Tetrahedron 68 (2012) 1595-1605

Contents lists available at SciVerse ScienceDirect

Tetrahedron

Rhodium(II) catalyzed intermolecular double C-alkylation: a method for the synthesis of tetraindoles and indolophanes

Sengodagounder Muthusamy^{a,*}, Thangaraju Karikalan^a, Chidambaram Gunanathan^a, Eringathodi Suresh^b

^a School of Chemistry, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620024, India ^b Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, India

ARTICLE INFO

Article history: Received 20 September 2011 Received in revised form 22 November 2011 Accepted 24 November 2011 Available online 1 December 2011

Keywords: C-Alkylation Indolophanes Macrocycles Tetraindoles

ABSTRACT

Double C-alkylation of cyclic diazoamides or bis-diazoamides with indoles or bis-indoles has been achieved to synthesize tetraindole derivatives using rhodium(II) acetate as a catalyst under mild reaction conditions with complete regioselectivity. The intermolecular double C-alkylation reaction strategy was successfully applied to synthesize indolophanes in moderate yield with excellent regiocontrol. The structure and stereochemistry of macrocycles were unequivocally confirmed with the help of single-crystal X-ray structure analyses.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Plethora of reports are available, in which 'rhodium(II) catalysts' were highly selective for transformations, such as cyclo-propanation, insertion, and ylide formation.¹ Interesting developments were seen in the past few years, particularly, the combination of transition metal-catalyzed cyclopropanation followed by other types of reactions in a single or cascade operation. Owing to the high strain of the three-membered ring system, there are many possible pathways for the ring opening of cyclopropanes. Cyclopropane rings bearing both electron-donating and -withdrawing groups are prone to undergo ring opening² reactions. The reactions of metallo-carbenoids with furan,³ pyrrole⁴ or indole⁴ resulted in an initial cyclopropanation followed by a consecutive ring opening process. Similarly, cyclopropanation of other heterocycles including activated quinolines, isoquinolines,⁵ and benzopyrylium triflates,⁶ followed by the ring enlargement reaction was also reported. Many indoline alkaloids⁷ were synthesized via cyclopropanation followed by ring opening strategy. The rhodiumcatalyzed intramolecular reactions of pyrrolyl and indolyl diazoketones generally resulted⁸ in the alkylation products via cyclopropanation. Conversely, the inter- as well as intramolecular reactions of diazo compounds with indole in the presence of copper catalysts afforded the corresponding cyclopropanation^{5,9} across the indole 2,3-double bond. Our recent report indicates that the reactions of metallo-carbenoids derived from diazoamides **1** with heteroaromatic systems, such as benzofuran and benzothiophene afforded¹⁰ the cyclopropanation products without any ring opening. However, reaction of cyclic diazoamide **1** (R¹=Me) with *N*-benzylindole **2** (R²=Bn) in the presence of Rh₂(OAc)₄ afforded the corresponding 3-alkylated product¹¹ **5** in quantitative yields with the formation of product **5** might be produced via the corresponding spirocyclopropanes **3** and followed by ring opening to zwitterions **4** as intermediate in the presence of copper or rhodium catalyst.

The design and synthesis of macrocycles containing aromatic/ heteroaromatic ring systems are an intriguing branch of organic and supramolecular chemistry.^{12,13} However, aromatic units present in the cyclophanes are mostly carbocyclic rings, such as benzene or naphthalene derivatives. Our enticement in developing a new synthetic strategies¹⁴ using diazocarbonyl compounds encouraged us to investigate the application of the cyclopropane/ring opening methodology for the synthesis of indolophanes (Scheme 2). We herein report the intermolecular double C-alkylation reactions of cyclic diazoamides **6** in the presence of Rh₂(OAc)₄ catalyst in a single synthetic step furnishing tetraindole derivatives (indolophanes) with excellent regiocontrol via cyclopropanation followed by ring opening process.

^{*} Corresponding author. E-mail address: muthu@bdu.ac.in (S. Muthusamy).

Scheme 1. Synthesis of 3-alkylated product 5.

Scheme 2. Synthesis of indolophanes.

2. Results and discussion

With an objective to synthesize macrocycles utilizing rhodium(II) carbenoids, the selection of spacers was initially planned to interconnect the indole and diazoamide units that provide flexibility with respect to the ring size and the kind of structural units to be incorporated in the macrocycles. Based on our earlier research work^{10,11,14b} on C-alkylation, we designed the double intermolecular C-alkylation reactions of bis-diazoamides 6 with indoles 2 or bis-indoles 7. To demonstrate the double C-alkylation reaction, bis-diazoamides 6a,b having aliphatic spacers were synthesized in good yield via N-alkylation of diazoamide 1a with 1,3dibromopropane (**9a**) or 1,4-dibromobutane (**9b**) using $K_2CO_3/$ DMF. The double C-alkylation reaction of bis-diazoamides 6a,b was investigated to determine the course of reaction. Treatment of 6a with an excess amount of *N*-methylindole 2a in the presence of 1 mol % of rhodium(II) acetate catalyst for 20 min at room temperature furnished the corresponding double C-alkylated product 10a in 85% yield as a mixture of diastereomers in the ratio of 1:1 (Scheme 3). No mono-alkylated product was observed. The ¹H NMR spectrum of compound 10a exhibited a characteristic signal at δ 4.81 and 4.85 as two separate singlets for two C^{*}–H protons of each diastereomer. Similarly, reaction of bis-diazoamides 6a,b with substituted indoles 2a-d furnished the corresponding doublealkylated products **10b**—**g** as a diastereomeric mixture in very good yield and the results are delineated in Table 1.

Scheme 3. Synthesis of tetraindoles from cyclic diazoamides 6.

 Table 1

 Reaction of bis-diazoamides 6 with substituted indoles 2

Entry	Product	п	R ²	Time (min)	Yield ^a %	dr ^b
1	10a	1	CH ₃	20	85	59:41
2	10b	1	C ₆ H ₅ CH ₂	20	93	56:44
3	10c	1	4-CH ₃ C ₆ H ₄ CH ₂	30	82	58:42
4	10d	2	CH ₃	15	89	65:35
5	10e	2	C ₆ H ₅ CH ₂	15	89	61:39
6	10f	2	4-CH ₃ C ₆ H ₄ CH ₂	15	77	59:41
7	10g	2	Allyl	20	80	60:40

^a Isolated yield.

^b Diastereomeric ratio based on the crude NMR spectra.

Having studied the reaction profile of bis-diazoamides, we next examined the double C-alkylation reaction of bis-indoles **7** with cyclic diazoamides **1b**–**f**. Thus, reaction of bis-indole **7a** with an excess amount of cyclic diazoamide **1b** in the presence of 1 mol % of rhodium(II) acetate catalyst at room temperature was performed. The reaction was completed in 25 min; concentrated and chromatographic purification of the reaction mixture delivered the tetraindole derivative **11a** as a mixture of diastereomers in quantitative yields (Scheme 4). The ¹H NMR spectrum of product **11a** exhibited a characteristic signal at δ 4.87 as a singlet for two C*–H protons, which indicates the presence of symmetry.

The NMR spectrum showed the complete symmetry for other protons as well as carbons because the stereocenters present in diastereomers are well separated. Thus, the diastereomeric ratio could not be determined. Spectroscopic analyses confirmed the double C-alkylation reaction of bis-indoles with complete regio-selectivity. Similarly, the reaction of bis-indoles **7a,b** with substituted cyclic diazoamides **1b**–**f** furnished the corresponding double-alkylated products **11b**–**j** as a mixture of diastereomers in quantitative yield and the results are delineated in Table 2.

Next, double alkylation reactions of bis-indoles **7** having aromatic spacers were planned to furnish tetraindole derivatives. Reaction of bis-indole containing aromatic spacer **7c** with cyclic diazoamide **1b** afforded the alkylated product **12a** as a mixture of diastereomers (Scheme 5). However, ¹H NMR spectrum of product **12a** exhibited a characteristic singlet resonance at δ 4.86 for two

Scheme 4. Synthesis of tetraindoles from bis-indoles 7a,b.

Reaction of bis-indoles **7** having aliphatic spacers

Entry	Product	п	R ¹	Time (min)	Yield ^a %
1	11a	1	CH ₃	25	98
2	11b	1	C ₆ H ₅ CH ₂	20	98
3	11c	1	4-CH ₃ C ₆ H ₄ CH ₂	20	95
4	11d	1	Allyl	25	97
5	11e	1	Propargyl	25	95
6	11f	2	CH ₃	25	97
7	11g	2	C ₆ H ₅ CH ₂	20	98
8	11h	2	4-CH ₃ C ₆ H ₄ CH ₂	20	96
9	11i	2	Allyl	25	95
10	11j	2	Propargyl	25	94

^a Isolated yield.

C^{*}–H protons indicating the presence of symmetry and the diastereomeric ratio could not be determined. In order to generalize the above reaction, a number of double-alkylated products **12b–I** was obtained in quantitative yields with the complete regioselectivity (Table 3) as described above. All these reactions were completed within 8–12 min.

Scheme 5. Synthesis of tetraindoles from bis-indoles 7c-e.

Table	3
-------	---

Reaction of bis-indoles 7 having	ng aromatic spacers
----------------------------------	---------------------

Entry	Product	х	R ¹	Time (min)	Yield ^a %
1	12a	2-CH ₂ C ₆ H ₄ CH ₂	CH ₃	10	97
2	12b	2-CH ₂ C ₆ H ₄ CH ₂	C ₆ H ₅ CH ₂	12	96
3	12c	2-CH ₂ C ₆ H ₄ CH ₂	4-CH ₃ C ₆ H ₄ CH ₂	10	96
4	12d	2-CH ₂ C ₆ H ₄ CH ₂	Allyl	10	95
5	12e	2-CH ₂ C ₆ H ₄ CH ₂	Propargyl	10	94
6	12f	3-CH ₂ C ₆ H ₄ CH ₂	CH ₃	8	97
7	12g	3-CH ₂ C ₆ H ₄ CH ₂	C ₆ H ₅ CH ₂	10	96
8	12h	3-CH ₂ C ₆ H ₄ CH ₂	4-CH ₃ C ₆ H ₄ CH ₂	10	97
9	12i	3-CH ₂ C ₆ H ₄ CH ₂	Propargyl	10	95
10	12j	4-CH ₂ C ₆ H ₄ CH ₂	C ₆ H ₅ CH ₂	12	95
11	12k	4-CH ₂ C ₆ H ₄ CH ₂	4-CH ₃ C ₆ H ₄ CH ₂	10	94
12	121	$4\text{-}CH_2C_6H_4CH_2$	Allyl	10	94

^a Isolated yield.

The reaction was then extended to include various bisdiazoamides/bis-indoles combinations; speculation was made that if bis-indole moieties **7** were used in the double C-alkylation reaction of bis-diazoamides **6** then the resultant double C-alkylated product should be an interesting macrocyclic compound (Scheme 2). This will provide a new methodology for the indolophane synthesis using rhodium metal catalyst.

Macrocyclic compounds are important in modern synthetic organic chemistry in view of the fact that a large number of these compounds have shown potential biological applications and has emerged as one of the key areas in the field of molecular recognition.¹⁵ There is currently considerable interest in the properties and applications of cyclophanes¹⁶ and more commonly in the control of molecular architecture and crystal engineering. There is also growing interest in the development of cyclophanes as hosts for ionic guests¹⁷ and molecular recognition as synthetic receptors.¹⁸ For the synthesis of large ring macrocyclic lactones, catalytic metal carbene transformation emerged as an exciting tool and has been applied^{19,20} to the macrocyclization process.

