Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2014, **12**, 2702

Received 6th February 2014,

Accepted 11th March 2014

DOI: 10.1039/c4ob00274a

Diastereoselective Ireland–Claisen rearrangements of substituted allyl β -amino esters: applications in the asymmetric synthesis of C(5)-substituted transpentacins†

Stephen G. Davies,* Ai M. Fletcher, James A. Lee, Paul M. Roberts, Myriam Y. Souleymanou, James E. Thomson and Charlotte M. Zammit

The diastereoselective Ireland–Claisen rearrangement of a range of substituted allyl β -amino esters gave the corresponding enantiopure α -substituted- β -amino esters with good diastereoselectivity. The application of this methodology in the asymmetric synthesis of a range of C(5)-substituted 1,2-*anti*-1,5-*syn*transpentacins was demonstrated by the rearrangement of a range of β -amino esters derived from sorbic acid, followed by esterification, ring-closing metathesis, hydrogenolytic deprotection/reduction, and hydrolysis, which gave the C(5)-substituted transpentacins in only 9 steps from commercially available starting materials.

www.rsc.org/obc starting materials. Introduction Since its introduction in 1972, the Ireland–Claisen rearrangement¹ of allyl esters (as the corresponding silyl ketene acetals) has shown considerable utility in synthesis. Its popularity is

has shown considerable utility in synthesis. Its popularity is principally due to the high levels of diastereoselectivity which are typically observed during this reaction, in which two adjacent stereogenic centers are produced in a single step. This methodology has been extensively reviewed,² and several asymmetric variants have been developed.^{3,4}

Previous investigations from our laboratory have demonstrated that the conjugate addition of enantiopure secondary lithium amides (derived from α -methylbenzylamines) to α,β -unsaturated esters represents a general and efficient synthetic protocol for the synthesis of β -amino esters and their derivatives.⁵ This methodology has found numerous applications, including the total syntheses of natural products,⁶ molecular recognition phenomena⁷ and resolution protocols,⁸ and has been reviewed.⁹ As part of our ongoing research programme to extend the scope and utility of this methodology, we envisaged that the diastereoselective Ireland–Claisen rearrangement of enantiopure allyl β -amino esters, prepared using this methodology, would create up to two new stereogenic centres within the β -amino acid scaffold and provide access to substrates that are not accessible by enolate alkylation. It was envisaged that the requisite substrates **3** could either be prepared by conjugate addition of lithium amide (*S*)-**6** to an α , β -unsaturated allyl ester **4**, or by transesterification of the known *tert*-butyl β -amino esters **2** (Fig. 1). Part of this work has been communicated previously.¹⁰

Results and discussion

Ireland–Claisen rearrangement of allyl β -amino esters: model studies

Allyl β -amino esters 10, 11 and 13 were selected as model substrates with which to optimise the conditions for an Ireland-Claisen rearrangement. Unfortunately, attempted conjugate addition of lithium amide reagents to simple allyl a, β-unsaturated esters [*i.e.*, those lacking substitution at the C(1') position] resulted the competitive formation of amide products resulting from 1,2-addition of the lithium amide reagent. Compounds 10, 11 and 13 were therefore prepared via transesterification of the corresponding tert-butyl β-amino esters 8, 9 and 12. Conjugate addition of lithium N,N-dibenzylamide and lithium N-isopropyl-N-benzylamide to tert-butyl cinnamate 7 gave racemic β-amino esters 8 and 9 in 73 and 80% yield, respectively.¹¹ Similarly, conjugate addition of lithium (S)-N-benzyl-N-(α -methylbenzyl)amide 6 to 7 gave enantiopure β -amino ester 12 in 82% yield and >99:1 dr.¹¹ Transesterification of all three substrates upon treatment with

View Article Online

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK. E-mail: steve.davies@chem.ox.ac.uk; Fax: +44 (0)1865 275633; Tel: +44 (0)1865 275695

[†]Electronic supplementary information (ESI) available: Experimental procedures, characterisation data, copies of ¹H and ¹³C NMR spectra, and crystallographic data. CCDC 982697–982706. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ob00274a

Paper

Fig. 1 Ireland–Claisen rearrangement of substituted allyl $\beta\text{-amino}$ esters.

Scheme 1 Reagents and conditions: (i) LiNⁱPrBn or LiNBn₂, THF, -78 °C, 2 h; (ii) lithium (S)-N-benzyl-N-(α -methylbenzyl)amide 6, THF, -78 °C, 2 h; (iii) SOCl₂, allyl alcohol, 50 °C, 3 h.

 SOCl_2 in allyl alcohol gave 10, 11 and 13 in good yield (Scheme 1).

Following a screen of different reaction conditions (varying the temperature, solvent, base, equivalents of reagents, *etc.*), a reproducible procedure for the Ireland–Claisen rearrangement of **10**, **11** and **13** was developed: deprotonation of **10** (R = Bn)

Scheme 2 Reagents and conditions: (i) TMSCl, PhMe, -78 °C, 10 min then LiHMDS, -78 °C, 30 min then reflux, 1 h; (ii) SOCl₂, MeOH, 50 °C, 48 h; (iii) H₂ (1 atm), Pd(OH)₂/C, MeOH–acetone (9 : 1), rt, 16 h.

Fig. 2 X-ray crystal structures of (*RS,SR*)-**16** [*left*] and (*RS,SR*)-**18** [*right*] (selected H-atoms are omitted for clarity).

with LiHMDS followed by reaction of the resultant lithium (E)- β -amino enolate¹² with TMSCl produced the corresponding silyl ketene acetal which was heated at reflux in PhMe to give β -amino acid 14 in 83:17 dr. Subsequent esterification of 14 (for ease of handling and isolation) upon treatment with $SOCl_2$ in MeOH produced β -amino ester 16 in 40% yield (from 10) and 83:17 dr (Scheme 2).¹³ The relative configuration within the major diastereoisomer 16 was unambiguously determined by single crystal X-ray diffraction analysis (Fig. 2);¹⁴ this analysis also secured the relative configuration within β-amino acid 14. Ireland-Claisen rearrangement of 11 $(R = {}^{i}Pr)$ following an identical procedure produced β -amino acid 15 in 91:9 dr, which was converted into β -amino ester 17 upon treatment with SOCl₂ and MeOH; after purification 17 was isolated in 62% yield and 88:12 dr.13 The configurations within 15 and 17 were assigned by chemical correlation: hydrogenolysis of 16 (83:17 dr) in the presence of acetone effected removal of the N-benzyl groups and in situ reductive alkylation to give N-isopropyl substituted β -amino ester 18 in 85% yield

Scheme 3 Reagents and conditions: (i) TMSCl, PhMe, -78 °C, 10 min then LiHMDS, -78 °C, 30 min then reflux, 1 h; (ii) SOCl₂, MeOH, 50 °C, 48 h; (iii) LiHMDS, THF, -78 °C, 2 h then allyl bromide, -78 °C to rt, 16 h; (iv) CAN, MeCN-H₂O (5 : 1), rt, 16 h; (v) MeMgBr, Et₂O, 0 °C, 30 min.

and 83:17 dr. Hydrogenolysis of **17** (88:12 dr), under identical conditions, gave **18** in 66% yield and 88:12 dr (Scheme 2).¹⁵ The relative configuration within **18** was subsequently confirmed unambiguously *via* single crystal X-ray diffraction analysis (Fig. 2).¹⁴

Ireland-Claisen rearrangement of the corresponding enantiopure substrate 13 [derived from conjugate addition of enantiopure lithium amide (S)-6 to α,β -unsaturated ester 7, followed by transesterification] produced β -amino acid **19** in 92:8 dr. Esterification of 19 upon treatment with SOCl₂ in MeOH gave β -amino ester 20 in 92:8 dr, which was then isolated in 50% yield and >99:1 dr. An authentic sample of 20 was prepared upon alkylation of the known^{5b} β -amino ester 21 with allvl bromide, which gave 20 in 87:13 dr, and 67% yield and >99:1 dr after chromatographic purification. β-Amino ester 20 was subsequently converted into the corresponding β -lactam 23 via (i) oxidative monodebenzylation with CAN, and (ii) MeMgBrmediated cyclisation of 22 to give β -lactam 23 in 76% overall yield for the two step procedure (Scheme 3). The relative configuration within 23 (and therefore also those within 19, 20 and 22) was assigned from the value of the ¹H NMR ³J coupling constant observed between the C(3)H and C(4)H protons $({}^{3}J_{3,4} = 2.1 \text{ Hz})$, which is known to be diagnostic of the relative stereochemical configuration within β-lactams.¹⁶ These assignments were all confirmed unambiguously by subsequent single crystal X-ray diffraction analyses of both 19 and 20 (Fig. 3);¹⁴ in both cases the absolute configurations within (2S,3R,aS)-19 and (2S,3R,aS)-20 were assigned relative to the

Fig. 3 X-ray crystal structures of $(2S,3R,\alpha S)$ -**19** [*left*] and $(2S,3R,\alpha S)$ -**20** [*right*] (selected H-atoms are omitted for clarity).

known (*S*)-configuration of the α -methylbenzyl fragment and were confirmed by determination of Flack *x* parameters¹⁷ of -0.02(18) and -0.02(15), respectively.

The rearrangement of isoprenyl β-amino ester 25 was investigated next. As 1,2-addition of the lithium amide reagent was not expected to present a problem upon conjugate addition to isoprenyl cinnamate 24, β -amino ester 25 was prepared from 24¹⁸ upon conjugate addition of enantiopure lithium amide (S)-6, which gave 25 as the only reaction product in 73% isolated yield and >99:1 dr after chromatographic purification (Scheme 4).¹⁹ The relative configuration within 25 was assigned unambiguously via single crystal X-ray diffraction analysis and the absolute $(3R,\alpha S)$ -configuration within 25 was assigned relative to the known (S)-configuration of the α-methylbenzyl fragment (Fig. 4); furthermore, the determination of a Flack x parameter¹⁷ of -0.09(10) confirmed this assignment.¹⁴ Ireland–Claisen rearrangement of 25 gave β -amino acid **26** in 93:7 dr. Subsequent esterification of **26**, upon treatment with DBU and Mel,^{20,21} gave β -amino ester 27 in 93:7 dr, which was isolated in 66% yield and >99:1 dr. The relative configuration within 27 was then established by X-ray diffraction analysis of a derivative: hydrogenolysis of 27 followed by reductive N-alkylation of 28 gave 29 in 55% yield and >99:1 dr. Alternatively, 29 was accessed directly from 25 in 3 steps and 48% overall yield (Scheme 4). Subsequent single crystal X-ray diffraction analysis of 29 allowed the relative configurations within 26-28 to be established unambiguously (Fig. 4).¹⁴

The Ireland–Claisen rearrangement of prenyl β -amino ester **30** [which was expected to generate a quaternary centre at the C(1')-position upon rearrangement] was investigated next. β -Amino ester **30** was prepared by hydrolysis of *tert*-butyl ester **12** followed by treatment of the resultant β -amino acid with prenyl bromide in the presence of DBU. Ireland– Claisen rearrangement of **30** produced β -amino acid **31** in 90:10 dr, and esterification with DBU and MeI gave methyl ester **32** in 90:10 dr, which was isolated in 50% yield and >99:1 dr (Scheme 5). The stereochemical outcome of this

Paper

Scheme 4 Reagents and conditions: (i) lithium (S)-N-benzyl-N-(α -methylbenzyl)amide 6, THF, -78 °C, 2 h; (ii) TMSCl, PhMe, -78 °C, 10 min then LiHMDS, -78 °C, 30 min then reflux, 1 h; (iii) DBU, MeCN, Mel, rt, 4 h; (iv) H₂ (1 atm), Pd(OH)₂/C, MeOH, rt, 15 h; (v) acetone, NaBH₃CN, MeOH, rt, 22 h; (vi) H₂ (1 atm), Pd(OH)₂/C, MeOH-acetone (9 : 1), rt, 22 h; (vii) SOCl₂, MeOH, 50 °C, 48 h.

