahedron Lett., 28 (1987) 2731-2734.
- [22] H. Paulsen and O. Lockhoff, Chem. Ber., 114 (1981) 3102-3114.
- [23] H. Paulsen, W. Kutschker, and O. Lockhoff, Chem. Ber., 114 (1981) 3233-3241.
- [24] T. Ziegler, E. Eckhardt, and G. Pantkowski, J. Carbohydr. Chem., 13 (1994) 81-109.
- [25] T. Ziegler and E. Eckhardt, Tetrahedron Lett., 33 (1992) 6615-6618.
- [26] T. Suami, Jpn. Kokai Tokkyo Koho, Jp 58 49, 395 (1983); Chem. Abstr., 99 (1983) P 212875h.
- [27] P.J. Garegg, H. Hultberg, and S. Wallin, Carbohydr. Res., 108 (1982) 97-101.
- [28] T. Ziegler, E. Eckhardt, and G. Herold, Tetrahedron Lett., 33 (1992) 4413-4416.
- [29] J. Yoshimura, K. Sato, H. Hashimoto, and K. Shimizu, Bull. Chem. Soc. Jpn., 50 (1977) 3307-3309.
- [30] T. Ziegler, E. Eckhardt, K. Neumann, and V. Birault, Synthesis, (1992) 1013-1017.
- [31] H. Gilman and R.N. Clark, J. Am. Chem. Soc., 69 (1947) 1499-1500.
- [32] M.J. Robins, J.S. Wilson, and F. Hansske, J. Am. Chem. Soc., 105 (1983) 4059-4065.