For the successful macrocyclization by means of intermolecular double C-alkylation reactions, 1 equiv of bis-indole 7a was allowed to react with 1.1 equiv of bis-diazoamide 6a under an argon atmosphere in the presence of 1 mol % of rhodium(II) acetate catalyst. As observed in double C-alkylation reactions above, the reaction was completed within 30 min. The chromatography purification of the reaction mixture afforded macrocyclic compounds 13a,b as a mixture of diastereomers in moderate yield with an excellent regiocontrol (Scheme 6) and no other oligomers and mono-alkylated product were observed. The diastereomeric mixture was present in the ratio of 1:1 and separated by column chromatography. The ¹H NMR spectrum of product **13a** exhibited a characteristic singlet resonance at δ 4.87 for two CH protons. The ¹H NMR spectrum of product 13b exhibited a characteristic singlet resonance at δ 5.02 for two CH protons. The ¹³C, DEPT-135, and DEPT-90 NMR spectra of compounds 13a and 13b showed peaks for four CH₂ carbons, ten CH carbons, and six quaternary carbons. The single-crystal X-ray analyses²¹ of diastereomers 13a (anti) and 13b (syn) were also performed (Fig. 1). The crystal packing arrangement of 13a and 13b showed the presence of intermolecular C-H···O and $C-H\cdots\pi$ interactions.²² The spectroscopic and X-ray analyses confirmed the proposed macrocyclic structures of 13a,b. Similarly, reaction of bis-diazoamides 6a,b with bisindole 7b furnished the respective double C-alkylated macrocyclic compounds 14a,b and 15a,b as a mixture of diastereomers with an excellent regiocontrol and the results are summarized in Table 4.

The reaction was further extended to bis-indoles and bisdiazoamides having aromatic spacers. Reaction of bis-diazoamide

Scheme 6. Synthesis of indolophanes.

6a and bis-indole **7c** was performed as described above to afford the macrocyclic compounds **16a**,**b** as a mixture of diastereomers. The stereochemistry of the diastereomer **16b** was unequivocally demonstrated by the single-crystal X-ray analysis²¹ and found as syn-isomer (Fig. 2). The stereochemistry of the diastereomer 16a was tentatively assigned as an *anti*-isomer. Similarly, reaction of bis-diazoamide **6a** with bis-indole **7d** vielded the corresponding macrocyclic compounds **17a.b** as a mixture of diastereomers. The stereochemistry of the diastereomer **17b** was unequivocally assigned by the single-crystal X-ray analysis²¹ and found as *syn*isomer (Fig. 2). Finally, we investigated the reaction of bis-diazoamide $6c^{23}$ with bis-indole **7c**, both containing aromatic spacers, under similar reaction conditions as described above. The chromatographic purification of the reaction mixture led to the interesting macrocycle 18 having aryl and heteroaryl units as a mixture of diastereomers. However, numerous attempts to separate the diastereomeric mixture by crystallization or chromatography failed.

3. Conclusions

In summary, the intermolecular double C-alkylation reactions were performed for the first time using rhodium(II) acetate as

Fig. 1. X-ray structures of indolophanes 13a and 13b (solvent molecule was removed for clarity).

lable 4	
Synthesis of macrocycles	via double C-alkylation method 13–18

Entry	Macrocycle	Х	Υ	Yield ^a %	dr ^b
1	13	-(CH ₂) ₃ -	-(CH ₂) ₃ -	50	58:42
2	14	-(CH ₂) ₃ -	$-(CH_2)_4-$	52	53:47
3	15	$-(CH_2)_4-$	$-(CH_2)_4-$	55	51:49
4	16	-(CH ₂) ₃ -	2-CH ₂ C ₆ H ₄ CH ₂	63	27:73
5	17	-(CH ₂) ₃ -	3-CH ₂ C ₆ H ₄ CH ₂	54	36:64
6	18	3-CH ₂ C ₆ H ₄ CH ₂	2-CH ₂ C ₆ H ₄ CH ₂	50	56:44

^a Isolated yield.

^b Diastereomeric ratio based on the crude NMR spectra.

catalyst to furnish tetraindole derivatives with complete regioselectivity. This methodology using rhodium(II) catalyst was successfully extended to apply for the synthesis of indolophanes with excellent regiocontrol and forms a new approach for the synthesis of macrocycles. The structure and stereochemistry of macrocycles were unequivocally confirmed with the help of single-crystal X-ray structure analyses. The cavity of the macrocycles can be varied using the different spacers. Further studies with different spacers to change the size of the cavity of macrocycles and their supramolecular chemistry are in progress.

Fig. 2. X-ray structures of indolophanes 16b (solvent molecule was removed for clarity) and 17b.

4. Experimental section

4.1. General

Melting points are uncorrected. IR spectra were recorded using KBr pellets or in CH₂Cl₂. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on 200 MHz or 400 MHz using CDCl₃ in parts per million (δ) related to tetramethylsilane (δ =0.00) as an internal standard. The data are reported as follows; chemical shift in parts per million (ppm, δ units), multiplicity (br=broad, s=singlet, d=doublet, m=multiplet), spin-spin coupling *I* (hertz), and integration. Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded at 50.3 MHz or 100 MHz in CDCl₃. Chemical shifts are reported in delta (δ) units, parts per million (ppm) relative to the center of the triplet at 77.7 ppm for CDCl₃. Carbon types were determined from ¹³C NMR and DEPT experiments. Mass analyses were performed with an ionizing voltage of 70 eV or FD⁺ method or by FAB technique and reported as m/z (relative intensity). Diffraction data for the compounds are collected on a diffractometer with graphite monochromatized Mo K α radiation (λ =0.71703 Å) at room temperature using the program SMART²⁴ and processed by SAINT.²⁵ Absorption correction was applied by SADABS.²⁶ The structure was solved by direct methods and refined using fullmatrix least-squares/difference Fourier techniques using SHELXL 97.²⁷ All the non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were located from the difference Fourier map or placed at idealized positions and refined as riding atoms with the relative isotropic parameters to which they are attached. All solvents were purified by distillation following standard procedures. Thin layer chromatography was performed on silica or alumina plates and components visualized by observation under iodine/UV light. Column chromatography was performed on silica gel (100-200 mesh). All air sensitive reactions were conducted in oven-dried glassware under a positive pressure of argon with magnetic stirring. Reagents were added via syringes through septa. Synthesis of substituted diazoamides^{14d} 1, bisdiazoamides^{23,14d} **6**, bis-indoles²⁸ **7a–e** were prepared by using literature methods.

4.2. General procedure for the synthesis of compounds 10

To a stirred, degassed dichloromethane (25 mL) solution of bisdiazoamide **6** (1 mmol) and indole **2** (2.50 mmol) was added rhodium(II) acetate dimer (1 mol %) catalyst at 25 °C. After the reaction was completed (15–30 min, TLC monitoring), the reaction mixture concentrated in vacuum. The residue was purified by flash chromatography (SiO₂, hexane/EtOAc 55:45) to afford the corresponding product **10** as an inseparable mixture of diastereomers. NMR data provided for the major isomer only.

4.2.1. 1,3-Bis[(1'-methyl-1,3-dihydro-1'H-[3,3']biindolyl-2-on)-1-yl] propane (**10a**). Brown solid (85%); IR (KBr) ν 3055, 2931, 1711, 1612, 1486, 1467, 1359, 1265, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.03–2.20 (m, 2H, CH₂), 3.68 (s, 6H, NCH₃), 3.88–3.90 (m, 4H, CH₂), 4.81 (s, 2H, CH), 6.80–7.03 (m, 8H, ArH), 7.14–7.25 (m, 10H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 26.29 (CH₂), 33.36 (NCH₃), 38.78 (CH₂), 44.84 (CH), 108.75 (=CH), 108.82 (=CH), 109.94 (quat-C), 110.05 (=CH), 119.91 (=CH), 122.54 (=CH), 123.21 (=CH), 125.61 (=CH), 127.43 (quat-C), 128.25 (=CH), 128.83 (=CH), 130.54 (quat-C), 137.98 (quat-C), 143.86 (quat-C), 177.17 (quat-C); HRMS (ESI) calcd for C₃₇H₃₂N₄O₂Na [M⁺+Na] 587.2423, found 587.2433.

4.2.2. 1,3-Bis[(1'-benzyl-1,3-dihydro-1'-[3,3']biindolyl-2-on)-1-yl] propane (**10b**). Light brown solid (93%); IR (KBr) ν 3055, 2927, 1713, 1713, 1611, 1487, 1465, 1358, 1265, 1087, 1022, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.16–2.25 (m, 2H, CH₂), 3.85–3.92 (m, 4H, CH₂),

4.83 (s, 2H, CH), 5.20–5.25 (m, 4H, NCH₂), 6.85 (q, 2H, *J*=6.8 Hz, ArH), 6.97–7.02 (m, 4H, ArH), 7.03 (d, 4H, *J*=6.4 Hz, ArH), 7.08–7.14 (m, 8H, ArH), 7.20–7.28 (m, 10H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 29.73 (CH₂), 38.19 (CH₂), 44.35 (CH), 50.11 (CH₂) 108.16 (=CH), 108.28 (=CH), 109.86 (*quat*-C), 110.0 (=CH), 119.55 (=CH), 119.72 (=CH), 122.18 (=CH), 122.66 (=CH), 125.06 (=CH), 126.87 (=CH), 127.10 (=CH), 127.27 (=CH), 127.63 (=CH), 128.27 (*quat*-C), 128.77 (=CH), 129.24 (*quat*-C), 137.05 (*quat*-C), 137.31 (*quat*-C), 143.23 (*quat*-C), 176.92 (*quat*-C); MS (ESI) *m*/*z* 739 [M⁺+Na]; Anal. Calcd (%) for C₄₉H₄₀N₄O₂ (716.31): C, 82.10; H, 5.62; N, 7.82. Found: C, 82.36; H, 5.73; N, 7.87.

4.2.3. 1,3-Bis[(1'-(4-methylbenzyl)-1,3-dihydro-1'H-[3,3']biindolyl-2-on)-1-yllpropane (10c). Light pink color solid (82%); IR (KBr) v 3055, 2925, 1710, 1611, 1486, 1465, 1356, 1264, 1179, 1086, 1020, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.26–2.32 (m, 8H), 3.85-3.91 (m, 4H, CH₂), 4.85 (s, 2H, CH), 5.13-5.20 (m, 4H, NCH₂), 6.84 (q, 2H, J=6.0 Hz, ArH), 6.98-7.03 (m, 10H, ArH), 7.06 (d, 4H, *J*=7.6 Hz, ArH), 7.01–7.14 (m, 4H, ArH), 7.19–7.25 (m, 6H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.81 (CH₃), 22.79 (CH₂), 31.67 (CH₂), 44.30 (CH), 49.92 (CH₂) 108.28 (=CH), 109.88 (quat-C), 110.06 (= CH), 119.55 (=CH), 119.69 (=CH), 122.15 (=CH), 122.70 (=CH), 125.12 (=CH), 126.97 (=CH), 127.17 (quat-C), 127.33 (=CH), 128.31 (quat-C), 129.33 (quat-C), 129.47 (=CH), 134.32 (=CH), 137.09 (quat-C), 137.34 (quat-C), 143.24 (quat-C), 176.07 (quat-C); MS (ESI) m/z (%) 745 (M+1, 14), 744 (M⁺, 21), 639 (21), 523 (14), 231 (7), 105 (100); Anal. Calcd (%) for C₅₁H₄₄N₄O₂ (744.35): C, 82.23; H, 5.95; N, 7.52. Found: C, 82.04; H, 5.89; N, 7.64.