Fig. 4 X-ray crystal structures of $(3R, \alpha S)$ -**25** [*left*] and (2S, 3R)-**29** [*right*] (selected H-atoms are omitted for clarity).

rearrangement was assigned by analogy to the stereochemical outcomes observed upon rearrangement of substrates **10**, **11**, **13** and **25**.

Scheme 5 *Reagents and conditions*: (i) TFA, CH₂Cl₂, rt, 16 h; (ii) prenyl bromide, DBU, MeCN, rt, 17 h; (iii) TMSCl, PhMe, -78 °C then LiHMDS, -78 °C, 30 min then reflux, 1 h; (iv) DBU, MeCN, Mel, rt, 8 h.

Ireland–Claisen rearrangement of *cis*- and *trans*-configured allyl β -amino esters: asymmetric synthesis of β -amino acids bearing chiral C(2)-substituents

As the Ireland-Claisen rearrangement of stereodefined allyl esters bearing only one substituent at the C(3')-position would create an additional stereogenic centre at the C(1')-position of the product, representative substrates derived from cis- or trans-crotyl and cinnamyl alcohols were evaluated in this reaction manifold; the rearrangement of the trans-configured substrates 33 and 34 were investigated first. Both substrates were again prepared by transesterification of tert-butyl ester 12. In the case of *trans*-crotyl alcohol derived substrate 33 (R = Me), the Ireland-Claisen rearrangement proceeded with poor diastereoselectivity to give a 54:46 mixture of diastereoisomeric β-amino acids 35.²² Improved diastereoselectivity was observed upon rearrangement of the trans-cinnamyl alcohol derived substrate 34 (R = Ph), which gave a 70:30 mixture of diastereoisomeric β -amino acids 37 and 38, respectively. The configuration within the major diastereoisomer 37 was determined unambiguously by single crystal X-ray diffraction analysis (Fig. 5),¹⁴ and the absolute $(2S,3R,1'S,\alpha S)$ -configuration within 37 was assigned relative to the known configuration of the (S)- α -methylbenzyl fragment; furthermore, the determination of a Flack x parameter¹⁷ of 0.02(16) for the crystal structure of 37 confirmed this assignment. Subsequent esterification gave β -amino esters 39 and 40 in 38 and 13% yield, respectively, and >99:1 dr in both cases (Scheme 6).

Ireland–Claisen rearrangement of the corresponding *cis*configured substrates **41** and **42** (derived from transesterification of *tert*-butyl ester **12** with either *cis*-crotyl alcohol or *cis*cinnamyl alcohol, respectively) proceeded with far greater diastereoselectivity than the *trans*-configured substrates **33** and **34**, giving β -amino acids **43** and **37** in 96:4 and 90:10 dr, respectively. Conversion of **43** and **37** to the corresponding methyl esters gave **44** in 85% yield (from **41**) and 96:4 dr, and **39** in 48% yield (from **42**) and >99:1 dr. It is interesting to note that the major diastereoisomer resulting from the

Fig. 5 X-ray crystal structure of $(2S,3R,1'S,\alpha S)$ -37 (selected H-atoms are omitted for clarity).

Scheme 6 Reagents and conditions: (i) TFA, CH_2Cl_2 , rt, 16 h; (ii) (COCl)₂, CH_2Cl_2 , DMF, 0 °C to rt, 1 h then crotyl alcohol [96 : 4 dr (*E*):(*Z*)] or cinnamyl alcohol [>99 : 1 dr (*E*):(*Z*)], CH_2Cl_2 , 0 °C to rt, 16 h; (iii) LiHMDS, TMSCl, PhMe, -78 °C then reflux, 1 h; (iv) DBU, Mel, MeCN, rt, 16 h.

Scheme 7 Reagents and conditions: (i) TFA, CH_2Cl_2 , rt, 16 h; (ii) $(COCl)_2$, CH_2Cl_2 , DMF, 0 °C to rt, 1 h then crotyl alcohol [>99:1 dr (*Z*):(*E*)] or cinnamyl alcohol [>99:1 dr (*Z*):(*E*)], CH_2Cl_2 , 0 °C to rt, 16 h; (iii) LiHMDS, TMSCl, PhMe, -78 °C then reflux, 1 h; (iv) DBU, Mel, MeCN, rt, 16 h; (v) Pd(OH)₂/C, H₂ (1 atm), MeOH, rt, 24 h; (vi) HCl (6.0 M aq), reflux, 5 days then DOWEX 50WX8.

Ireland–Claisen rearrangement of the *cis*-cinnamyl alcohol derived substrate **42** is identical to the major diastereoisomer resulting from the rearrangement of the *trans*-cinnamyl alcohol derived substrate **34**. The configurations within **43** and **44** were assigned by analogy to those within **37** and **39**. Tandem hydrogenation/hydrogenolysis of both **44** and **39**, and subsequent hydrolysis of **45** and **46** gave β -amino acids **47** and **48** in good overall yield after purification on DOWEX 50WX8 ion exchange resin (Scheme 7).

The origin of diastereoselectivity in the Ireland–Claisen rearrangement of allyl β -amino esters

The levels of diastereoselectivity observed upon Ireland– Claisen rearrangement of this range of allyl β -amino esters have proven to be somewhat variable, with the substrates lacking substitution on the allyl fragment, and the *cis*-configured substrates bearing a substituent on the allyl fragment, displaying superior levels of diastereoselectivity to the corresponding *trans*-configured substrates. It is also curious that the formation of β -amino acid 37 occurs as the major diastereoisomer resulting from Ireland–Claisen rearrangement of *both* β -amino esters *trans*-34 (giving 37 in 70:30 dr) and *cis*-42 (giving 37 in 90:10 dr).²³ These data can be explained by considering the possible transition states for rearrangement: it can be expected that rearrangement of the *cis*-configured substrates, such as 42 (R¹ = H, R² = Ph), would proceed *via*

Paper

Fig. 6 Proposed transition state models for rearrangement.

chair-like transition state 50 in which 1,3-allylic strain between the C(3)-substituents and the C(1)-O bond is minimised and the reaction occurs on the face opposite the bulky N-benzyl-N-(a-methylbenzyl) group. A chair-like transition state is disfavoured for substrates such as 34 ($R^1 = Ph$, $R^2 = H$) when significant steric interactions between R^1 and the C(3)-phenyl group are encountered; in this case a boat-like transition state 52,²⁴ in which 1,3-allylic strain between the C(3)-substituents and the C(1)-O bond is minimised and the reaction occurs on the face opposite the bulky N-benzyl-N-(α-methylbenzyl) group, would be favoured as the R¹ substituent occupies a far less sterically congested position (Fig. 6). This analysis is also consistent with the rearrangement of 41 ($R^1 = H$, $R^2 = Me$; 96:4 dr) being more highly diastereoselective than that of 42 (R^1 = H, $R^2 = Ph$; 90:10 dr), and the rearrangement of 33 ($R^1 = Me$, $R^2 = H$; 54 : 46 dr) being essentially non-selective.

Application to the asymmetric synthesis of C(5)-substituted transpentacins

The development of routes to access enantiopure substituted derivatives of the cyclic β -amino acid transpentacin (*trans*-2-aminocyclopentanecarboxylic acid) is of considerable importance as oligomers of these β -amino acids display interesting secondary structural characteristics.^{25,26} In order to enhance the structural diversity of enantiopure monomeric cispentacin and transpentacin derivatives available we have previously developed efficient parallel kinetic resolution (PKR) procedures for the asymmetric syntheses of C(3)- and C(5)-substituted ana-

Fig. 7 Proposed asymmetric synthesis of enantiopure 1,2-*anti*-1,5-*syn*-transpentacins 63.

logues **54–56**,²⁷ and subsequently investigated the secondary structural characteristics of some of their oligomers.²⁸ It was therefore envisaged that an alternative procedure for the syntheses of 1,2-*anti*-1,5-*syn*-diastereoisomers **61**, which are not accessible using the PKR protocol, could be developed employing the diastereoselective Ireland–Claisen rearrangement of enantiopure *cis*-substituted allyl esters **57**. The resultant α -substituted β -amino acid products **58** could then be elaborated to the corresponding C(5)-substituted transpentacins **61** *via* a three step protocol involving ring-closing metathesis, hydrogenolytic deprotection/reduction, and finally hydrolysis (Fig. 7).

Esterification of commercially available sorbic acid **62** upon treatment with isobutylene in the presence of H₂SO₄ gave α,β-unsaturated ester **63** in 80% isolated yield. Conjugate addition of lithium (*S*)-*N*-benzyl-*N*-(α-methylbenzyl)amide **6** to **63** produced the known^{19,29} β-amino ester **64** as a single diastereoisomer (>99:1 dr), which was isolated in 89% yield and >99:1 dr. Hydrolysis of **64** upon treatment with TFA, conversion of the resultant carboxylic acid to the corresponding acid chloride, and treatment with the requisite *cis*-allylic alcohols (R = Me, Et, Bn, ⁱPr, Ph) gave β-amino esters **65–69** in good yield (Scheme 8).

In each case, Ireland–Claisen rearrangement of **65–69** produced the corresponding β -amino acids **70–79** in ~80 : 20 dr. Following esterification of **70–79**, upon treatment with DBU and MeI, and chromatographic purification, the major diastereoisomers **80–84** were isolated in 38–69% yield, and the minor diastereoisomers **85–89** were isolated in 7–16% yield,³⁰ as single diastereoisomers (>99 : 1 dr) in each case (Scheme 9). The configurations within **84**, **86**, **87** and **89** were established

Scheme 8 Reagents and conditions: (i) isobutylene, H_2SO_4 , CH_2Cl_2 , 0 °C to rt, 48 h; (ii) lithium (S)-*N*-benzyl-*N*-(α -methylbenzyl)amide (S)-6, THF, -78 °C, 2 h; (iii) CH₂Cl₂-TFA (2 : 1), rt, 16 h; (iv) (COCl)₂, CH₂Cl₂, DMF, 0 °C to rt, 1 h then *cis*-RCH=CHCH₂OH [>99 : 1 dr (*E*) : (*Z*)], CH₂Cl₂, 0 °C to rt, 16 h.

 82, R = Bn, 57% (2 steps), >99:1 dr
 87, R = Bn, 16% (2 steps), >99:1 dr

 83, R = 'Pr, 52% (2 steps), >99:1 dr
 88, R = 'Pr, 7% (2 steps), >99:1 dr

 84, R = Ph, 69% (2 steps), >99:1 dr
 89, R = Ph, 16% (2 steps), >99:1 dr

Scheme 9 Reagents and conditions: (i) LiHMDS, TMSCl, PhMe, -78 °C, 15 min, then reflux, 1 h; (ii) DBU, Mel, MeCN, rt, 16 h.

by single crystal X-ray diffraction analyses (Fig. 8),^{14,31} and the configurations within **80–83**, **85** and **88** were then assigned by analogy.

Ring-closing metathesis of **80-84** (the major diastereoisomers resulting from Ireland–Claisen rearrangement of

Fig. 8 X-ray crystal structures of (S,S,S,E)-**86** \cap HBF₄ [*left*] and $(2R,3S,L'-R,\alpha S,E)$ -**87** [*right*] (the BF₄⁻ counterion and selected H-atoms are omitted for clarity).

Scheme 10 Reagents and conditions: (i) Grubbs I, CH₂Cl₂, 40 °C, 24–48 h; (ii) H₂ (1 atm), Pd(OH)₂/C, MeOH, rt, 24 h; (iii) HCl (6.0 M aq), reflux, 16 h then DOWEX 50WX8.

65–69) gave the corresponding cyclic β-amino esters **90–94** in 38–96% yield. Subsequent tandem hydrogenation/hydrogenolysis of **90–94** gave primary β-amino esters **95–99** as single diastereoisomers (>99:1 dr) in 40–87% yield (Scheme 10). The configurations within **95**, **96** and **99** were established by single crystal X-ray diffraction analyses (Fig. 9),^{14,31} and the configurations within **97** and **98** were then assigned by analogy. Finally, hydrolysis of the methyl ester functionalities within **95–99**, upon treatment with 6.0 M aq. HCl at reflux for 16 h, gave β-amino acids **100–104** which were isolated in 84% to quantitative yield and >99:1 dr after purification on Dowex 50WX8 ion exchange resin (Scheme 10).

Fig. 9 X-ray crystal structure of (*S*,*S*,*S*)-**96**·HCl (selected H-atoms are omitted for clarity).

Conclusions

In conclusion, a diastereoselective Ireland-Claisen rearrangement protocol has been developed for the asymmetric synthesis of α -substituted- β -amino acids. The rearrangement precursors were typically prepared upon conjugate addition of enantiopure lithium amides to tert-butyl α,β-unsaturated esters, followed by transesterification to give the requisite allyl β-amino ester substrates. Subsequent Ireland-Claisen rearrangement gave the corresponding enantiopure β-amino acids in good yield. The stereochemical outcomes of these reactions were considered and transition state models to account for this diastereoselectivity were proposed. The application of this methodology in the asymmetric synthesis of a range of C(5)-substituted 1,2-anti-1,5-syn-transpentacins was demonstrated by the rearrangement of β-amino esters derived from sorbic acid, followed by esterification of the rearrangement products, ring-closing metathesis, hydrogenolytic deprotection/reduction, and hydrolysis which provided access to the C(5)-substituted transpentacins in only 9 steps from commercially available starting materials. Further applications of this methodology are under investigation within our laboratory.

Experimental

General experimental details

All reactions involving organometallic or other moisture-sensitive reagents were carried out under a nitrogen atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs and co-workers.³² BuLi was purchased as a solution in hexanes and titrated against diphenylacetic acid before use. Pd(OH)2/C (20 wt % dry basis) was used for all hydrogenolysis reactions. All other reagents were used as supplied without prior purification. Organic layers were dried over MgSO4. Thin layer chromatography was performed on aluminium plates coated with 60 F₂₅₄ silica. Plates were visualised using UV light (254 nm), 1% aq. KMnO4 or Dragendorff's reagent. Flash column chromatography was performed on Kieselgel 60 silica. Melting points are uncorrected. Specific rotations are reported in 10^{-1} deg cm² g⁻¹ and concentrations in g per 100 mL. IR spectra were recorded using an ATR module. Selected characteristic peaks are reported in cm⁻¹. NMR spectra were recorded in the deuterated solvent stated. Spectra were recorded at rt unless otherwise stated. The field was locked by external referencing to the relevant deuteron resonance. ¹H-¹H COSY, ¹H-¹³C HMQC, and ¹H-¹³C HMBC analyses were used to establish atom connectivity. Accurate mass measurements were run on a TOF spectrometer internally calibrated with polyalanine.

Prop-2'-en-1'-yl (*RS*)-3-(*N*,*N*-dibenzylamino)-3-phenylpropanoate 10

SOCl₂ (2.15 mL, 29.9 mmol) was added dropwise to a stirred solution of 8¹¹ (4.00 g, 9.96 mmol) in allyl alcohol (40 mL) at 0 °C and the resultant mixture was stirred at 50 °C for 3 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo, the residue was dissolved in CH₂Cl₂ (150 mL), and the resultant solution was washed with satd aq. NaHCO₃ $(3 \times 150 \text{ mL})$, then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 10 as a colourless oil (3.30 g, 86%); ν_{max} (ATR) 2934 (C-H), 1735 (C=O), 1602 (C=C); δ_{H} (400 MHz, CDCl₃) 2.69 (1H, dd, J 14.4, 7.3, C(2)H_A), 3.07 (1H, dd, J 14.4, 7.3, $C(2)H_B$, 3.11 (2H, d, J 13.9, $N(CH_AH_BPh)_2$), 3.69 (2H, d, J 13.9, N(CH_AH_BPh)₂), 4.25 (1H, t, J 7.3, C(3)H), 4.38-4.55 (2H, m, C(1')H₂), 5.09-5.17 (2H, m, C(3')H₂), 5.69-5.79 (1H, m, C(2')H, 7.12–7.31 (15H, m, Ph); δ_C (100 MHz, CDCl₃) 36.6 (C(2)), 53.7 (N(CH₂Ph)₂), 58.9 (C(3)), 65.3 (C(1')), 118.3 (C(3')), 126.9, 127.5, 128.1, 128.2, 128.6, 128.8 (o,m,p-Ph), 132.1 (C(2')), 137.4, 139.5 (*i-Ph*), 171.3 (*C*(1)); m/z (ESI⁺) 408 ([M + Na]⁺, 100%), 386 $([M + H]^+, 70\%);$ HRMS $(ESI^+) C_{26}H_{28}NO_2^+ ([M + H]^+)$ requires 386.2115; found 386.2101.

Prop-2'-en-1'-yl (*RS*)-3-(*N*-isopropyl-*N*-benzylamino)-3-phenylpropanoate 11

SOCl₂ (2.44 mL, 33.9 mmol) was added dropwise to a stirred solution of 9¹¹ (4.00 g, 11.3 mmol) in allyl alcohol (40 mL) at 0 °C and the resultant mixture was stirred at 50 °C for 3 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo, the residue was dissolved in CH₂Cl₂ (150 mL), and the resultant solution was washed with satd aq. NaHCO₃ $(3 \times 150 \text{ mL})$, then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave **11** as a colourless oil (2.94 g, 77%); $\nu_{\rm max}$ (ATR) 2965, 2934 (C–H), 1735 (C=O), 1601 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.71 (3H, d, J 6.6, CHMe_AMe_B), 0.98 (3H, d, J 6.6, CHMe_AMe_B), 2.55 (1H, dd, J 14.4, 8.5, C(2)H_A), 2.87 (1H, dd, J 14.4, 6.9, C(2)H_B), 3.01 (1H, septet, J 6.6, CHMe₂), 3.61 (2H, d, J 15.1, NCH₂Ph), 4.25 (1H, dd, J 8.5, 6.9, C(3)H), 4.29-4.40 (2H, m, $C(1')H_2$), 5.04-5.10 (2H, m, $C(3')H_2$), 5.62–5.71 (1H, m, C(2')H), 7.12–7.31 (10H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 18.4, 21.4 (CHMe₂), 38.9 (C(2)), 47.9 (CHMe₂), 49.3 (NCH₂Ph), 60.0 (C(3)), 65.0 (C(1')), 118.0 (C(3')), 126.5, 127.1, 128.0, 128.1 (o,m,p-Ph), 132.1 (C(2')), 141.3, 141.8 (i-Ph), 171.5 (C(1)); m/z (ESI⁺) 360 ([M + Na]⁺, 100%), 338 ($[M + H]^+$, 90%); HRMS (ESI⁺) C₂₂H₂₈NO₂⁺ ($[M + H]^+$) requires 338.2115; found 338.2104.

Prop-2'-en-1'-yl (3*R*,α*S*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)-amino]-3-phenylpropanoate 13

SOCl₂ (0.94 mL, 13.1 mmol) was added dropwise to a solution of 12¹¹ (1.82 g, 4.38 mmol, >99:1 dr) in allyl alcohol (18 mL) at 0 °C and the resultant mixture was stirred at 50 °C for 3 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in CH2Cl2 (100 mL) and the resultant solution was washed with satd aq. NaHCO₃ (3×150 mL), then dried and concentrated *in vacuo*. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 13 as a colourless oil (1.39 g, 79%, >99:1 dr); $[\alpha]_{D}^{20}$ -4.9 (c 1.0 in CHCl₃); ν_{max} (ATR) 2971, 2935 (C-H), 1733 (C=O), 1601 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.14 (3H, d, J 6.8, C(α)Me), 2.52 (1H, dd, J 14.6, 9.6, C(2)H_A), 2.61 (1H, dd, J 14.6, 5.4, C(2)H_B), 3.58 (1H, d, J 14.6, NCH_AH_BPh), 3.65 (1H, d, J 14.6, NCH_AH_BPh), 3.92 (1H, q, J 6.8, C(α)H), 4.24-4.32 (2H, m, C(1')H₂), 4.38 (1H, dd, J 9.6, 5.4, C(3)H), 5.00-5.04 (2H, m, C(3')H₂), 5.56-5.66 (1H, m, C(2')H), 7.07–7.32 (15H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.8 (C(α)Me), 37.5 (C(2)), 50.7 (NCH₂Ph), 56.7 ($C(\alpha)$), 59.3 (C(3)), 64.9 (C(1')), 118.0 (C(3')), 126.6, 126.8, 127.2, 127.8, 128.0, 128.0, 128.1, 128.1, 128.2 (o,m,p-Ph), 132.0 (C(2')), 141.3, 141.6, 143.9 (i-Ph), 171.4 (C(1)); m/z (ESI⁺) 422 ([M + Na]⁺, 100%), 400 ([M + H]⁺, 90%); HRMS (ESI⁺) $C_{27}H_{29}NNaO_2^+$ ([M + Na]⁺) requires 422.2091; found 422.2091.