4.2.4. 1,4-Bis[(1'-methyl-1,3-dihydro-1'H-[3,3']biindolyl-2-on)-1-yl] butane (**10d**). Light brownish solid (89%); IR (KBr) ν 3054, 2932, 1711, 1611, 1486, 1466, 1357, 1265, 1156, 1091, 1015, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.85 (s, 4H, CH₂), 3.71 (s, 6H, NCH₃), 3.80–3.86 (m, 4H, CH₂), 4.85 (s, 2H, CH), 6.88 (d, 2H, *J*=7.6 Hz, ArH), 6.93 (s, 2H, ArH), 6.97–7.02 (m, 4H, ArH), 7.17–7.28 (m, 10H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 24.85 (CH₂), 29.74 (NCH₃), 39.65 (CH₂), 44.38 (CH), 108.43 (=CH), 109.36 (=CH), 109.46 (=CH), 119.38 (=CH), 121.96 (=CH), 122.51 (=CH), 124.96 (=CH), 126.89 (quat-C), 127.73 (=CH), 128.22 (=CH), 129.38 (quat-C), 129.48 (quat-C), 137.40 (quat-C), 143.43 (quat-C), 176.60 (quat-C); MS (ESI) *m/z* (%) 601 [M⁺+Na]; Anal. Calcd (%) for C₃₈H₃₄N₄O₂ (578.21): C, 78.87; H, 5.92; N, 9.68. Found: C, 78.65; H, 5.86; N, 9.59.

4.2.5. 1,4-Bis[(1'-benzyl-1,3-dihydro-1'H-[3,3']biindolyl-2-on)-1-yl] butane (**10e**). Brown solid (89%); IR (KBr) ν 3055, 2928, 1711, 1611, 1487, 1466, 1357, 1265, 1177, 1156, 1092, 1026, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.82–1.84 (m, 4H, CH₂), 3.77–3.85 (m, 4H, CH₂), 4.86 (s, 2H, CH), 5.17–5.23 (m, 4H, NCH₂), 6.88 (d, 2H, *J*=8.0 Hz, ArH), 6.96–7.02 (m, 6H, ArH), 7.05–7.14 (m, 6H, ArH), 7.18–7.29 (m, 14H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 24.89 (CH₂), 39.67 (CH₂), 44.45 (CH), 50.10 (CH₂) 108.48 (=CH), 110.0 (=CH), 110.14 (quat-C), 119.58 (=CH), 122.18 (=CH), 122.55 (=CH), 124.99 (=CH), 126.87 (=CH), 127.17 (=CH), 127.64 (=CH), 128.27 (=CH), 128.79 (=CH), 129.20 (quat-C), 137.49 (quat-C), 137.06 (quat-C), 137.36 (quat-C), 143.41 (quat-C), 176.49 (quat-C); MS (ESI) *m*/z 753 (M⁺+Na); Anal. Calcd (%) for C₅₀H₄₂N₄O₂ (730.33): C, 82.16; H, 5.79; N, 7.67. Found: C, 82.42; H, 5.72; N, 7.82.

4.2.6. 1,4-Bis[(1'-(4-methylbenzyl)-1,3-dihydro-1'H-[3,3']biindolyl-2-on)-1-yl]butane (**10f**). Light brown solid (77%); IR (KBr) ν 3054, 2929, 1710, 1612, 1487, 1466, 1357, 1265, 1178, 1093, 1020, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.80–1.83 (m, 4H, CH₂), 2.29 (s, 6H, CH₃), 3.73–3.85 (m, 4H, CH₂), 4.79 (s, 2H, CH), 5.15–5.20 (m, 4H, NCH₂), 6.87–7.21 (m, 26H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 20.64 (CH₃), 24.43 (CH₂), 39.19 (CH₂), 43.93 (CH), 49.41 (CH₂) 107.95 (= CH), 109.51 (=CH), 119.12 (=CH), 121.61 (=CH), 121.96 (=CH), 124.51 (=CH), 126.52 (=CH), 126.71 (=CH), 127.82 (=CH), 128.81 (quat-C), 128.82 (quat-C), 129.03 (=CH), 133.81 (quat-C), 136.83 (quat-C), 136.86 (quat-C), 143.04 (quat-C), 176.13 (quat-C); MS (ESI) m/z 781.3 (M⁺+Na), 758.3 (M⁺); Anal. Calcd (%) for C₅₂H₄₆N₄O₂ (758.36): C, 82.29; H, 6.11; N, 7.38. Found: C, 82.42; H, 6.04; N, 7.47.

4.2.7. 1,4-Bis[(1'-allyl-1,3-dihydro-1'H-[3,3']biindolyl-2-on)-1-yl]butane (**10**g). Brown solid (80%); IR (KBr) ν 3055, 2926, 1711, 1611, 1487, 1466, 1356, 1263, 1178, 1156, 1092, 928, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.82–1.85 (m, 4H, CH₂), 3.81 (br s, 4H), 4.58–4.59 (m, 4H), 4.77 (s, 2H, CH), 5.01–5.15 (m, 4H, C=CH₂), 5.81–5.99 (m, 2H, allyl CH), 6.76 (d, 2H, *J*=8.1 Hz, ArH), 6.85–7.01 (m, 6H, ArH), 7.10–7.32 (m, 10H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 25.81 (CH₂), 40.13 (CH₂), 44.83 (CH), 49.33 (CH₂), 108.93 (=CH), 110.32 (=CH), 118.04 (=CH₂), 119.98 (=CH), 122.52 (=CH), 123.03 (=CH), 125.43 (=CH), 127.21 (=CH), 127.64 (quat-C), 128.76 (=CH), 129.83 (quat-C), 129.92 (quat-C); HRMS (ESI) calcd for C₄₂H₃₈N₄O₂Na [M⁺+Na] 653.2995, found 653.2984.

4.3. General procedure for the synthesis of compounds 11 and 12

To a stirred dichloromethane solution of bis-indole **7** (1.00 mmol) and diazoamide **1** (2.50 mmol) at 25 °C was added rhodium(II) acetate dimer (1 mol %) catalyst. The solvent was concentrated in vacuo. The residue was purified by flash chromatography (SiO₂, hexane/EtOAc 60:40) to afford the product **11** or **12** as an inseparable mixture of diastereomers.

4.3.1. 1,3-Bis[(1'-methyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl]propane (**11a**). Colorless solid (98%); mp 121–123 °C; IR (KBr) ν 3054, 2927, 2855, 1713, 1612, 1492, 1468, 1373, 1347, 1265, 1173, 1125, 1087, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.35–2.39 (m, 2H, CH₂), 3.29 (s, 6H, NCH₃), 4.03 (t, 4H, *J*=6.8 Hz, NCH₂), 4.87 (s, 2H, CH), 6.91–6.94 (m, 4H, ArH), 7.00–7.03 (m, 4H, ArH), 7.11–7.20 (m, 6H, ArH), 7.26–7.34 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 26.51 (NCH₃), 29.74 (CH₂), 43.38 (NCH₂), 44.34 (CH), 108.12 (= CH), 109.56 (=CH), 110.01 (*quat*-C), 119.62 (=CH), 119.70 (=CH), 122.15 (=CH), 122.71 (=CH), 124.78 (=CH), 126.56 (=CH), 126.69 (*quat*-C), 128.24 (=CH), 129.19 (*quat*-C), 136.61 (*quat*-C), 144.26 (*quat*-C), 176.42 (*quat*-C); MS (ESI) *m*/*z* (%) 587 (M⁺+Na); Anal. Calcd (%) for C₃₇H₃₂N₄O₂ (564.25): C, 78.70; H, 5.71; N, 9.92. Found: C, 78.99; H, 5.87; N, 9.70.

4.3.2. 1,3-Bis[(1'-benzyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1*yl]propane* (**11b**). Light yellow solid (98%); mp 115–117 °C; IR (KBr) v 3045, 2925, 1710, 1611, 1486, 1465, 1348, 1178, 1010, 908, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.84 (s, 2H), 4.01–4.03 (m, 4H, NCH₂), 4.89–5.05 (m, 6H, NCH₂ and CH), 6.82 (d, 2H, J=8.0 Hz, ArH), 6.94-6.98 (m, 6H, ArH); 7.13-7.21 (m, 6H, ArH), 7.23-7.32 (m, 10H, ArH), 7.35 (d, 4H, J=6.8 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 27.77 (CH₂), 44.11 (CH₂), 44.54 (CH), 45.99 (CH₂), 109.13 (=CH), 109.58 (=CH), 109.71 (quat-C), 119.71 (=CH), 119.82 (=CH), 122.07 (=CH), 122.75 (=CH), 124.97 (=CH), 126.90 (=CH), 126.95 (=CH), 127.67 (quat-C), 127.71 (=CH), 128.14 (=CH), 128.82 (=CH), 129.22 (quat-C), 136.11 (quat-C), 136.72 (quat-C), 143.40 (quat-C), 176.58 (quat-C); MS (EI) m/z (%) 716 (M⁺, 34), 715 (57), 493 (15), 403 (11), 351 (45), 272 (67), 231 (16), 130 (21), 91 (100); Anal. Calcd (%) for C49H40N4O2 (716.86): C, 82.10; H, 5.62; N, 7.82. Found: C, 82.34; H, 5.76; N, 7.69.

4.3.3. 1,3-Bis[(1'-(4-methylbenzyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl]propane (**11c**). Brown solid (95%); mp 122–124 °C; IR (KBr) ν 3054, 2927, 1711, 1612, 1515, 1486, 1467, 1354, 1265, 1200, 1180, 1012, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 8H, CH₂) and ArCH₃), 3.94–4.09 (m, 4H, CH₂), 4.79–5.00 (m, 6H, NCH₂ and CH), 6.80 (d, 2H, *J*=7.6 Hz, ArH), 6.87–7.39 (m, 24H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 21.60 (ArCH₃), 30.56 (CH₂), 43.84 (CH₂), 44.31 (CH₂), 44.96 (CH), 109.63 (=CH), 110.09 (=CH), 110.58 (*quat*-C), 120.05 (=CH), 120.37 (=CH), 122.64 (=CH), 123.13 (=CH), 125.34 (=CH), 127.42 (=CH), 127.61 (*quat*-C), 128.12 (=CH), 128.60 (=CH), 129.67 (*quat*-C), 129.94 (=CH), 133.55 (*quat*-C), 137.80 (*quat*-C), 143.94 (*quat*-C), 176.93 (*quat*-C); MS (EI) *m/z* (%) 744 (M⁺, 34), 743 (49), 507 (19), 403 (16), 365 (34), 261 (67), 105 (100); Anal. Calcd (%) for C₅₁H₄₄N₄O₂ (744.35): C, 82.23; H, 5.95; N, 7.52. Found: C, 82.47; H, 6.12; N, 7.41.