Methyl (*RS*,*SR*)-2-(prop-2'-en-1'-yl)-3-(*N*,*N*-dibenzylamino)-3-phenylpropanoate 16

Method A. TMSCl (0.9 mL, 7.8 mmol) was added dropwise to a solution of 10 (1.00 g, 2.59 mmol) in PhMe (10 mL) at -78 °C, and the resultant solution was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 7.8 mL, 7.8 mmol) was added dropwise and the resultant solution was stirred at -78 °C for 30 min. The reaction mixture was heated at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was then partitioned between $CH_2Cl_2\ (100\ mL)$ and 1.0 M aq. HCl (100 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 50 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo. The residue was then dissolved in MeOH (20 mL), the resultant solution was cooled to 0 °C, and SOCl₂ (5.6 mL, 77.8 mmol) was added dropwise. The reaction mixture was heated at 50 °C for 48 h, then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (100 mL) and the resultant solution was washed with satd aq. NaHCO₃ (3×100 mL). The organic extract was then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 99:1) gave 16 as a pale yellow oil (51 mg, 40%, 83:17 dr). Data for major diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.69–1.73 (1H, m, $C(1')H_A$), 1.90–1.99 (1H, m, $C(1')H_B$), 2.86 (2H, d, J 13.6, $N(CH_AH_BPh)_2$), 3.33 (1H, app td, J 11.5, 3.3, C(2)H), 3.67 (3H, s, OMe), 3.83-3.89 (3H, m, C(3)H, $N(CH_AH_BPh)_2$, 4.79–4.82 (2H, m, C(3')H₂), 5.47–5.57 (1H, m, C(2')H), 7.08–7.36 (15H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 34.8 $(C(1')), 48.4 (C(2)), 51.4 (OMe), 53.7 (N(CH_2Ph)_2), 64.5 (C(3)),$

116.6 (*C*(3')), 126.9, 127.7, 128.1, 128.2, 128.9, 129.4 (*o*,*m*,*p*-*Ph*), 133.9 (*i*-*Ph*), 135.0 (*C*(2')), 139.3 (*i*-*Ph*), 174.0 (*C*(1)). Data for minor diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.22 (1H, ddd, *J* 14.0, 10.9, 8.1, C(1')*H*_A), 2.93 (2H, d, *J* 13.4, N(C*H*_AH_BPh)₂), 3.08–3.12 (1H, m, C(1')*H*_B), 3.14 (3H, s, OMe), 3.24 (1H, td, *J* 10.9, 3.5, C(2)*H*), 3.75–3.82 (3H, m, C(3)*H*, N(CH_AH_BPh)₂), 4.91–5.02 (2H, m, C(3')*H*₂), 5.64–5.74 (1H, m, C(2')*H*), 7.07–7.35 (15H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 35.0 (*C*(1')), 48.1 (*C*(2)), 51.0 (OMe), 53.8 (N(*CH*₂Ph)₂), 63.4 (*C*(3)), 116.6 (*C*(3')), 127.0, 127.8, 128.0, 128.4, 128.8, 129.4 (*o*,*m*,*p*-*Ph*), 134.7 (*i*-*Ph*), 135.6 (*C*(2')), 139.4 (*i*-*Ph*), 174.0 (*C*(1)). Data for mixture: $\nu_{\rm max}$ (ATR) 2948, 2839 (C–H), 1738 (C=O), 1603 (C=C); *m*/z (ESI⁺) 422 ([M + Na]⁺, 40%), 400 ([M + H]⁺, 100%); HRMS (ESI⁺) C₂₇H₃₀NO₂⁺ ([M + H]⁺) requires 400.2271; found 400.2253.

Method B. LiHMDS (1.0 M in THF, 3.56 mL, 3.56 mmol) was added dropwise to a solution of methyl (*RS*)-3-(*N*,*N*-dibenzyl-amino)-3-phenylpropanoate³³ (508 mg, 1.19 mmol) in THF (5 mL) at -78 °C, and the resultant solution was stirred at -78 °C for 2 h. Allyl bromide (465 µL, 5.35 mmol) was then added dropwise, and the resultant solution was allowed to warm to rt over 16 h. Satd aq. NH₄Cl (0.5 mL) was then added and the aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic extracts were washed with brine (20 mL), then dried and concentrated *in vacuo* to give **16** in 54 : 46 dr. Purification *via* flash column chromatography (eluent 30–40 °C petrol–Et₂O, 93 : 7) gave **16** as a colourless oil (72 mg, 15%, 98 : 2 dr).

X-ray crystal structure determination for 16

Data were collected using a Nonius κ -CCD diffractometer with graphite monochromated Mo-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **16** $[C_{27}H_{29}NO_2]$: M = 399.53, triclinic, $P\overline{1}$, a = 10.0503(2) Å, b = 10.9520(2) Å, c = 11.2054(3) Å, $\alpha = 74.3842(8)^\circ$, $\beta = 68.6115(8)^\circ$, $\gamma = 80.1552(12)^\circ$, V = 1102.40(4) Å³, Z = 2, $\mu = 0.075$ mm⁻¹, colourless block, crystal dimensions = $0.17 \times 0.22 \times 0.27$ mm³. A total of 5018 unique reflections were measured for $5 < \theta < 27$ and 3448 reflections were used in the refinement. The final parameters were $wR_2 = 0.109$ and $R_1 = 0.053$ $[I > -3.0\sigma(I)]$. CCDC 982697.†

Methyl (*RS*,*SR*)-2-(prop-2'-en-1'-yl)-3-(*N*-isopropyl-*N*-benzyl-amino)-3-phenylpropanoate 17

Method A. TMSCl (1.12 mL, 8.89 mmol) was added dropwise to a solution of **11** (1.00 g, 2.96 mmol) in PhMe (10 mL) at -78 °C, and the resultant solution was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 8.89 mL, 8.89 mmol) was added dropwise and the resultant solution was stirred at -78 °C for 30 min. The reaction mixture was allowed to warm to rt then heated at reflux for 1 h, before being allowed to cool to rt and concentrated *in vacuo*. The residue was then partitioned between CH₂Cl₂ (100 mL) and 1.0 M aq. HCl (100 mL), and the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo. The residue was then dissolved in MeOH (10 mL), the resultant solution was cooled to 0 °C, and SOCl₂ (6.39 mL, 88.9 mmol) was added dropwise. The reaction mixture was then heated at 50 °C for 48 h, then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (100 mL), the resultant solution was washed with satd aq. NaHCO₃ (3×100 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 99:1) gave 17 as a pale yellow oil (640 mg, 62%, 88:12 dr). Data for major diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.42 (3H, d, J 6.6, CHMe_AMe_B), 1.01 (3H, d, J 6.6, CHMe_AMe_B), 1.70-1.74 (1H, m, $C(1')H_A$, 1.87–1.95 (1H, m, $C(1')H_B$), 3.22–3.30 (2H, m, C(2)H, CHMe2), 3.28 (1H, d, J 14.2, NCHAHBPh), 3.60 (3H, s, OMe), 3.80 (1H, d, J 14.2, NCH_AH_BPh), 3.84 (1H, d, J 11.6, C(3)H), 4.78–4.82 (2H, m, $C(3')H_2$), 5.47–5.57 (1H, m, C(2')H), 7.17–7.30 (10H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 17.8, 22.7 $(CHMe_2)$, 34.7 (C(1')), 47.4 (C(2)), 49.2 $(CHMe_2)$, 49.5 (NCH₂Ph), 51.2 (OMe), 64.3 (C(3)), 116.4 (C(3')), 126.7, 127.4, 127.9, 128.3, 129.0, 129.1 (o,m,p-Ph), 135.2 (C(2')), 137.8, 140.4 (*i-Ph*), 174.4 (*C*(1)). Data for minor diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.46 (3H, d, J 6.7, CHMe_AMe_B), 1.06 (3H, d, J 6.7, CHMe_A Me_B), 2.00–2.06 (1H, m, C(1') H_A), 2.86–2.92 (1H, m, C(1')H_B), 3.08 (1H, dt, J 11.2, 3.4, C(2)H), 3.14-3.19 (1H, m, CHMe₂), 3.15 (3H, s, OMe), 3.34 (1H, d, J 14.2, NCH_AH_BPh), 3.72-3.76 (2H, m, NCH_AH_BPh, C(3)H), 4.87-4.96 (2H, m, $C(3')H_2$, 5.58–5.68 (1H, m, C(2')H), 7.15–7.34 (10H, m, Ph); δ_C (100 MHz, CDCl₃) 18.4, 22.8 (CHMe₂), 35.5 (C(1')), 47.7 (C(2)), 48.8 (CHMe₂), 49.2 (NCH₂Ph), 50.9 (OMe), 63.3 (C(3)), 116.2 (C(3')), 126.8, 127.2, 127.8, 128.2, 128.9 (o,m,p-Ph), 136.0 (C(2')), 138.4, 140.6 (*i-Ph*), 174.4 (C(1)). Data for mixture: ν_{max} (ATR) 2964 (C-H), 1738 (C=O), 1602 (C=C); m/z (ESI⁺) 374 $([M + Na]^+, 50\%), 352 ([M + H]^+, 100\%); HRMS (ESI^+)$ $C_{23}H_{30}NO_2^+$ ([M + H]⁺) requires 352.2271; found 352.2260.

Method B - step 1. SOCl₂ (0.31 mL, 4.24 mmol) was added dropwise to a solution of 9 (500 mg, 9.96 mmol) in MeOH (12 mL) at 0 °C and the reaction mixture was then stirred at 50 °C for 16 h. The resultant mixture was concentrated in vacuo, and the residue was dissolved in CH₂Cl₂ (20 mL). The resultant solution was washed with satd aq. NaHCO₃ (3 \times 25 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 99:1) gave methyl (RS)-3-(N-isopropyl-N-benzylamino)-3-phenylpropanoate as a colourless oil (330 mg, 75%); ν_{max} (ATR) 2964 (C-H), 1738 (C=O); δ_H (400 MHz, CDCl₃) 0.68 (3H, d, J 6.6, CHMe_A), 0.98 (3H, d, J 6.6, CHMe_B), 2.51 (1H, dd, J 14.5, 7.7, C(2)H_A), 2.86 (1H, dd, J 14.5, 7.7, C(2)H_B), 3.02 (1H, septet, J 6.6, CHMe₂), 3.43 (3H, s, OMe), 3.59 (2H, app d, J 15.2, NCH₂Ph), 4.22 (1H, app t, J 7.7, C(3)H), 7.12–7.30 (10H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 18.4, 21.5 (CHMe₂), 38.7 (C(2)), 47.7 (CHMe₂), 49.3 (NCH₂Ph), 51.4 (OMe), 59.8 (C(3)), 126.5, 127.1, 128.0, 128.1, 128.1, 128.1 (o,m,p-Ph), 141.2, 141.7 (i-Ph), 172.2 (C(1)); m/z (ESI⁺) 312 ([M + H]⁺, 100%); HRMS (ESI^{+}) $C_{20}H_{26}NO_{2}^{+}$ $([M + H]^{+})$ requires 312.1958; found 312.1949.

Method B – step 2. LiHMDS (1.0 M in THF, 2.27 mL, 2.27 mmol) was added dropwise to a solution of methyl (*RS*)-3-(*N*-isopropyl-*N*-benzylamino)-3-phenylpropanoate (236 mg, 0.76 mmol) in THF (2.5 mL) at -78 °C, and the resultant solution was stirred at -78 °C for 2 h. Allyl bromide (198 µL, 2.27 mmol) was then added dropwise, and the resultant solution was allowed to warm to rt over 16 h. Satd aq. NH₄Cl (0.5 mL) was then added and the aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic extracts were washed with brine (20 mL), then dried and concentrated *in vacuo* to give 17 in 81:19 dr. Purification *via* flash column chromatography (eluent, 30–40 °C petrol–Et₂O, 98:2) gave 17 as a colourless oil (30 mg, 11%, >99:1 dr).

Methyl (*RS*,*SR*)-2-propyl-3-(*N*-isopropylamino)-3-phenylpropanoate 18

Method A. $Pd(OH)_2/C$ (50 mg, 50% w/w) was added to a degassed solution of 16 (100 mg, 0.25 mmol, 83:17 dr) in MeOH-acetone (9:1, 2.5 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 16 h. The reaction mixture was then filtered through Celite® (eluent EtOAc) and the filtrate was washed with satd aq. NaHCO₃ (10 mL), then dried and concentrated in vacuo to give 18 in 83:17 dr. Purification via flash column chromatography (eluent, 30-40 °C petrol-Et₂O, 93:7) gave 18 as a colourless oil (56 mg, 85%, 83 : 17 dr). Data for major diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.67 (3H, t, J 7.2, C(3')H₃), 0.81 (3H, d, J 6.2, CHMe_AMe_B), 0.86 (3H, d, J 6.2, CHMe_AMe_B), 0.91-1.18 (3H, m, C(1')H_A, $C(2')H_2$, 1.32–1.42 (1H, m, $C(1')H_B$), 1.51 (1H, br s, NH), 2.40 (1H, dt, J 12.4, 6.2, CHMe₂), 2.51 (1H, dt, J 10.1, 3.5, C(2)H), 3.64 (3H, s, OMe), 3.70 (1H, d, J 10.1, C(3)H), 7.13-7.19 (3H, m, Ph), 7.24-7.27 (2H, m, Ph); δ_C (100 MHz, CDCl₃) 13.7 (C(3')), 20.6 (C(1')), 21.6, 24.2 $(CHMe_2)$, 32.1 (C(2')), 45.2 (CHMe₂), 51.3 (OMe), 53.6 (C(2)), 62.4 (C(3)), 127.2, 127.3, 128.4 (o,m,p-Ph), 142.3 (i-Ph), 175.7 (C(1)). Data for minor diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) [selected peaks] 1.57-1.65 (2H, m, C(1')H₂), 3.34 (3H, s, OMe), 3.79 (1H, d, J 7.8, C(3)H; δ_{C} (100 MHz, CDCl₃) [selected peaks] 13.9 (C(3')), 20.9 (C(1')), 21.7 $(CHMe_AMe_B)$, 30.8 (C(2')), 45.5 $(CHMe_2)$, 51.0 (OMe), 53.4 (C(2)), 61.8 (C(3)), 127.0, 128.0 (o,m,p-Ph), 142.2 (*i-Ph*), 174.8 (*C*(1)). Data for mixture: ν_{max} (ATR) 3326 (N–H), 2960, 2872 (C-H), 1735 (C=O), 1602 (C=C); m/z (ESI⁺) 286 $([M + Na]^+, 5\%), 264 ([M + H]^+, 100\%); HRMS (ESI^+)$ $C_{16}H_{26}NO_2^+$ ([M + H]⁺) requires 264.1958; found 264.1956.

Method B. $Pd(OH)_2/C$ (120 mg, 50% w/w) was added to a degassed solution of 17 (240 mg, 0.68 mmol, 88:12 dr) in MeOH-acetone (9:1, 6 mL) at rt. The resultant suspension was stirred vigorously under H_2 (1 atm) at rt for 17 h. The reaction mixture was then filtered through Celite® (eluent EtOAc) and the filtrate was washed with satd aq. NaHCO₃ (10 mL), then dried and concentrated *in vacuo* to give **18** in 88:12 dr. Purification *via* flash column chromatography (eluent, 30–40 °C petrol–Et₂O, 93:7) gave **18** as a colourless oil (101 mg, 66%, 88:12 dr).

Method C. $Pd(OH)_2/C$ (87 mg, 50% w/w by substrate) was added to a degassed solution of 20 (173 mg, 0.42 mmol,

Organic & Biomolecular Chemistry

>99:1 dr) in MeOH-acetone (4 mL, 9:1) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 16 h. The reaction mixture was then filtered through Celite® (eluent EtOAc) and the filtrate was washed with satd aq. NaHCO₃ (10 mL), then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent, 30–40 °C petrol-Et₂O, 93:7) gave **18** as a colourless oil which solidified upon standing (75 mg, 68%, >99:1 dr); mp 47–50 °C; $[\alpha]_{D}^{20}$ +23.4 (*c* 1.0 in CHCl₃).

X-ray crystal structure determination for 18

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **18** [$C_{16}H_{25}NO_2$]: M = 263.38, orthorhombic, $P2_12_12_1$, a = 8.66504(13) Å, b = 9.9818(2) Å, c = 18.4067(4) Å, V = 1592.04(5) Å³, Z = 4, $\mu = 0.562$ mm⁻¹, colourless plate, crystal dimensions = $0.05 \times 0.19 \times 0.21$ mm³. A total of 1913 unique reflections were measured for $5 < \theta < 76$ and 7067 reflections were used in the refinement. The final parameters were $wR_2 = 0.083$ and $R_1 = 0.034$ [$I > -3.0\sigma(I)$]. CCDC 982698.†

Methyl (2*S*,3*R*,α*S*)-2-(prop-2'-en-1'-yl)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 20

Method A. LiHMDS (1.0 M in THF, 4.0 mL, 4.0 mmol) was added dropwise to a solution of 21^{12a} (500 mg, 1.34 mmol, >99:1 dr) in THF (5 mL) at -78 °C, and the resultant solution was stirred at -78 °C for 2 h. Allyl bromide (525 µL, 6.03 mmol) was then added dropwise, and the resultant solution was allowed to warm to rt over 16 h. Satd aq. NH4Cl (0.5 mL) was added and the aqueous layer was extracted with Et_2O (2 × 10 mL). The combined organic extracts were washed with brine (20 mL), then dried and concentrated in vacuo to give 20 in 83:17 dr. Purification via flash column chromatography (eluent, 30-40 °C petrol-Et₂O, 98:2) gave 20 as a colourless oil which solidified upon standing (370 mg, 67%, >99:1 dr); mp 79–81 °C; $[\alpha]_{D}^{20}$ +27.4 (c 1.0 in CHCl₃); ν_{max} (ATR) 2977 (C–H), 1737 (C=O), 1642 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.83 (3H, d, J 7.0, $C(\alpha)Me$), 1.60–1.64 (1H, m, $C(1')H_A$), 1.80-1.88 (1H, m, C(1')H_B), 3.21 (1H, dt, J 11.3, 3.4, C(2)H), 3.45 (3H, s, OMe), 3.56 (1H, d, J 13.7, NCH_AH_BPh), 3.92 (1H, d, J 11.3, C(3)H), 4.07–4.14 (1H, m, C(α)H), 4.12 (1H, d, J 13.7, NCH_AH_BPh), 4.73-4.78 (2H, m, C(3')H₂), 5.39-5.49 (1H, m, C(2')H, 7.13–7.32 (15H, m, Ph); δ_C (100 MHz, CDCl₃) 13.9 (C(α)Me), 34.8 (C(1')), 49.3 (C(2)), 50.7 (NCH_2Ph) , 51.2 (OMe), 55.3 $(C(\alpha))$, 63.4 (C(3)), 116.4 (C(3')), 126.4, 126.8, 127.5, 127.7, 128.0, 128.2, 128.4, 129.0, 129.1 (*o*,*m*,*p*-*Ph*), 135.0 (*C*(2')), 138.8, 139.8, 144.0 (*i-Ph*), 174.0 (*C*(1)); m/z (ESI⁺) 436 ([M + Na]⁺, 100%), 414 ($[M + H]^+$, 80%); HRMS (ESI⁺) C₂₈H₃₁NNaO₂⁺ ([M +Na]⁺) requires 436.2247; found 436.2234. Data for minor diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.88 (3H, d, J 6.8, C(α)Me), 1.80–1.91 (2H, m, $C(1')H_2$), 3.09 (1H, td, J 11.2, 3.2, C(2)H),

3.14 (3H, s, OMe), 3.54 (1H, d, J 13.8, NCH_AH_BPh), 3.83 (1H, d, J 11.4, C(3)H), 3.87 (1H, d, J 13.8, NCH_AH_BPh), 4.06–4.11 (1H, m, C(α)H), 4.86–4.91 (2H, m, C(3')H₂), 5.56 (1H, ddt, J 17.1, 10.0, 7.1, C(2')H), 7.14–7.32 (15H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.9 (C(α)Me), 35.3 (C(1')), 49.3 (C(2)), 50.6 (NCH₂Ph), 50.9 (OMe), 55.9 (C(α)), 62.5 (C(3)), 116.3 (C(3')), 126.7, 127.0, 127.3, 127.8, 128.0, 128.2, 128.3, 128.9, 129.1 (*o*,*m*,*p*-Ph), 135.9 (C(2')), 138.8, 140.0, 144.5 (*i*-Ph), 174.3 (C(1)).

Method B - step 1. TMSCl (1.3 mL, 10.4 mmol) was added dropwise to a solution of 13 (1.39 g, 3.48 mmol, >99:1 dr) in PhMe (14 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 10.4 mL, 10.4 mmol) was then added dropwise and the resultant solution was stirred at -78 °C for 30 min. The reaction mixture was stirred at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (100 mL) and 1.0 M aq. HCl (100 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 50 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo to give 19 as an orange oil (1.39 g, 92:8 dr). Purification of an aliquot via flash column chromatography (eluent, 30-40 °C petrol-acetone, 93:7) gave 19 as a white solid; $[\alpha]_{D}^{20}$ +73.3 (c 1.0 in CHCl₃); ν_{max} (ATR) 3100–2600 (O–H), 2934, 2849 (C-H), 1708 (C=O), 1603 (C=C); δ_H (400 MHz, CDCl₃) 1.05 (3H, d, J 7.1, $C(\alpha)Me$), 1.62–1.69 (1H, m, $C(1')H_A$), 2.31-2.35 (1H, m, C(1')H_B), 3.04 (1H, ddd, J 11.3, 6.8, 3.8, C(2)H), 3.60 (1H, d, J 13.5, NCH_AH_BPh), 4.07 (1H, app q, J 6.8, C(3)H), 4.16–4.20 (1H, m, $C(\alpha)H)$, 4.18 (1H, d, J 13.5, $NCH_AH_BPh)$, 4.57-4.76 (2H, m, C(3')H₂), 5.38-5.48 (1H, m, C(2')H), 7.16–7.41 (15H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.9 (C(α)Me), 32.9 (C(1')), 44.5 (C(2)), 51.0 (NCH₂Ph), 57.6 (C(3)), 61.6 (C(\alpha)), 117.4 (C(3')), 127.7, 127.8, 128.4, 128.4, 128.6, 128.7, 129.4, 129.7 (o,m,p-Ph), 134.1 (C(2')), 135.8, 136.3, 140.2 (i-Ph), 175.9 $(C(1)); m/z (ESI^{+}) 422 ([M + Na]^{+}, 100\%), 400 ([M + H]^{+}, 30\%);$ m/z (ESI⁻) 398 ([M - H]⁻, 40%); HRMS (ESI⁺) C₂₇H₃₀NO₂ $([M + H]^{+})$ requires 400.2271; found 400.2268.