4.3.4. 1,3-Bis[(1'-allyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl] propane (**11d**). Brown solid (97%); mp 76–78 °C; IR (KBr) ν 3055, 2927, 1712, 1612, 1487, 1467, 1355, 1265, 1205, 738 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) δ 2.21 (br s, 2H), 3.88 (t, 4H, *J*=6.5 Hz, NCH₂), 4.35–4.38 (m, 4H, NCH₂), 4.86 (s, 2H, CH), 5.17–5.30 (m, 4H, C= CH₂), 5.76–5.94 (m, 2H, allyl CH), 6.86–7.05 (m, 8H, ArH), 7.09–7.29 (m, 10H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 30.41 (CH₂), 43.12 (CH₂), 43.82 (CH₂), 44.81 (CH), 109.54 (=CH), 110.11 (=CH), 110.58 (quat-C), 118.27 (=CH), 125.35 (=CH), 127.17 (=CH), 127.35 (=CH), 127.71 (quat-C), 128.60 (=CH), 129.65 (quat-C), 132.21 (=CH), 137.15 (quat-C), 143.97 (quat-C), 176.47 (quat-C); HRMS (ESI) calcd for C₄₁H₃₆N₄O₂Na [M⁺+Na] 639.2738, found 639.2729.

4.3.5. 1,3-Bis[(1'-(prop-2-ynyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'on)-1-yl]propane (**11e**). Brown solid (95%); mp 161–163 °C; IR (KBr) ν 3285, 2929, 1715, 1611, 1487, 1466, 1351, 1164, 1010, 739 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 2.34 (br s, 2H), 3.44 (s, 2H, CCH), 4.24–4.31 (m, 4H, CH₂), 4.60–4.70 (m, 4H, NCH₂), 5.16 (s, 2H, CH), 6.92–6.99 (m, 2H, ArH), 7.05–7.29 (m, 10H, ArH), 7.43–7.49 (m, 6H, ArH); ¹³C NMR (100 MHz, DMSO-d₆) δ 28.91 (CH₂), 30.43 (CH₂), 42.97 (CH₂), 43.65 (CH), 74.34 (CH), 78.15 (quat-C), 109.18 (=CH), 109.29 (quat-C), 109.76 (=CH), 118.82 (=CH), 119.13 (=CH), 121.48 (=CH), 122.59 (=CH), 124.35 (=CH), 126.34 (quat-C), 127.58 (= CH), 127.94 (=CH), 129.18 (quat-C), 136.22 (quat-C), 142.12 (quat-C), 174.99 (quat-C); MS (ESI) *m*/*z* (%) 635 (M⁺+Na); Anal. Calcd (%) for C4₁H₃₂N₄O₂ (612.25): C, 80.37; H, 5.26; N, 9.14. Found: C, 80.26; H, 5.33; N, 8.99.

4.3.6. 1,4-Bis/(1'-methyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl]butane (11f). Colorless solid (97%); mp 168–170 °C; IR (KBr) v 3055, 2928, 1713, 1612, 1492, 1469, 1371, 1347, 1265, 1160, 1087, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.81 (br s, 4H, CH₂), 3.28 (s, 6H, NCH3), 3.99-4.00 (m, 4H, NCH2), 4.84 (s, 2H, CH), 6.91 (d, J=6.0 Hz, 4H, ArH), 6.98-7.01 (m, 4H, ArH), 7.16 (q, 4H, J=7.6 Hz, ArH), 7.20–7.27 (m, 4H, ArH), 7.31 (t, 2H, J=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 26.49 (NCH₃), 27.74 (CH₂), 44.36 (CH), 45.97 (CH₂), 108.06 (=CH), 109.50 (=CH), 109.65 (quat-C), 119.45 (=CH), 119.64 (=CH), 122.0 (=CH), 122.66 (=CH), 124.80 (=CH), 126.64 (=CH), 126.68 (quat-C), 128.18 (=CH), 129.20 (quat-C), 136.63 (quat-C), 144.27 (quat-C), 176.40 (quat-C); MS (EI) m/z (%) 579 (M+1, 38), 578 (M⁺, 94), 433 (13), 432 (25), 407 (11), 316 (20), 315 (16), 314 (32), 312 (18), 309 (10), 287 (28), 286 (100), 285 (28), 283 (18), 261 (90), 248 (38), 233 (31), 219 (36); HRMS (ESI) calcd for $C_{38}H_{34}N_4O_2Na [M^++Na] 601.2661$, found 601.2661.

4.3.7. 1,4-Bis[(1'-benzyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl]butane (**11g**). Light yellow solid (98%); mp 122–124 °C; IR (KBr) ν 3030, 2925, 1711, 1609, 1485, 1465, 1348, 1199, 1160, 1077, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.78–1.92 (m, 4H), 3.94 (br s, 4H, CH₂), 4.83–5.04 (m, 6H, NCH₂ and CH), 6.80 (d, 2H, *J*=7.6 Hz, ArH), 6.93–7.31 (m, 26H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 28.31 (CH₂), 44.70 (CH₂), 45.14 (CH), 46.52 (CH₂) 109.73 (=CH), 110.19 (=CH), 110.33 (quat-C), 120.02 (=CH), 120.38 (=CH), 122.74 (=CH), 123.3 (=CH), 125.65 (=CH), 127.57 (=CH), 128.32 (=CH), 128.76 (=CH), 129.41 (=CH), 129.83 (quat-C), 136.75 (quat-C), 137.28 (quat-C), 144.02 (quat-C), 177.10 (quat-C); MS (EI) m/z (%) 732 (M+2, 6), 731 (M+1, 26), 730 (M⁺, 72), 639 (12), 286 (19), 247 (11), 223 (17), 222 (10), 170 (13), 91 (100); HRMS (ESI⁺) calcd for C₅₀H₄₂N₄O₂Na [M⁺+Na] 753.3208, found 753.3212.

4.3.8. 1.4-Bis[(1'-(4-methylbenzyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl]butane (11h). Colorless solid (96%); mp 134–136 °C; IR (KBr) v 3054, 2927, 1712, 1612, 1486, 1467, 1355, 1265, 1180, 908, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.83 (br s, 4H), 2.30 (s, 6H, ArCH₃), 3.93–3.96 (m, 4H, CH₂), 4.85–5.00 (m, 6H, NCH₂ and CH), 6.82 (d, 2H, J=8.0 Hz, ArH), 6.91-6.97 (m, 6H, ArH), 7.09 (d, 4H, J=8.0 Hz, ArH), 7.13–7.25 (m, 14H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 21.19 (ArCH₃), 27.76 (CH₂), 43.87 (CH₂), 44.52 (CH), 46.00 (CH₂) 109.14 (=CH), 109.55 (=CH), 109.74 (quat-C), 119.43 (=CH), 119.84 (=CH), 122.04 (=CH), 122.66 (=CH), 124.91 (=CH), 126.88 (=CH), 126.93 (=CH), 126.98 (=CH), 127.67 (=CH), 128.10 (=CH), 129.21 (quat-C), 129.46 (=CH), 133.08 (quat-C), 136.70 (quat-C), 137.36 (quat-C), 143.44 (quat-C), 176.51 (quat-C); MS (EI) *m/z* (%) 758 (M⁺, 13), 653 (10), 539 (8), 435 (8), 434 (23), 352 (11), 247 (21), 231 (7), 219 (8), 218 (9), 170 (14), 106 (21), 104 (10); Anal. Calcd (%) for C₅₂H₄₆N₄O₂ (758.36): C, 82.29; H, 6.11; N, 7.38. Found: C, 82.47; H, 6.18; N, 7.47.

4.3.9. 1,4-Bis[(1'-allyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl] butane (**11i**). Colorless solid (95%); mp 178–180 °C; IR (KBr) ν 3055, 2928, 1709, 1610, 1485, 1465, 1353, 1266, 1206, 1186, 1159, 923, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.83 (br s, 4H), 4.00–4.01 (m, 4H), 4.41 (d, J=4.0 Hz, 4H), 4.88 (s, 2H, CH), 5.22–5.31 (m, 4H, C=CH₂), 5.83–5.91 (m, 2H, allyl CH), 6.91–6.93 (m, 4H), 7.00 (t, J=7.6 Hz, 4H), 7.16 (q, 4H, J=7.6 Hz, ArH), 7.21–7.30 (m, 6H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 27.76 (CH₂), 42.62 (CH₂), 44.36 (CH), 45.98 (CH₂), 108.98 (=CH), 109.54 (=CH), 109.65 (quat-C), 117.75 (=CH₂), 119.46 (=CH), 119.69 (=CH), 122.02 (=CH), 122.63 (=CH), 124.92 (=CH), 126.70 (=CH), 127.01 (quat-C), 128.08 (=CH), 129.14 (quat-C), 131.65 (=CH), 136.65 (quat-C), 143.44 (quat-C), 176.08 (quat-C); HRMS (ESI) calcd for C₄₂H₃₈N₄O₂Na [M⁺+Na] 653.2995, found 653.2992.

4.3.10. 1,4-Bis[(1'-(prop-2-ynyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'on)-1-yl]butane (**11***j*). Colorless solid (94%); mp 137–139 °C; IR (KBr) ν 3285 (CCH), 3055, 2929, 1715, 1611, 1487, 1466, 1351, 1164, 1010, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.83 (br s, 4H), 2.25–2.27 (m, 2H, CCH), 4.01–4.02 (m, 2H, CH₂), 4.56–4.58 (m, 4H, NCH₂), 4.89 (s, 2H, CH), 6.92 (d, 2H, *J*=7.6 Hz, ArH), 6.97–7.06 (m, 4H, ArH), 7.06–7.25 (m, 12H, ArH), 7.32 (t, 2H, *J*=7.4 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 28.20 (CH₂), 29.62 (CH₂), 44.83 (CH), 46.09 (CH₂), 74.19 (quat-C), 78.68 (CH), 109.85 (=CH), 110.43 (quat-C), 110.69 (=CH), 119.52 (=CH), 120.16 (=CH), 122.23 (=CH), 123.34 (=CH), 125.30 (=CH), 127.54 (quat-C), 143.28 (quat-C), 175.93 (quat-C); HRMS (ESI) calcd for C₄₂H₃₄N₄O₂Na [M⁺+Na] 649.2682, found: 649.2678.

4.3.11. 1,2-Bis[((1'-methyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl)methyl]benzene (**12a**). Light brown solid (97%); mp 108–110 °C; IR (KBr) ν 3052, 2929, 1710, 1611, 1492, 1468, 1372, 1344, 1248, 1123, 1085, 1017, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.29 (s, 6H, NCH₃), 4.86 (s, 2H, CH), 5.16 (s, 4H, ArCH₂N), 6.89–6.92 (m, 6H, ArH), 6.98–7.03 (m, 4H, ArH), 7.10–7.11 (m, 4H, ArH), 7.18 (d, 2H, J=7.2 Hz, ArH) 7.20–7.25 (m, 4H, ArH), 7.31 (t, 2H, J=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 26.54 (NCH₃), 44.46 (CH), 47.53 (CH₂), 108.14 (=CH), 110.83 (=CH), 110.53 (quat-C), 119.70 (=CH), 119.91 (=CH), 122.41 (=CH), 122.73 (=CH), 124.77 (=CH), 126.96 (=CH), 127.08 (quat-C), 128.26 (=CH), 128.30 (=CH), 128.42 (=CH), 129.13 (quat-C), 134.61 (quat-C), 137.06 (quat-C), 144.26 (quat-C), 176.35 (quat-C); MS (ESI) m/z (%) 649 (M⁺+Na); Anal. Calcd (%) for C₄₂H₃₄N₄O₂ (626.26): C, 80.49; H, 5.47; N, 8.94. Found: C, 80.68; H, 5.34; N, 8.99.