Method B – step 2. The residue of 19 (92:8 dr) was dissolved in MeOH (15 mL) and the resultant solution was cooled to 0 °C. SOCl₂ (7.5 mL, 104 mmol) was then added dropwise and the reaction mixture was allowed to warm to rt, then heated at 50 °C for 48 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (100 mL) and the resultant solution was washed with satd aq. NaHCO₃ (3 × 100 mL), then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent, 30–40 °C petrol–Et₂O, 98:2) gave 20 as a colourless oil which solidified upon standing (718 mg, 50%, >99:1 dr); $[\alpha]_D^{20}$ +26.1 (*c* 1.0 in CHCl₃). Further elution gave second (44 mg, 3%, 62:38 dr) and third (30 mg, 5%, 58:42 dr) fractions of 20 as colourless oils.

X-ray crystal structure determination for 19

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were

refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **19** $[C_{27}H_{29}NO_2]$: M = 399.53, trigonal, $P3_12$, a = b = 11.2376(1) Å, c = 31.9939(3) Å, V = 3498.98(6) Å³, Z = 6, $\mu = 0.553$ mm⁻¹, colourless block, crystal dimensions = $0.23 \times 0.24 \times 0.27$ mm³. A total of 4879 unique reflections were measured for $5 < \theta < 77$ and 4158 reflections were used in the refinement. The final parameters were $wR_2 = 0.085$ and $R_1 = 0.034$ $[I > -3.0\sigma(I)]$, with Flack enantiopole = -0.02(18).¹⁷ CCDC 982699.†

X-ray crystal structure determination for 20

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **20** [C₂₈H₃₁NO₂]: M = 413.56, monoclinic, P_{2_1} , a = 9.7215(3) Å, b = 13.5384(2) Å, c = 10.1187(3)Å, $\beta = 116.959(3)^{\circ}$, V = 1187.05(6) Å³, Z = 2, $\mu = 0.559$ mm⁻¹, colourless block, crystal dimensions = $0.25 \times 0.31 \times 0.40$ mm³. A total of 2574 unique reflections were measured for $5 < \theta < 77$ and 9573 reflections were used in the refinement. The final parameters were $wR_2 = 0.101$ and $R_1 = 0.038$ [$I > -3.0\sigma(I)$], with Flack enantiopole = -0.02(15).¹⁷ CCDC 982700.†

Methyl (2*S*,3*R*,α*S*)-2-(prop-2'-en-1'-yl)-3-[*N*-(α-methyl-benzyl)amino]-3-phenylpropanoate 22

CAN (696 mg, 1.27 mmol) was added to a stirred solution of 20 (250 mg, 0.60 mmol, >99:1 dr) in MeCN-H₂O (5:1, 7 mL) at rt and the resultant mixture was stirred at rt for 16 h. Satd aq. NaHCO₃ (15 mL) and Et₂O (20 mL) were then added and the aqueous layer was extracted with Et_2O (2 × 20 mL). The combined organic extracts were washed with brine (50 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent, 30-40 °C petrol-Et₂O, 95:5) gave 22 as a colourless oil (179 mg, 91%, >99:1 dr); $[\alpha]_{D}^{20}$ -5.3 (c 1.0 in CHCl₃); ν_{max} (ATR) 3320 (N–H), 2970, 2949 (C–H), 1735 (C=O), 1642, 1603 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.16 (3H, d, J 6.3, C(α)Me), 1.74 (1H, br s, NH), 1.83-1.88 (1H, m, C(1')H_A), 2.10-2.17 (1H, m, C(1')H_B), 2.62 (1H, app td, J 9.9, 6.9, C(2)H), 3.43 (1H, q, J 6.3, $C(\alpha)H$, 3.63 (3H, s, OMe), 3.83 (1H, d, J 9.9, C(3)H), 4.83-4.88 (2H, m, C(3')H₂), 5.49-5.59 (1H, m, C(2')H), 7.08–7.25 (10H, m, Ph); $\delta_{\rm C}$ (125 MHz, CDCl₃) 21.8 (C(α)Me), 34.2 (C(1')), 51.3 (OMe), 53.3 (C(2)), 54.4 $(C(\alpha))$, 61.9 (C(3)), 116.6 (C(3')), 126.5, 126.8, 127.3, 127.4, 128.2, 128.5 (o,m,p-Ph), 135.0 (C(2')), 141.3, 146.2 (*i-Ph*), 174.7 (C(1)); m/z (ESI⁺) 346 $([M + Na]^+, 100\%), 324 ([M + H]^+, 100\%); HRMS (ESI^+)$ $C_{21}H_{26}NO_2^+$ ([M + H]⁺) requires 324.1958; found 324.1949.

(3*S*,4*R*, α *S*)-*N*(1)-(α -Methylbenzyl)-3-(prop-2'-en-1'-yl)-4-phenylazetidin-2-one 23

MeMgBr (90 $\mu L,$ 2.0 M in Et_2O, 0.18 mmol) was added dropwise to a solution of 22 (50.0 mg, 0.15 mmol, >99:1 dr) in Et_2O (2 mL) at 0 °C and the resultant mixture was stirred at

0 °C for 30 min. Satd aq. NH₄Cl (2 mL) was then added and the aqueous layer was extracted with $Et_2O(2 \times 5 mL)$. The combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent, 30-40 °C petrol-Et₂O, 80:20) gave 23 as a colourless oil (30 mg, 83%, >99:1 dr); $[\alpha]_{D}^{20}$ +34.8 (c 1.0 in CHCl₃); ν_{max} (ATR) 2979, 2934 (C–H), 1746 (C=O), 1603 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.22 (3H, d, J 7.3, C(α)Me), 2.20-2.29 (1H, m, $C(1')H_A$, 2.38–2.45 (1H, m, $C(1')H_B$), 3.00 (1H, ddd, J 8.8, 5.1, 2.0, C(3)H), 3.87 (1H, d, J 2.0, C(4)H), 4.85-4.90 (2H, m, C(3')H₂), 4.97 (1H, q, J 7.3, C(α)H), 5.57–5.67 (1H, m, C(2')H), 7.14–7.27 (10H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 18.6 (C(α)Me), 32.3 (C(1')), 51.9 $(C(\alpha))$, 58.4 (C(3)), 59.8 (C(4)), 117.1 (C(3')), 127.3, 127.7, 128.3, 128.5, 128.6, 128.8 (o,m,p-Ph), 134.1 (C(2')),139.5, 140.0 (*i-Ph*), 170.0 (*C*(2)); m/z (ESI⁺) 314 ([M + Na]⁺, 100%), 292 ($[M + H]^+$, 40%); HRMS (ESI⁺) C₂₀H₂₁NNaO⁺ $([M + Na]^{+})$ requires 314.1515; found 314.1509.

2'-Methylbut-3'-en-2'-yl (3
R, αS)-3-[N-benzyl-N-(α -methylbenzyl)
amino]-3-phenylpropanoate 25

BuLi (2.0 M in hexanes, 14.3 mL, 28.7 mmol) was added dropwise to a solution of (S)-N-benzyl-N-(α -methylbenzyl)amine (6.25 g, 29.6 mmol) in THF (132 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 30 min. A solution of 24 (4.00 g, 18.5 mmol, >99:1 dr) in THF (52 mL) at -78 °C was then added dropwise via cannula, and the resultant mixture was stirred at -78 °C for 2 h. Satd aq. NH₄Cl (20 mL) was then added and the reaction mixture was allowed to warm to rt. The aqueous layer was extracted with Et_2O (3 × 100 mL) and the combined organic extracts were washed sequentially with 10% aq. citric acid (100 mL), satd aq. NaHCO3 (100 mL) and brine (100 mL), then dried and concentrated in vacuo to give 25 in >95:5 dr. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 99:1) gave 25 as a colourless oil which solidified upon standing (5.78 g, 73%, >99:1 dr); mp 60-62 °C; $[\alpha]_{\rm D}^{20}$ -8.2 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 2976, 2934 (C-H), 1728 (C=O), 1602 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.34 $(3H, d, J 7.0, C(\alpha)Me), 1.35 (3H, s, C(2')Me_A), 1.37 (3H, s, C(2')Me_B),$ 2.61–2.64 (2H, m, $C(2)H_2$), 3.76 (2H, app s, NCH_2Ph), 4.07 (1H, q, J 7.0, C(α)H), 4.51 (1H, dd, J 8.3, 6.6, C(3)H), 4.98-5.04 (2H, m, C(4')H₂), 5.87 (1H, dd, J 17.4, 10.9, C(3')H), 7.22–7.42 (11H, m, Ph), 7.49–7.51 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, $CDCl_3$) 16.2 $(C(\alpha)Me)$, 26.1 $(C(2')Me_2)$, 38.2 (C(2)), 50.8 (NCH_2Ph) , 57.0 $(C(\alpha))$, 59.6 (C(3)), 80.5 (C(2')), 112.2 (C(4')), 126.5, 126.8, 127.1, 127.8, 127.9, 128.1, 128.2 (o,m,p-Ph), 141.6, 141.6 (*i-Ph*), 142.4 (C(3')), 144.0 (*i-Ph*), 170.6 (C(1)); m/z (ESI⁺) 428 ($[M + H]^+$, 100%); HRMS (ESI⁺) C₂₉H₃₄NO₂⁺ ($[M + H]^+$) requires 428.2584; found 428.2569.

X-ray crystal structure determination for 25

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for 25 $[C_{29}H_{33}NO_2]$: M = 427.59, monoclinic, $P2_1$, a = 10.27494(11) Å, b = 10.27815(10) Å, c = 12.21513(16) Å, $\beta = 107.2702(13)^\circ$, V = 1231.85(3) Å³, Z = 2, $\mu = 0.554$ mm⁻¹, colourless block, crystal dimensions = $0.15 \times 0.18 \times 0.19$ mm³. A total of 2711 unique reflections were measured for $4 < \theta < 77$ and 10 142 reflections were used in the refinement. The final parameters were $wR_2 = 0.076$ and $R_1 = 0.029 [I > -3.0\sigma(I)]$, with Flack enantiopole = -0.09(10).¹⁷ CCDC 982701.[†]

Methyl (2*S*,3*R*,α*S*)-2-(3'-methylbut-2'-en-1'-yl)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 27

Step 1. TMSCl (89 µL, 0.70 mmol) was added dropwise to a solution of 25 (100 mg, 0.23 mmol, >99:1 dr) in PhMe (1 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 0.70 mL, 0.70 mmol) was then added dropwise and the resultant mixture was stirred at -78 °C for 30 min. The reaction mixture was then allowed to warm to rt, then heated at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (10 mL) and 1.0 M aq. HCl (10 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic extracts were washed with brine (25 mL), then dried and concentrated in vacuo to give 26 as a pale orange solid (100 mg, 93:7 dr). Purification of an aliquot via flash column chromatography (eluent 30-40 °C petrol-acetone, 93:7) gave **26** as a white solid (>99:1 dr); mp 146–148 °C; $[\alpha]_{\rm D}^{20}$ +58.9 (c 1.0 in CHCl₃); ν_{max} (ATR) 2969, 2929 (C-H), 1706 (C=O), 1602 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.03 (3H, d, J 7.0, C(α)Me), 1.05 (3H, s, C(3')Me_A), 1.42 (3H, s, C(3')Me_B), 1.68-1.75 (1H, m, $C(1')H_A$, 2.16 (1H, app d, J 14.4, $C(1')H_B$), 2.98–3.04 (1H, m, C(2)H), 3.60 (1H, d, J 13.2, NCH_AH_BPh), 4.08 (1H, q, J 7.0, C(α)*H*), 4.15 (1H, d, *J* 11.6, C(3)*H*), 4.17 (1H, d, *J* 13.2, NCH_A*H*_BPh), 4.69-4.72 (1H, m, C(2')H), 7.16-7.27 (10H, m, Ph), 7.31-7.38 (5H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.8 (C(α)Me), 17.6 (C(3')Me_A), 25.6 $(C(3')Me_B)$, 27.4 (C(1')), 45.2 (C(2)), 50.9 (NCH_2Ph) , 57.4 $(C(\alpha))$, 61.7 (C(3)), 119.9 (C(2')), 127.7, 127.7, 128.3, 128.3, 128.5, 128.6, 129.4, 129.8 (o,m,p-Ph), 133.8 (C(3')), 136.2, 136.4, 140.3 (i-Ph), 176.6 (C(1)); m/z (ESI⁺) 450 ([M + Na]⁺, 10%), 428 $([M + H]^+, 100\%); m/z (ESI^-) 426 ([M - H]^- 100\%); HRMS (ESI^+)$ $C_{29}H_{34}NO_2^+$ ([M + H]⁺) requires 428.2584; found 428.2573.

Step 2. The residue of 26 (50 mg, 93:7 dr) was dissolved in MeCN (500 µL) and the resultant solution was treated sequentially with DBU (18 µL, 0.12 mmol) and MeI (9 µL, 0.14 mmol), and the resultant mixture was stirred at rt for 4 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (5 mL) and 2.0 M aq. HCl (5 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (15 mL) and brine (15 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 27 as a colourless oil (34 mg, 66% from 25, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +4.3 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 2969, 2946 (C-H), 1737 (C=O), 1602 (C=C); δ_H (400 MHz, $CDCl_3$) 0.81 (3H, d, J 7.1, C(α)Me), 1.23 (3H, s, C(3')Me_A), 1.46 (3H, s, C(3')Me_B), 1.49-1.55 (1H, m, C(1')H_A), 1.77-1.86 (1H, m, $C(1')H_B$, 3.11 (1H, app td, J 11.3, 3.4, C(2)H), 3.42 (3H, s, OMe),

3.53 (1H, d, / 13.9, NCH₄H_BPh), 3.91 (1H, d, / 11.3, C(3)H), 4.06–4.11 (1H, m, $C(\alpha)H$), 4.09 (1H, d, J 13.9, NCH_AH_BPh), 4.76–4.80 (1H, m, C(2')H), 7.09–7.30 (15H, m, Ph); $\delta_{\rm C}$ $(100 \text{ MHz}, \text{CDCl}_3)$ 14.0 $(C(\alpha)Me)$, 17.4 $(C(3')Me_A)$, 25.6 $(C(3')Me_B)$, 29.3 (C(1')), 49.7 (C(2)), 50.6 (NCH₂Ph), 51.1 (OMe), 55.2 $(C(\alpha)), 63.3 (C(3)), 120.6 (C(2')), 126.3, 126.8, 127.4, 127.7,$ 127.9, 128.1, 128.3, 128.9, 129.0 (o,m,p-Ph), 133.4 (C(3')), 139.0, 139.8, 144.1 (*i-Ph*), 174.4 (*C*(1)); m/z (ESI⁺) 464 ([M + Na]⁺, 40%), 442 ($[M + H]^+$, 100%); HRMS (ESI⁺) C₃₀H₃₆NO₂ $([M + H]^+)$ requires 442.2741; found 442.2734. Further elution gave 27 as a colourless oil (6 mg, 12% from 25, 43 : 57 dr). Data for minor diastereoisomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.85 (3H, d, J 6.9, $C(\alpha)Me$, 1.41 (3H, s, $C(3')Me_A$), 1.57 (3H, s, $C(3')Me_B$), 1.79–1.87 (1H, m, $C(1')H_A$), 2.70–2.73 (1H, m, $C(1')H_B$), 3.01 (1H, app td, J 11.1, 3.6, C(2)H), 3.13 (3H, s, OMe), 3.54 (1H, d, J 13.9, NCH_AH_BPh), 3.83 (1H, d, J 11.1, C(3)H), 3.89 (1H, d, J 13.9, NCH_A $H_{\rm B}$ Ph), 4.07–4.10 (1H, m, C(α)H), 4.86–4.89 (1H, m, C(2')H), 7.12-7.33 (15H, m, Ph); δ_C (100 MHz, CDCl₃) 14.6 $(C(\alpha)Me)$, 17.6 $(C(3')Me_A)$, 25.8 $(C(3')Me_B)$, 29.8 (C(1')), 49.5 (C(2)), 50.6 (NCH₂Ph), 51.0 (OMe), 55.6 $(C(\alpha))$, 62.6 (C(3)), 121.2 (C(2')), 126.7, 127.0, 127.2, 127.9, 128.0, 128.1, 128.3, 129.0, 129.2 (o,m,p-Ph), 133.3 (C(3')), 139.1, 140.1, 144.6 (i-Ph), 174.7 (C(1)). Data for mixture: ν_{max} (ATR) 2929, 2853 (C-H), 1736 (C=O), 1603 (C=C); m/z (ESI⁺) 464 ([M + Na]⁺, 60%), 442 $([M + H]^+, 100\%);$ HRMS (ESI⁺) $C_{30}H_{36}NO_2^+([M + H]^+)$ requires 442.2741; found 442.2742.

Methyl (2*S*,3*R*)-2-(3'-methylbutyl)-3-(*N*-isopropylamino)-3-phenylpropanoate 29

Method A – step 1. $Pd(OH)_2/C$ (75 mg, 50% w/w) was added to a degassed solution of 27 (150 mg, 0.34 mmol, >99:1 dr) in MeOH (3.4 mL) at rt. The resultant mixture was stirred vigorously under H₂ (1 atm) at rt for 15 h. The reaction mixture was then filtered through Celite® (eluent EtOAc) and the filtrate was washed with satd aq. NaHCO₃ (10 mL), then dried and concentrated *in vacuo* to give **28** as a yellow solid (76 mg, >99:1 dr).

Method A - step 2. Acetone (44 µL, 0.61 mmol) and NaBH₃CN (77 mg, 1.22 mmol) were added sequentially to a solution of the residue of 28 (76 mg, >99:1 dr) in MeOH (4 mL) at rt, and the resultant mixture was stirred at rt for 22 h. The reaction mixture was then concentrated in vacuo, the residue was partitioned between CH₂Cl₂ (10 mL) and H₂O (10 mL), and the aqueous layer was extracted with CH_2Cl_2 $(3 \times 10 \text{ mL})$. The combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 93:7) gave 29 as a colourless oil which solidified upon standing (49 mg, 55% from 27, >99:1 dr); mp 47–49 °C; $[\alpha]_{D}^{20}$ +12.2 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 3324 (N–H), 2956, 2870 (C–H), 1735 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.63 (3H, d, J 6.7, C(3')Me_A), 0.66 (3H, d, $J 6.7, C(3')Me_B$, 0.81 (3H, d, $J 6.2, NHCHMe_AMe_B$), 0.86 (3H, d, J 6.2, NHCHMe_A Me_B), 0.90–0.96 (2H, m, C(2') H_2), 0.97–1.06 $(1H, m, C(1')H_A)$, 1.24–1.32 (1H, m, C(3')H), 1.33–1.41 (1H, m, C(1')H_B), 2.44–2.51 (1H, m, NHCHMe₂), 2.46 (1H, td, J 10.0, 3.4, C(2)H), 3.64 (3H, s, OMe), 3.71 (1H, d, J 10.0, C(3)H), 7.17–7.20 (3H, m, Ph), 7.24–7.27 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz,

 $\begin{array}{l} {\rm CDCl}_3 \ 21.6, \ 21.9, \ 22.7, \ 24.2 \ ({\rm C}(3')Me_2, \ {\rm NHCH}Me_2), \ 27.7 \ (C(3')), \\ 27.8 \ (C(1')), \ 36.4 \ (C(2')), \ 45.2 \ ({\rm NH}CHMe_2), \ 51.4 \ ({\rm OM}e), \ 53.9 \\ (C(2)), \ 62.3 \ (C(3)), \ 127.2, \ 127.3, \ 128.4 \ (o,m,p-Ph), \ 142.3 \ (i-Ph), \\ 175.7 \ (C(1)); \ m/z \ ({\rm ESI}^+) \ 314 \ ([{\rm M} + {\rm Na}]^+, \ 10\%), \ 292 \ ([{\rm M} + {\rm H}]^+, \\ 100\%); \ {\rm HRMS} \ ({\rm ESI}^+) \ {\rm C}_{18}{\rm H}_{30}{\rm NO}_2^+ \ ([{\rm M} + {\rm H}]^+) \ {\rm requires} \ 292.2271; \\ {\rm found} \ 292.2263. \end{array}$

Method B – step 1. TMSCl (443 µL, 3.51 mmol) was added dropwise to a solution of 25 (500 mg, 1.17 mmol, >99:1 dr) in PhMe (5 mL) at –78 °C, and the resultant mixture was stirred at –78 °C for 10 min. LiHMDS (1.0 M in THF, 3.5 mL, 3.51 mmol) was then added dropwise and the resultant mixture was stirred at –78 °C for 30 min. The reaction mixture was then allowed to warm to rt, then heated at reflux for 1 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂ (10 mL) and 1.0 M aq. HCl (10 mL), and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic extracts were washed with brine (25 mL), then dried and concentrated *in vacuo* to give **26** as a pale orange solid (63 mg, 93:7 dr).