4.3.12. 1,2-Bis[((1'-benzyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl)methyl]benzene (**12b**). Light brown solid (96%); mp 126–128 °C; IR (KBr) ν 3054, 2923, 1710, 1611, 1486, 1465, 1347, 1177, 1098, 1008, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.87–5.04 (m, 6H, NCH₂ and CH), 5.15 (s, 4H, ArCH₂N), 6.81 (d, 2H, *J*=7.6 Hz, ArH), 6.89 (t, 2H, *J*=4 Hz, ArH), 6.91–6.97 (m, 5H, ArH), 7.07–7.28 (m, 19H, ArH), 7.32 (d, 4H, *J*=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 44.11 (*C*H₂), 45.57 (CH), 47.58 (CH₂), 109.16 (=CH), 109.86 (=CH), 110.63 (quat-C), 119.87 (=CH), 119.90 (=CH), 122.47 (=CH), 122.77 (=CH), 124.92 (=CH), 127.02 (=CH), 127.12 (=CH), 127.64 (=CH), 127.71 (=CH), 128.18 (=CH), 128.38 (=CH), 128.49 (=CH), 138.82 (quat-C), 129.12 (quat-C), 134.67 (quat-C); 136.07 (quat-C), 137.14 (quat-C), 143.38 (quat-C), 176.47 (quat-C); HRMS (ESI) calcd for C₅₄H₄₂N₄O₂Na [M⁺+Na] 801.3205, found 801.3210.

4.3.13. 1,2-Bis[((1'-(4-methylbenzyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl)methyl] benzene (**12c**). Brown solid (96%); mp 116–118 °C; IR (KBr) ν 3054, 2926, 1713, 1612, 1486, 1466, 1354, 1265, 1180, 1012, 908, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.28 (s, 6H, ArCH₃), 4.82–5.00 (m, 6H, NCH₂ and CH), 5.13 (s, 4H, ArCH₂N), 6.81 (d, 2H, J=7.6 Hz, ArH), 6.88 (q, 2H, J=4.4 Hz, ArH), 6.92–6.97 (m, 6H, ArH), 7.06–7.23 (m, 20H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 21.20 (ArCH₃), 43.89 (CH₂), 44.60 (CH), 47.58 (CH₂), 109.21 (=CH), 109.88 (=CH), 110.67 (quat-C), 119.91 (=CH), 122.46 (=CH), 122.72 (=CH), 124.89 (=CH), 127.05 (=CH), 127.15 (=CH), 127.18 (=CH), 127.66 (quat-C), 128.17 (=CH), 128.36 (=CH), 128.48 (=CH), 129.16 (=CH), 129.50 (=CH), 133.06 (quat-C), 134.70 (quat-C), 137.16 (quat-C), 137.37 (quat-C), 143.45 (quat-C), 176.46 (quat-C); MS (ESI) m/z 829 (M⁺+Na); Anal. Calcd (%) for C₅₆H₄₆N₄O₂ (806.36): C, 83.36; H, 5.75; N, 6.94. Found: C, 83.51; H, 5.68; N, 6.99.

4.3.14. 1,2-Bis[((1'-allyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl) methyl]benzene (**12d**). Brown solid (95%); mp 97–99 °C; IR (KBr) ν 3055, 2926, 1711, 1612, 1487, 1466, 1355, 1265, 1204, 1184, 929, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.39 (s, 4H, ArCH₂), 4.88 (s, 2H, CH), 5.06 (s, 4H), 5.17–5.30 (m, 4H), 5.78–5.92 (m, 2H, allyl CH), 6.80–7.27 (m, 22H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 4.315 (*C*H₂), 44.95 (CH), 47.95 (CH₂), 109.54 (=CH), 110.41 (=CH), 111.04 (quat-C), 118.24 (=CH₂), 120.24 (=CH), 120.39 (=CH), 122.89 (=CH), 123.15 (=CH), 125.37 (=CH), 127.58 (=CH), 128.59 (=CH), 128.63 (=CH),128.84 (=CH), 129.59 (quat-C), 132.13 (=CH), 135.15 (quat-C), 137.63 (quat-C), 143.95 (quat-C), 176.46 (quat-C); HRMS (ESI) calcd for C₄₆H₃₈N₄O₂Na [M⁺+Na] 701.2908, found 701.2910.

4.3.15. 1,2-Bis[((1'-(prop-2-ynyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl)methyl]benzene (**12e**). Brown solid (94%); mp 144–146 °C; IR (KBr) ν 3302 (CCH), 3055, 2924, 1714, 1613, 1487, 1467, 1351, 1265, 1182, 1012, 909, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 2H, CCH), 4.55–4.56 (m, 4H, NCH₂), 4.87 (s, 2H, CH), 5.09 (s, 4H, ArCH₂N), 6.81–7.35 (m, 22H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 30.08 (CH₂), 45.04 (CH), 48.13 (CH₂), 72.93 (quat-C), 77.72 (CH), 109.73 (=CH), 110.41 (=CH), 110.89 (quat-C), 120.33 (=CH), 120.53 (=CH), 123.04 (=CH), 123.69 (=CH), 125.54 (=CH), 127.52 (quat-C), 127.71 (=CH), 128.84 (=CH), 129.04 (=CH), 129.48 (quat-C), 135.18 (=CH), 137.55 (quat-C), 142.86 (quat-C), 175.90 (quat-C); MS (ESI) m/z 697 (M⁺+Na); Anal. Calcd (%) for C₄₆H₃₄N₄O₂ (674.27): C, 81.88; H, 5.08; N, 8.30. Found: C, 81.71; H, 5.01; N, 8.38.

4.3.16. 1,3-Bis[((1'-methyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl)methyl]benzene (**12f**). Colorless solid (97%); mp 144–146 °C; IR (KBr) ν 3055, 2935, 1713, 1612, 1469, 1347, 1265, 1171, 1125, 1087, 1018, 909, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.28 (s, 6H, NCH₃), 4.88 (s, 2H, CH), 5.19 (s, 4H, ArCH₂N), 6.91 (d, 2H, *J*=8 Hz, ArH), 6.94–7.03 (m, 8H, ArH), 7.11 (t, 2H, *J*=7.6 Hz, ArH), 7.17 (d, 2H, *J*=8.8 Hz, ArH), 7.20 (t, 2H, *J*=3.6 Hz, ArH), 7.24 (s, 2H, ArH), 7.28 (dd, 2H, *J*₁=8 Hz, *J*₂=3.2 Hz, ArH), 7.32 (d, 2H, *J*=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 27.15 (NCH₃), 44.85 (CH), 49.95 (CH₂), 108.72 (= CH), 110.51 (=CH), 110.79 (*quat*-C), 120.33 (=CH), 122.87 (=CH), 123.21 (=CH), 125.44 (=CH), 126.03 (=CH), 126.79 (=CH), 127.83 (=CH), 128.81 (=CH), 129.73 (*quat*-C), 176.90 (*quat*-C); MS (ESI) *m/z* 649 (M⁺+Na); Anal. Calcd (%) for C₄₂H₃₄N₄O₂ (626.27): C, 80.49; H, 5.47; N, 8.94. Found: C, 80.61; H, 5.38; N, 8.99.

4.3.17. 1,3-Bis[((1'-benzyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl)methyl]benzene (**12g**). Brown solid (96%); mp 132–134 °C; IR (KBr) ν 3055, 2926, 1713, 1612, 1486, 1466, 1356, 1265, 1179, 1011, 909, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.84–5.06 (m, 6H, NCH₂ and CH), 5.15 (s, 4H, ArCH₂N), 6.80 (d, 2H, *J*=7.6 Hz, ArH), 6.93–7.31 (m, 30H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 44.71 (CH₂), 45.14 (CH), 50.62 (CH₂), 109.73 (=CH), 110.59 (=CH), 110.92 (quat-C), 120.29 (=CH), 120.42 (=CH), 122.89 (=CH), 123.28 (=CH), 125.64 (=CH), 126.12 (=CH), 126.93 (=CH), 127.72 (quat-C), 128.02 (=CH), 128.29 (=CH), 128.83 (=CH), 129.41 (=CH), 130.04 (=CH), 136.72 (quat-C), 137.74 (quat-C), 138.73 (quat-C), 143.88 (quat-C), 177.15 (quat-C); MS (EI) *m/z* (%) 778 (M⁺, 2), 339 (15), 338 (95), 247 (100), 219 (16), 105 (29), 91 (64); HRMS (ESI) calcd for C₅₄H₄₂N₄O₂Na [M⁺+Na] 801.3208, found: 801.3213.

4.3.18. 1,3-Bis[((1'-(4-methylbenzyl)-1',3'-dihydro-1'H-[3.3']biindolyl-2'-on)-1-yl)methyl] benzene (12h). Light brown solid (97%); mp 124–126 °C; IR (KBr) v 3054, 2926, 1713, 1612, 1486, 1466, 1354, 1265, 1180, 1012, 908, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.27 (s, 6H, ArCH₃), 4.82–5.00 (m, 6H, NCH₂ and CH), 5.15 (s, 4H, ArCH₂N), 6.80-6.82 (m, 2H, ArH), 6.93-6.97 (m, 8H, ArH), 7.03-7.18 (m, 16H, ArH), 7.22 (d, 4H, J=6.8 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 21.23 (ArCH₃), 43.90 (CH₂), 44.60 (CH), 50.01 (CH₂), 109.20 (=CH), 110.00 (=CH), 110.32 (quat-C), 119.71 (=CH), 119.87 (=CH), 122.31 (=CH), 122.71 (=CH), 124.96 (quat-C), 125.49 (=CH), 126.27 (=CH), 127.14 (=CH), 127.44 (=CH), 127.52 (=CH), 127.71 (=CH), 128.17 (=CH), 129.20 (=CH), 129.42 (quat-C), 129.51 (quat-C), 133.10 (=CH), 137.13 (quat-C), 137.39 (quat-C), 138.10 (quat-C), 144.39 (quat-C), 176.51 (quat-C); MS (EI) m/z (%) 806 (M⁺, 7), 702 (9), 701 (17), 587 (20), 482 (22), 456 (12), 353 (12), 352 (62), 351 (33), 247 (100), 235 (10); Anal. Calcd (%) for C₅₆H₄₆N₄O₂ (806.36): C, 83.35; H, 5.75; N, 6.94. Found: C, 83.48; H, 5.69; N, 6.81.

4.3.19. 1,3-Bis[((1'-(prop-2-ynyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl)methyl]benzene (**12i**). Colorless solid (95%); mp 188–190 °C; IR (KBr) ν 3303, 3055, 2927, 1714, 1612, 1487, 1467, 1351, 1265, 1181, 1098, 909, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 2H, CCH), 4.56–4.57 (m, 4H, NCH₂CCH), 4.90 (s, 2H, CH), 5.18 (s, 4H, ArCH₂N), 6.77–7.37 (m, 22H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 30.05 (CH₂), 45.14 (CH), 50.48 (CH₂), 72.86 (quat-C), 77.75 (CH), 109.73 (=CH), 110.52 (=CH), 120.31 (=CH), 122.89 (=CH), 123.56 (=CH), 125.45 (=CH), 125.89 (=CH), 126.79 (=CH), 127.64 (quat-C), 127.86 (=CH), 128.82 (=CH), 129.47 (quat-C), 129.87 (= CH), 137.61 (quat-C), 138.63 (quat-C), 142.92 (quat-C), 175.91 (quat-C); MS (ESI) *m*/*z* 675 (M⁺+Na); Anal. Calcd (%) for C₄₆H₃₄N₄O₂ (674.27): C, 81.88; H, 5.08; N, 8.30. Found: C, 82.03; H, 5.13; N, 8.42.

4.3.20. 1,4-Bis[((1'-benzyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl)methyl]benzene (**12j**). Brown solid (95%); mp 138–140 °C; IR (KBr) ν 3055, 2927, 1712, 1612, 1487, 1466, 1354, 1265, 1179, 1013, 909, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.87–5.04 (m, 6H, NCH₂ and CH), 5.19 (s, 4H, ArCH₂N), 6.81 (d, 2H, *J*=7.6 Hz, ArH), 6.95 (t, 4H, *J*=7.6 Hz, ArH), 7.02–7.04 (m, 6H, ArH), 7.11 (t, 2H, *J*=7.6 Hz, ArH), 7.19 (d, 8H, *J*=8.0 Hz, ArH), 7.22–7.29 (m, 6H, ArH), 7.33 (d, 4H, *J*=6.8 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 44.11 (CH₂), 44.55 (CH), 49.79 (CH₂), 109.14 (=CH), 109.96 (=CH), 110.23 (*quat*-C), 119.69 (=CH), 119.69 (=CH), 122.29 (=CH), 122.75 (=CH), 125.00 (=CH), 127.09 (*quat*-C), 127.33 (=CH), 127.67 (=CH), 127.72 (=CH), 128.17 (=CH), 128.82 (=CH), 129.13 (*quat*-C), 136.10 (*quat*-C), 136.88 (*quat*-C), 137.05 (*quat*-C), 143.42 (*quat*-C), 176.50 (*quat*-C); MS (ESI) *m*/*z* (%) 779 (M+1, 48), 778 (M⁺, 100), 687 (19), 556 (17), 440 (29), 337 (38), 307 (25), 222 (40), 154 (83); Anal. Calcd (%) for C₅₄H₄₂N₄O₂ (778.37): C, 83.26; H, 5.43; N, 7.19. Found: C, 83.47; H, 5.34; N, 7.11.

4.3.21. 1,4-Bis[((1'-(4-methylbenzyl)-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1-yl)methyl]benzene (12k). Colorless solid (94%); mp 136–138 °C; IR (KBr) v 3054, 2926, 1713, 1612, 1515, 1486, 1466, 1354, 1265, 1179, 1014, 909, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 6H, ArCH₃), 4.83–5.00 (m, 6H, NCH₂ and CH), 5.19 (s, 4H, ArCH₂N), 6.82 (d, 2H, J=8.0 Hz, ArH), 6.94 (t, 4H, J=7.6 Hz, ArH), 7.03 (s, 6H, ArH), 7.09 (d, 6H, J=7.6 Hz, ArH), 7.17–7.19 (m, 8H, ArH), 7.23 (d, 4H, J=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 21.84 (ArCH₃), 44.54 (CH₂), 45.13 (CH), 50.41 (CH₂), 109.72 (=CH), 110.51 (=CH), 110.89 (quat-C), 120.21 (=CH), 120.43 (=CH), 122.85 (=CH), 123.21 (=CH), 125.53 (=CH), 127.72 (quat-C), 127.91 (=CH), 128.38 (=CH), 128.69 (=CH), 129.79 (quat-C), 130.12 (=CH), 133.73 (quat-C), 137.51 (quat-C), 137.71 (quat-C), 137.92 (quat-C), 144.12 (quat-C), 177.01 (*quat*-C); MS (ESI) *m*/*z* (%) 829 (M⁺+Na); Anal. Calcd (%) for C₅₆H₄₆N₄O₂ (806.36): C, 83.35; H, 5.75; N, 6.94. Found: C, 83.19; H, 5.81: N. 6.98.

4.3.22. 1,4-Bis[((1'-allyl-1',3'-dihydro-1'H-[3,3']biindolyl-2'-on)-1yl)methyl]benzene (**12l**). Colorless solid (94%); mp 123–125 °C; IR (KBr) ν 3054, 2924, 1711, 1613, 1482, 1469, 1265, 1200, 1189, 921, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 4H, ArCH₂), 4.87 (s, 2H, CH), 4.97–5.29 (m, 8H), 5.78–5.91 (m, 2H, allyl CH), 6.73–7.43 (m, 22H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 43.10 (CH₂), 44.93 (CH), 50.21 (CH₂), 109.49 (=CH), 110.46 (=CH), 110.70 (quat-C), 118.23 (=CH₂), 120.19 (=CH), 122.72 (=CH), 123.13 (=CH), 125.45 (=CH), 127.76 (=CH), 128.62 (=CH), 129.61 (quat-C), 132.17 (=CH), 137.351 (quat-C), 137.52 (quat-C), 143.98 (quat-C), 176.49 (quat-C); HRMS (ESI) for C₄₆H₃₈N₄O₂Na [M⁺+Na] 701.2973, found: 701.2965.

4.4. Synthesis of macrocycles 13a and 13b

A solution of bis-indole **6a** (100 mg, 0.37 mmol), bis-diazoamide **7a** (143 mg, 0.40 mmol), and rhodium(II) acetate (1.6 mg) in dichloromethane (50 mL) was stirred at room temperature for 1 h. The reaction mixture was concentrated in vacuo and purified on silica (hexane/acetone, 65:35) to yield **13a** and **13b** as a mixture of diastereomers (ratio 58:42) in 50% yield.

4.4.1. Macrocycle 13a. Colorless solid; mp 255–257 °C; IR (KBr) v 3052, 2933, 1700, 1609, 1484, 1467, 1359, 1340, 1184, 759 cm⁻¹; ¹H NMR (200 MHz, CD₂Cl₂) δ=2.23 (t, 2H, J=6.8 Hz, CH₂), 2.38 (t, 2H, J=6.5 Hz, CH₂), 3.50–3.67 (m, 4H), 4.06–4.256 (m, 4H), 4.87 (s, 2H, CH), 6.80 (s, 2H, ArH), 6.93-7.01 (m, 4H, ArH), 7.16-7.40 (m, 10H, ArH), 7.79–7.82 (m, 2H, ArH); 13 C NMR (50.3 MHz, CD₂Cl₂) δ 28.74 (CH₂), 29.53 (CH₂), 38.43 (CH₂), 43.72 (CH, observed in DEPT-90 NMR) 109.10 (=CH), 110.82 (=CH), 112.00 (quat-C), 119.45 (=CH), 120.46 (=CH), 122.67 (=CH), 123.14 (=CH), 125.30 (=CH), 127.75 (=CH), 128.65 (=CH), 129.84 (quat-C), 131.65 (quat-C), 136.9 (quat-C), 144.31 (quat-C), 177.90 (quat-C); HRMS (ESI) calcd for C₃₈H₃₂N₄O₂Na [M⁺+Na] 599.2423, found 599.2417. Crystal data for compound 13a: (CCDC-832919) Colorless plate crystal. C₃₈H₃₂N₄O₂, M=576.68, $0.15 \times 0.12 \times 0.08$ mm³, monoclinic, space group C2/cwith a=43.37(2) Å, b=8.517(4) Å, c=16.561(7) Å, $\alpha=90^{\circ}$, $\beta = 104.126(15)^{\circ}$, $\gamma = 90^{\circ}$, V = 5932(4) Å³, T = 273(2) K, $R_1 = 0.0641$,

 wR_2 =0.1085 on observed data, z=8, D_{calcd} =1.291 g cm⁻³, F(000)= 2432, Absorption coefficient=0.081 mm⁻¹, λ =0.71073 Å, 14,489 reflections were collected on a Smart Apex CCD single-crystal diffractometer, 5219 observed reflections ($I \ge 2\sigma$ (I)). The largest difference peak and hole=0.182 and -0.148 e Å⁻³, respectively.

4.4.2. Macrocycle **13b**. Colorless solid: mp 220–222 °C: IR (KBr) v 3050, 2938, 1694, 1611, 1487, 1466, 1368, 1209, 1125, 743 cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6) $\delta = 1.25 - 1.27$ (m, 1H), 1.73 - 1.76 (m, 1H), 2.04–2.09 (m, 2H), 3.66–3.97 (overlapping m, 8H), 5.02 (s, 2H, CH), 6.37 (s, 2H, ArH), 7.05 (t, 2H, J=6.8 Hz, ArH), 7.13-7.34 (m, 10H, ArH), 7.51 (d, 2H, J=8.1 Hz, ArH), 7.93 (d, 2H, J=7.7 Hz, ArH); ¹³C NMR (50.3 MHz, DMSO-*d*₆) δ 26.60 (CH₂), 32.13 (CH₂), 37.04 (CH₂), 42.50 (CH₂), 43.00 (CH), 109.22 (=CH), 110.21 (=CH), 113.23 (quat-C), 119.69 (=CH), 119.87 (=CH), 122.39 (=CH), 122.83 (=CH), 123.97 (=CH), 124.90 (=CH), 127.51 (quat-C), 128.46 (=CH), 130.74 (quat-C), 136.73 (quat-C), 142.95 (quat-C), 176.78 (quat-C); HRMS (ESI) calcd for $C_{38}H_{32}N_4O_2Na$ [M⁺+Na] 599.2423, found 599.2439. Crystal data for compound 13b: (CCDC-832920) Colorless plate crystal. C₃₉H₃₂Cl₃N₄O₂, 695.04, $0.14 \times 0.10 \times 0.06$ mm³, Monoclinic, space group *P* with a=8.6282(9) Å, b=17.7685(19) Å, c=21.078(2) Å, $\alpha=90^{\circ}$, β =95.647(2)°, γ =90°, V=3215.8(6) Å³, T=273(2) K, R₁=0.1173, wR_2 =0.3723 on observed data, z=4, D_{calcd} =1.436 g cm⁻³, F(000)= 1444, Absorption coefficient=0.329 mm⁻¹, λ =0.71073 Å, 12,773 reflections were collected on a smart apex CCD single-crystal diffractometer, 4200 observed reflections ($I > 2\sigma$ (I)). The largest difference peak and hole=0.731 and -1.852 e Å⁻³, respectively.

4.5. Synthesis of macrocycles 14a and 14b

A solution of bis-indole **7b** (100 mg, 0.37 mmol), bis-diazoamide **6a** (136 mg, 0.40 mmol), and rhodium(II) acetate (1.6 mg) in dichloromethane (50 mL) was stirred at room temperature for 45 min. The reaction mixture was concentrated in vacuo and purified on silica (hexane/acetone, 65:35) to furnish **14a** and **14b** as a mixture of diastereomers (ratio 53:47) in 52% yield.

4.5.1. *Macrocycle* **14a**. Colorless solid; mp 202–203 °C; IR (neat) ν 3053, 2940, 1708, 1611, 1466, 1357, 1264, 1175, 1086, 1018, 728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =1.36–1.42 (m, 2H, CH₂), 1.51–1.55 (m, 2H, CH₂), 1.86–1.89 (m, 2H, CH₂), 3.35–3.41 (m, 2H, N–CH₂), 3.55–3.59 (m, 2H, N–CH₂), 3.85–3.90 (m, 2H, OCH₂), 4.07–4.13 (m, 2H, OCH₂), 4.75 (s, 2H, CH), 6.25 (s, 2H, ArH), 6.80 (d, 2H, *J*=8.0 Hz, ArH,), 6.93 (t, 2H, *J*=7.6 Hz, ArH,), 7.08–7.23 (m, 10H, ArH), 7.75 (d, 2H, *J*=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 25.19 (CH₂), 27.76 (CH₂), 37.45 (CH₂), 43.17 (CH, observed in DEPT-135 NMR), 45.90 (CH₂), 108.27 (=CH), 109.31 (=CH), 111.26 (*quat*-C), 119.56 (=CH), 119.72 (=CH), 122.05 (=CH), 122.58 (=CH), 125.06 (=CH), 125.33 (=CH), 128.0 (*quat*-C), 176.76 (*quat*-C); HRMS (ESI) calcd for C₃₉H₃₄N₄O₂Na [M⁺+Na] 613.2579, found 613.2563.

4.5.2. *Macrocycle* **14b**. Colorless solid; mp 225–227 °C; IR (neat) ν 3054, 2933, 1708, 1610, 1465, 1356, 1264, 1175, 1086, 1021, 729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =1.43–1.60 (m, 2H, CH₂), 1.92 (br s, 2H, CH₂), 1.93–1.95 (m, 2H, CH₂), 3.42–3.49 (m, 2H, N–CH₂), 3.61–3.64 (m, 2H, N–CH₂), 3.91–3.99 (m, 2H, OCH₂), 4.13–4.17 (m, 2H, OCH₂), 4.81 (s, 2H, CH), 6.32 (s, 2H, ArH), 6.87 (d, 2H, *J*=8.0 Hz, ArH), 6.97–7.01 (m, 2H, ArH), 7.14–7.29 (m, 10H, ArH), 7.82 (d, 2H, *J*=7.2 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 25.17 (CH₂), 27.76 (CH₂), 37.43 (CH₂), 43.17 (CH, observed in DEPT-135 NMR), 45.90 (CH₂), 108.25 (=CH), 109.28 (=CH), 111.26 (*quat*-C), 119.55 (=CH), 119.71 (=CH), 122.03 (=CH), 122.56 (=CH), 129.35 (*quat*-C), 125.30 (=CH), 128.00 (*quat*-C), 128.37 (=CH), 129.35 (*quat*-C),

135.97 (*quat*-C), 143.39 (*quat*-C), 176.74 (*quat*-C); HRMS (ESI) calcd for C₃₉H₃₄N₄O₂Na [M⁺+Na] 613.2579, found 613.2573.

4.6. Synthesis of macrocycles 15a and 15b

A solution of bis-indole **7b** (100 mg, 0.37 mmol), bis-diazoamide **6b** (140 mg, 0.40 mmol), and rhodium(II) acetate (1.6 mg) in dichloromethane (50 mL) was stirred at room temperature for 45 min. The reaction mixture was concentrated in vacuo and purified on silica (hexane/acetone, 65:35) to obtain **15a** and **15b** as a mixture of diastereomers (ratio 51:49) in 55% yield.

4.6.1. *Macrocycle* **15a**. Colorless solid; mp 150–154 °C; IR (neat) ν 3050, 2932, 1702, 1609, 1463, 1349, 1237, 1154, 1091, 1014, 870 cm⁻¹; ¹H NMR (400 MHz, CD₂Cl₂) δ =1.64–1.66 (m, 8H, CH₂), 3.28–3.42 (m, 2H, N–CH₂), 3.56–3.60 (m, 2H, N–CH₂), 3.83–3.89 (m, 2H, OCH₂), 4.07–4.10 (m, 2H, OCH₂), 4.69 (s, 2H, CH), 6.21 (s, 2H, ArH), 6.74–6.79 (m, 3H, ArH), 6.92–6.98 (m, 3H, ArH) 7.12–7.15 (m, 3H, ArH) 7.20–7.25 (m, 7H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 24.72 (CH₂), 28.02 (CH₂), 39.69 (CH₂), 43.41 (CH, observed in DEPT-135 NMR), 46.18 (CH₂), 108.78 (=CH), 109.23 (=CH), 109.83 (*quat*-C), 119.65 (=CH), 120.14 (=CH), 122.14 (=CH), 122.50 (=CH), 124.80 (=CH), 125.14 (=CH), 128.21 (=CH), 128.42 (*quat*-C), 136.09 (*quat*-C), 143.59 (*quat*-C), 176.89 (*quat*-C); HRMS (ESI) calcd for C₄₀H₃₆N₄O₂Na [M⁺+Na] 627.2771, found 627.2780.

4.6.2. *Macrocycle* **15b**. Colorless solid; mp 220–224 °C; IR (neat) ν 3052, 2935, 1704, 1610, 1486, 1464, 1352, 1264, 1155, 1091, 1014, 876 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =1.54–1.65 (m, 8H, CH₂), 3.26–3.30 (m, 2H, N–CH₂), 3.57–3.60 (m, 2H, N–CH₂), 4.11–4.18 (m, 4H, OCH₂), 4.79 (s, 2H, CH), 6.35 (s, 2H, ArH), 6.79 (d, 2H, *J*=7.6 Hz, ArH), 6.98 (t, 2H, *J*=7.2 Hz, ArH), 7.09–7.86 (m, 10H, ArH), 7.88 (d, 2H, *J*=7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 24.73 (CH₂), 27.98 (CH₂), 39.70 (CH₂), 43.41 (CH, observed in DEPT-135 NMR), 46.16 (CH₂), 108.74 (=CH), 109.20 (=CH), 109.92 (*quat*-C), 119.64 (=CH), 120.13 (=CH), 122.13 (=CH), 122.48 (=CH), 124.79 (=CH), 125.12 (=CH), 128.41 (=CH), 128.40 (*quat*-C), 136.12 (*quat*-C), 143.59 (*quat*-C), 175.88 (*quat*-C); HRMS (ESI) calcd for C₄₀H₃₆N₄O₂Na [M⁺+Na] 627.2771, found 627.2766.

4.7. Synthesis of macrocycles 16a and 16b

A solution of bis-indole **7c** (100 mg, 0.30 mmol), bis-diazoamide **6a** (120 mg, 0.33 mmol), and rhodium(II) acetate (1.3 mg) in dichloromethane (50 mL) was stirred at room temperature for 1 h. The reaction mixture was concentrated in vacuo and purified on silica (hexane/acetone, 65:35) to yield **16a** and **16b** as a mixture of diastereomers (ratio 27:73) in 63% yield.

4.7.1. *Macrocycle* **16a**. Colorless solid; mp 210–212 °C; IR (neat) ν 3055, 2929, 1707, 1610, 1485, 1463, 1356, 1179, 729 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 2.05–2.10 (m, 2H), 3.50–3.56 (m, 2H), 3.87–3.94 (m, 2H), 4.71 (d, 2H, *J*=16.0 Hz, NCH₂), 4.73 (s, 2H, CH), 5.00 (d, 2H, *J*=16.0 Hz, NCH₂), 6.77 (s, 1H, ArH), 6.83 (d, 2H, *J*=7.6 Hz, ArH), 6.91–6.94 (m, 3H, ArH), 7.02–7.23 (m, 14H, ArH), 7.40 (d, 2H, *J*=8.0 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 26 (CH₂), 37.97 (CH₂), 43.3 (CH), 48.1 (CH₂), 108.1 (=CH), 109.7 (=CH), 111.5 (*quat*-C), 118.9 (=CH), 119.9 (=CH), 122.0 (=CH), 122.6 (=CH), 125.0 (=CH), 126.7 (=CH), 128.0 (*quat*-C), 128.1 (=CH), 128.3 (=CH), 128.8 (=CH), 130.0 (*quat*-C), 134.5 (*quat*-C), 136.5 (*quat*-C), 143.4 (*quat*-C), 177.5 (*quat*-C); MS (EI) *m/z* (%) 639 (M+1, 7), 638 (M⁺, 17), 421 (6), 306 (5), 220 (6), 219 (25), 218 (74), 217 (100), 189 (5), 117 (11); HRMS (ESI⁺) calcd for C₄₃H₃₄N₄O₂Na [M⁺+Na] 661.2682, found 661.2674.

4.7.2. *Macrocycle* **16b**. Colorless solid; mp 216–218 °C; IR (neat) *ν* 3057, 3019, 2934, 1708, 1612, 1486, 1466, 1359, 1265, 1216, 909,

757 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 1.87–1.94 (m, 1H, CH₂), 2.60-2.67 (m, 1H, CH₂), 3.42-3.57 (m, 2H), 3.99-4.13 (m, 2H), 4.85 (s, 2H, CH), 4.93 (d, 2H, J=15.8 Hz, NCH₂), 5.03 (d, 2H, J=15.8 Hz, NCH₂), 6.82–7.23 (m, 20H, ArH), 7.42 (d, 2H, J=7.8 Hz, ArH); ¹³C NMR (50 MHz, CDCl₃) δ 25.6 (CH₂), 37.8 (CH₂), 43.7 (CH), 47.4 (CH₂), 107.7 (=CH), 109.5 (=CH), 111.1 (quat-C), 119.2 (=CH), 119.6 (=CH), 121.9 (=CH), 122.2 (=CH), 124.9 (=CH), 126.6 (=CH), 127.6 (quat-C), 127.8 (=CH), 128.3 (=CH), 128.9 (=CH), 129.9 (quat-C), 134.4 (quat-C), 136.9 (quat-C), 143.2 (quat-C), 176.5 (quat-C); MS (EI) m/z (%) 639 (M+1, 7), 638 (M⁺, 17), 421 (6), 306 (5), 220 (6), 219 (25), 218 (74), 217 (100), 189 (5), 117 (11); HRMS (ESI) calcd for C₄₃H₃₄N₄O₂Na [M⁺+Na] 661.2682, found 661.2670. Crystal data for plate crystal. compound 16b: (CCDC-832921) Colorless C₄₅H₃₄Cl₆N₄O₂, 875.46, 0.14×0.10×0.08 mm³, Triclinic, space group P-1 with a=10.9507(19) Å, b=12.664(2) Å, c=15.465(3) Å, $\alpha = 97.505(4)^{\circ}, \beta = 92.949(3)^{\circ}, \gamma = 98.717(4)^{\circ}, V = 2096.1(6) Å^3,$ T=273(2) K, $R_1=0.1280$, $wR_2=0.3429$ on observed data, z=2, $\text{cm}^{-\tilde{3}}$. $D_{calcd} = 1.387$ *F*(000)=900, g Absorption coefficient=0.453 mm⁻¹, λ =0.71073 Å, 8409 reflections were collected on a smart apex CCD single-crystal diffractometer, 5440 observed reflections ($I \ge 2\sigma$ (I)). The largest difference peak and hole=0.710 and -0.775 e Å⁻³, respectively.

4.8. Synthesis of macrocycles 17a and 17b

A solution of bis-indole 7d (93 mg, 0.28 mmol), bis-diazoamide 6a (110 mg, 0.31 mmol), and rhodium(II) acetate (1.2 mg) in dichloromethane (50 mL) was stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure and purified on silica (hexane/acetone, 65:35) to furnish 17a (32 mg) and 17b (64 mg) (diastereomeric ratio 36:64) in 54% yield.

4.8.1. Macrocycle 17a. Colorless solid; mp 296–298 °C; IR (KBr) v 3055, 2927, 1710, 1612, 1487, 1466, 1360, 1265, 1180, 1180, 1021, 738 cm $^{-1};\,^{1}$ H NMR (200 MHz, CDCl_3) δ 1.68 – 1.95 (m, 1H), 2.11 – 2.25 (m, 1H), 3.48-3.66 (m, 2H), 3.99-4.20 (m, 2H), 4.85 (d, 2H, J=14.5 Hz, NCH₂), 4.93 (s, 2H, CH), 5.15 (d, 2H, J=14.5 Hz, NCH₂), 6.60–6.76 (m, 2H, ArH), 6.84–7.00 (m, 4H, ArH), 7.16–7.39 (m, 14H, ArH), 7.71 (d, 2H, J=6.5 Hz, ArH); ¹³C NMR (50.3 MHz, CDCl₃), δ 25.9 (CH₂), 37.7 (CH₂), 43.2 (CH), 50.0 (CH₂), 108.0 (=CH), 109.7 (=CH), 111.0 (quat-C), 118.8 (=CH), 119.6 (=CH), 121.9 (=CH), 122.4 (=CH), 124.6 (=CH), 126.1 (=CH), 126.4 (=CH), 127.2 (=CH), 127.9 (=CH), 128.7 (=CH), 128.5 (quat-C), 130.1 (quat-C), 136.6 (quat-C), 137.9 (quat-C), 142.9 (quat-C), 176.6 (quat-C); HRMS (ESI) calcd for C₄₃H₃₄N₄O₂Na [M⁺+Na] 661.2682, found: 661.2665.

4.8.2. Macrocycle 17b. Colorless solid; mp 290–292 °C; IR (KBr) v 3048, 2921, 1706, 1617, 1481, 1461, 1355, 1261, 1173, 1019, 735 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 1.59–1.83 (m, 1H), 2.01–2.17 (m, 1H), 3.35-3.60 (m, 2H), 3.90-4.16 (m, 2H), 4.92 (d, 2H, J=14.5 Hz, NCH₂), 5.12 (s, 2H, CH), 5.25 (d, 2H, *J*=14.5 Hz, NCH₂), 6.65-7.82 (m, 2H, ArH), 6.90-7.08 (m, 4H, ArH), 7.23-7.46 (m, 14H, ArH), 7.75 (d, 2H, J=6.5 Hz, ArH); ¹³C NMR (50.3 MHz, CDCl₃), δ 25.5 (CH₂), 36.7 (CH₂), 43.4 (CH), 49.5 (CH₂), 107.8 (=CH), 109.4 (=CH), 111.2 (quat-C), 118.9 (=CH), 119.4 (=CH), 122.0 (=CH), 122.4 (=CH), 124.8 (= CH), 125.1 (=CH), 126.1 (=CH), 127.0 (=CH), 127.7 (=CH), 128.1 (quat-C), 130.2 (quat-C), 136.8 (quat-C), 138.1 (quat-C), 142.6 (quat-C), 176.2 (quat-C); HRMS (ESI) calcd for $C_{43}H_{34}N_4O_2Na$ [M⁺+Na] 661.2682, found: 661.2671. Crystal data for compound 17b: (CCDC-832922) Colorless plate crystal. $C_{44}H_{36}Cl_2N_4O_2,\ 722.22,\ 0.18\times0.10\times0.07\ mm^3,\ Orthorhombic,\ space\ group\ Pnma\ with$ a=21.794(3) Å, b=18.955(2) Å, c=8.8502(10) Å, $\alpha=90^{\circ}$, $\beta=90^{\circ}$, $\gamma = 90^{\circ}$, V = 3656.1(7) Å³, T = 273(2) K, $R_1 = 0.0778$, $wR_2 = 0.1577$ on observed data, z=4, $D_{calcd}=1.315$ g cm⁻³, F(000)=1512, Absorption coefficient=0.222 mm⁻¹, λ =0.71073 Å, 17,541 reflections were collected on a smart apex CCD single-crystal diffractometer, 3325 observed reflections ($I \ge 2\sigma$ (I)). The largest difference peak and hole=0.247 and $-0.220 \text{ e} \text{ Å}^{-3}$, respectively.

4.9. Synthesis of macrocycle 18

A solution of bis-indole 7c (90 mg, 0.27 mmol), bis-diazoamide 6c (105 mg, 0.30 mmol), and rhodium(II) acetate (1.2 mg) in dichloromethane (50 mL) was stirred at room temperature for 1 h. The reaction mixture was concentrated in vacuo and purified on silica (hexane/acetone, 60:35) to obtain the product 18 (50%) as an inseparable mixture of diastereomers (diastereomeric ratio 56:44). Colorless solid; IR (KBr) v 3055, 2987, 1711, 1611, 1486, 1466, 1422, 1358, 1265, 1180, 1187, 1016, 896, 740 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 4.43–4.73 (m, 2H), 4.90 (s, 2H, CH), 4.98–5.28 (m, 6H), 6.85-7.04 (m, 9H, ArH), 7.08-7.34 (m, 15H, ArH), 7.52-7.70 (m, 2H, ArH); ¹³C NMR (50.3 MHz, CDCl₃, The * symbol represents signals due to the minor amount of diastereomer) δ 44.8 (CH₂), 45.0 (CH), 45.2* (CH₂), 48.6 (CH₂), 48.8* (CH₂), 108.9* (=CH), 109.0 (=CH), 110.3 (=CH), 110.5* (=CH), 110.8 (quat-C), 119.7 (=CH), 120.4 (= CH), 122.7 (=CH), 123.1* (=CH), 123.2 (=CH), 125.4* (=CH), 125.5 (=CH), 127.5 (=CH), 128.1 (=CH)*, 128.2 (=CH), 128.5 (=CH), 128.6* (=CH), 129.0* (=CH), 129.1 (=CH), 129.5 (=CH), 129.7* (= CH), 130.5 (quat-C), 130.6* (quat-C), 131.1 (quat-C), 135.4 (quat-C), 135.6* (quat-C), 137.0 (quat-C), 137.4* (quat-C), 137.8 (quat-C), 143.7 (quat-C), 177.3 (quat-C); MS (FAB) m/z 700 (M⁺); HRMS(ESI) calcd for C₄₈H₃₆N₄O₂Na (M⁺+Na) 723.2738, found 723.2722.

Acknowledgements

This research was supported by Department of Science and Technology (DST), New Delhi. C.G. and T.K. thank CSIR and UGC-RFSMS, respectively, for a research fellowship. We thank DST, New Delhi for providing 400 MHz NMR facility under FIST program.

Supplementary data

Single-crystal X-ray analyses and packing diagram of compounds 13a,b,16b,17b. Supplementary data related to this article can be found online at doi:10.1016/j.tet.2011.11.073.

References and notes

- 1. (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; John Wiley: New York, NY, 1998; (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577–6605.
- (a) Reissig, H. H.; Zimmer, R. Chem. Rev. **2003**, 103, 1151–1196; (b) Muthusamy, S.: Srinivasan, P. Tetrahedron Lett. 2006, 47, 6297–6300.
- (a) Caballero, A.; Díaz-Requejo, M. M.; Trofimenko, S.; Belderrain, T. R.; Pérez, P. J. J. Org. Chem. **2005**, 70, 6101–6104; (b) Hahn, N. D.; Nieger, M.; Dötz, K. H. J. 3. Organomet. Chem. 2004, 689, 2662-2673; (c) Hughes, C. C.; Kennedy-Smith, J. J.; Trauner, D. Org. Lett. 2003, 5, 4113-4115.
- Yadav, J. S.; Reddy, B. V. S.; Satheesh, G. Tetrahedron Lett. 2003, 44, 8331–8334.
 Yang, J.; Song, H.; Xiao, X.; Wang, J.; Qin, Y. Org. Lett. 2006, 8, 2187–2190.
- Rotzoll, S.; Appel, B.; Langer, P. Tetrahedron Lett. 2005, 46, 4057-4059. 6.
- Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447-457. 7
- Salim, M.; Capretta, A. Tetrahedron 2000, 56, 8063-8069.
- (a) Wenkert, E.; Alonso, M. E.; Gottlieb, H. E.; Sanchez, E. L. J. Org. Chem. 1977. 9 42, 3945–3949; (b) Welstead, W. J.; Stauffer, H. F., Jr.; Sancilio, L. F., Jr. J. Med. Chem. 1974, 17, 544-547.
- 10 Muthusamy, S.; Azhagan, D.; Gnanaprakasam, B.; Suresh, E. Tetrahedron Lett. 2010, 51, 5662-5665.
- 11. Muthusamy, S.; Gunanathan, C.; Babu, S. A.; Suresh, E.; Dastidar, P. Chem. Commun. 2002, 824-825.
- 12. (a) Rajakumar, P.; Swaroop, M. G. Tetrahedron 2004, 45, 6165-6167; (b) Bodwell, G. J.; Li, J. Org. Lett. 2002, 4, 127–130; (c) Bodwell, G. J.; Li, J. Angew. Chem. 2002, 41, 3261-3262; (d) Ortner, B.; Waibel, R.; Gmeiner, P. Angew. Chem. 2001, 40, 1283-1285; (e) Bodwell, G. J.; Li, J.; Miller, D. O. Tetrahedron 1999, 55, 12939-12956; (f) Breitenbach, J.; Boosfeld, J.; Vögtle, F. In Comprehensive Supramolecular Chemistry; Vögtle, F., Ed.; Pergamon: New York, NY, 1996; Vol. 2; (g) Vögtle, F. Cyclopropane Chemistry; Wiley: Chichester, UK, 1993.
- 13. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; Wiley: New York, NY, 2000.
- 14. (a) Muthusamy, S.; Krishnamurthi, J.; Suresh, E. Chem. Commun. 2007, 861–863; (b) Muthusamy, S.; Srinivasan, P. Tetrahedron 2009, 65, 1567-1573; (c)

Muthusamy, S.; Srinivasan, P. *Tetrahedron Lett.* **2005**, *46*, 1063–1066; (d) Muthusamy, S.; Srinivasan, P. *Tetrahedron Lett.* **2009**, *50*, 3794–3797.

- 15. Yeung, K. S.; Paterson, I. Chem. Rev. **2005**, 105, 4237–4313.
- (a) Gleiter, R.; Hopf, H. In Modern Cyclophane Chemistry; Wiley-VCH: Weinheim, 2004;
 (b) Diederich, F. Cyclophanes In Monographes in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, 1994.
- (a) Richard, J.; Pamart, M.; Hucher, N.; Jabin, I. *Tetrahedron Lett.* **2008**, 49, 3848–3852; (b) Conejo-Garcia, A.; Campos, J. M.; Sanchez-Martin, R. M.; Gallo, M. A.; Espinosa, A. *J. Med. Chem.* **2003**, 46, 3754–3757; (c) Bruno, G.; Cafeo, G.; Kohnke, F. H.; Nicolo, F. *Tetrahedron* **2007**, 63, 10003–10010.
- Diederich, F. Cyclophanes; The Royal Society of Chemistry: Cambridge, 1991; 313.
- Wessjohann, L. A.; Ruijter, E.; Garcia-Rivera, O.; Brandt, W. Mol. Diversity 2005, 9, 171–186.

- (a) Viehe, H. G. Chemistry of Acetylenes; Marcel Dekker: New York, NY, 1969; 597–647; (b) Trost, B. M.; Matsubara, S.; Catingi, J. J. Am. Chem. Soc. 1989, 111, 8745–8746.
- CCDC-832919 (for 13a), 832920 (for 13b), 832921 (for 16b), and 832922 (for 17b) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 22. See Supplementary data for more details.
- 23. Muthusamy, S.; Gunanathan, C.; Nethaji, M. J. Org. Chem. 2004, 69, 5630–5637.
- 24. Bruker, A. X. S. *SMART*; Bruker AXS: Madison, WI, USA, 1998.
- 25. Bruker, A. X. S. *SMART*; Bruker AXS: Madison, WI, USA, 1999.
- 26. Blessing, R. Acta Crystallogr., Sect. A **1995**, 51, 33–38.
- Sheldrick, G. M. SHEIXL97, Program for the Solution of X-ray Crystal Structures; University of Gottingen: Germany, 1997.
- 28. Bloxham, J.; Moody, C. J.; Slawin, M. Z. Tetrahedron 2002, 58, 3709-3720.