Method B – **step 2.** $Pd(OH)_2/C$ (32 mg, 50% w/w) was added to a degassed solution of the residue of **26** (63 mg, 93 : 7 dr) in MeOH-acetone (9 : 1, 1.6 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 22 h. The reaction mixture was then filtered through Celite® (eluent EtOAc) and the filtrate was washed with satd aq. NaHCO₃ (10 mL), then dried and concentrated *in vacuo* to give a yellow oil (39 mg).

Method B – **step 3.** The residue (39 mg) was dissolved in MeOH (0.4 mL), and the resultant solution was cooled to 0 °C then SOCl₂ (300 µL, 4.25 mmol) was added dropwise. The resultant mixture was allowed to warm to rt then heated at 50 °C for 48 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was then dissolved in CH₂Cl₂ (10 mL) and the resultant solution was washed with satd aq. NaHCO₃ (3 × 10 mL), then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent, 30–40 °C petrol– Et₂O, 92:8) gave **29** as a colourless oil (20 mg, 48% from **25**, >99:1 dr); $[a]_{D}^{20}$ +11.1 (*c* 1.0 in CHCl₃).

X-ray crystal structure determination for 29

Data were collected using a Nonius κ -CCD diffractometer with graphite monochromated Mo-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **29** [$C_{18}H_{29}NO_2$]: M = 291.43, monoclinic, $P2_1$, a = 12.4852(2) Å, b = 9.9345(2) Å, c = 15.0329(3)Å, $\beta = 100.0163(9)^\circ$, V = 1836.17(6) Å³, Z = 4, $\mu = 0.067$ mm⁻¹, colourless block, crystal dimensions = $0.27 \times 0.33 \times 0.38$ mm³. A total of 4416 unique reflections were measured for $5 < \theta < 27$ and 4002 reflections were used in the refinement. The final parameters were $wR_2 = 0.109$ and $R_1 = 0.049$ [$I > -3.0\sigma(I$]]. CCDC 982702.†

3'-Methylbut-2'-en-1'-yl (3*R*,α*S*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 30

Step 1. TFA (0.9 mL) was added to a stirred solution of 12^{11} (200 mg, 0.48 mmol, >99:1 dr) in CH₂Cl₂ (1.9 mL) at rt, and the resultant mixture was stirred at rt for 16 h. Satd aq. NaHCO₃ (10 mL) and CH₂Cl₂ (10 mL) were then added and the aqueous layer was extracted with CH₂Cl₂ (10 mL). The combined organic extracts were then concentrated *in vacuo* to give an orange oil (109 mg, >99:1 dr).

Step 2. A solution of the residue (109 mg, >99:1 dr) in MeCN (2 mL) was treated sequentially with DBU (144 µL, 0.96 mmol) and 3,3-dimethylallyl bromide (134 µL, 1.16 mmol) at rt. The resultant mixture was stirred at rt for 17 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (20 mL) and 2.0 M aq. HCl (20 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (30 mL) and brine (30 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 99:1) gave 30 as a colourless oil (115 mg, 56% from 12, >99:1 dr); $[\alpha]_D^{20}$ -9.7 (c 1.0 in CHCl₃); ν_{max} (ATR) 2971, 2933 (C–H), 1731 (C=O); δ_{H} (400 MHz, CDCl₃) 1.15 (3H, d, J 6.7, C(α)Me), 1.51 (3H, s, C(3')Me_A), 1.61 (3H, s, C(3')Me_B), 2.48 (1H, dd, J 14.8, 9.6, C(2)H_A), 2.58 (1H, dd, J 14.8, 5.4, C(2)H_B), 3.56-3.66 (2H, m, NCH₂Ph), 3.92 (1H, q, J 6.7, $C(\alpha)H$), 4.24–4.34 (2H, m, $C(1')H_2$), 4.37 (1H, dd, J 9.6, 5.4, C(3)H), 5.02-5.06 (1H, m, C(2')H), 7.07-7.26 (11H, m, Ph), 7.31–7.34 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.8 $(C(\alpha)Me)$, 17.9 $(C(3')Me_A)$, 25.7 $(C(3')Me_B)$, 37.7 (C(2)), 50.7 (NCH_2Ph) , 56.8 $(C(\alpha))$, 59.5 (C(3)), 61.1 (C(1')), 118.5 (C(2')), 126.5, 126.8, 127.1, 127.8, 128.0, 128.1, 128.1, 128.2 (o,m,p-Ph), 138.7 (C(3')), 141.4, 141.7, 144.0 (*i-Ph*), 171.8 (C(1)); m/z (ESI⁺) 450 ($[M + Na]^+$, 10%), 428 ($[M + H]^+$, 100%); HRMS (ESI⁺) $C_{29}H_{34}NO_2^+([M + H]^+)$ requires 428.2584; found 428.2567.

Methyl (2*S*,3*R*, α *S*)-2-(2'-methylbut-3'-en-2'-yl)-3-[*N*-benzyl-*N*-(α -methylbenzyl)amino]-3-phenylpropanoate 32

Step 1. TMSCl (101 µL, 0.81 mmol) was added dropwise to a solution of 30 (115 mg, 0.27 mmol, >99:1 dr) in PhMe (1 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 0.8 mL, 0.80 mmol) was then added dropwise and the resultant mixture was stirred at -78 °C for 30 min. The reaction mixture was heated at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (10 mL) and 1.0 M aq. HCl (10 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic extracts were washed with brine (25 mL), then dried and concentrated in vacuo to give 31 as a pale orange solid (117 mg, 90:10 dr). Purification of an aliquot via flash column chromatography (eluent 30-40 °C petrol-acetone, 95:5) gave 31 as a white solid (>99:1 dr); $\nu_{\rm max}$ (ATR) 2969 (C–H), 1737 (C=O), 1638, 1602 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.74 (3H, s, C(2')Me_A), 0.75 (3H, s, $C(2')Me_B$, 0.82 (3H, d, J 7.1, $C(\alpha)Me$), 3.21 (1H, d, J 11.1, C(2)H), 3.64 (1H, d, J 13.1, NCH_AH_BPh), 3.95-4.01 (1H, m, C(α)H), 4.14 (1H, d, J 11.1, C(3)H), 4.38 (1H, d, J 13.1, NCH_AH_BPh),

4.42–4.46 (2H, m, C(4') H_2), 5.47 (1H, dd, J 17.2, 11.1, C(3')H), 7.12–7.41 (15H, m, Ph); δ_C (100 MHz, CDCl₃) 12.1 (C(α)Me), 24.9, 26.3 (C(2')Me₂), 38.3 (C(2')), 51.3 (NCH₂Ph), 56.4 (C(α)), 58.5 (C(2)), 59.9 (C(3)), 110.7 (C(4')), 127.0, 127.1, 127.7, 127.7, 128.3, 129.1, 129.3 (*o*,*m*,*p*-Ph), 138.7, 139.1, 141.5 (*i*-Ph), 145.5 (C(3')), 178.3 (C(1)); *m*/*z* (ESI⁺) 450 ([M + Na]⁺, 5%), 428 ([M + H]⁺, 100%); *m*/*z* (ESI⁻) 426 ([M – H]⁻, 100%); HRMS (ESI⁺) C₂₉H₃₄NO₂⁺ ([M + H]⁺) requires 428.2584; found 428.2570.

Step 2. A solution of the residue of 31 (117 mg, 90:10 dr) in MeCN (1.2 mL) was treated sequentially with DBU (40 µl, 0.27 mmol) and MeI (40 µL, 0.64 mmol) at rt. The reaction mixture was stirred at rt for 8 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (5 mL) and 2.0 M aq. HCl (5 mL) and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (15 mL) and brine (15 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 32 as a colourless oil (60 mg, 50% from 30, >99:1 dr); $\left[\alpha\right]_{D}^{20}$ +21.4 (c 1.0 in CHCl₃); ν_{max} (ATR) 3027, 2969 (C–H), 1737 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.58 (3H, s, C(2')Me_A), 0.65 (3H, s, C(2')Me_B), 0.78 (3H, d, J 7.1, C(α)Me), 3.21 (1H, d, J 11.4, C(2)H), 3.27 (3H, br s, OMe), 3.53 (1H, d, J 13.6, NCH_AH_BPh), 4.10 (1H, d, J 11.4, C(3)H), 4.11-4.16 (2H, m, NCH_A H_B Ph, C(α)H), 4.34–4.41 (2H, m, C(4') H_2), 5.48 (1H, dd, J 17.3, 10.7, C(3')H), 7.10-7.40 (15H, m, Ph); δ_C (100 MHz, $CDCl_3$) 25.5 (C(α)Me), 25.7 (C(2')Me_2), 38.5 (C(2')), 50.6 (OMe), 51.0 (NCH₂Ph), 53.4 ($C(\alpha)$), 55.5 (C(2)), 60.1 (C(3)), 110.3 (C(4')), 126.2, 126.7, 127.4, 127.6, 127.8, 128.2, 128.9 (o,m,p-Ph), 139.1, 139.6 (*i-Ph*), 145.7 (*C*(3')), 173.0 (*C*(1)); m/z (ESI⁺) 464 $([M + Na]^+, 20\%), 442 ([M + H]^+, 100\%); HRMS (ESI^+)$ $C_{30}H_{36}NO_2^+$ ([M + H]⁺) requires 442.2741; found 442.2724.

(*E*)-But-2'-en-1'-yl (3*R*,α*S*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 33

Step 1. TFA (4.6 mL) was added to a solution of 12^{11} (1.00 g, 2.41 mmol, >99:1 dr) in CH₂Cl₂ (9.3 mL) at rt, and the resultant mixture was stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) and CH₂Cl₂ (100 mL) were then added and the aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic extracts were then dried and concentrated *in vacuo* to give a yellow oil (1.05 g, >99:1 dr).

Step 2. A solution of the residue (1.05 g, >99:1 dr) in CH_2Cl_2 (10 mL) was treated sequentially with $(COCl)_2$ (0.22 mL, 2.53 mmol) and DMF (8 µL, 0.10 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated *in vacuo*. A solution of (*E*)-but-2-en-1-ol (240 mg, 3.37 mmol, 96:4 dr) was then added to a solution of the residue in CH_2Cl_2 (10 mL) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated to warm to rt and stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic extracts were washed with brine (300 mL), then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (gradient elution, 0% \rightarrow 6% Et₂O in 30–40 °C petrol) gave **33** as a colourless oil (613 mg, 62%, 93:7 dr); $[a]_{20}^{20}$ –16.1

(c 0.5 in CHCl₃); ν_{max} (ATR) 3028 (C–H), 1732 (C=O), 1493 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.14 (3H, d, J 6.8, C(a)*Me*), 1.56 (3H, d, J 6.8, C(4')*H*₃), 2.48 (1H, dd, J 14.6, 9.4, C(2)*H*_A), 2.59 (1H, dd, J 14.6, 5.4, C(2)*H*_B), 3.57 (1H, d, J 14.6, NCH_AH_BPh), 3.65 (1H, d, J 14.6, NCH_A*H*_BPh), 3.92 (1H, q, J 6.8, C(a)*H*), 4.19–4.24 (2H, m, C(1')*H*₂), 4.36 (1H, dd, J 9.4, 5.4, C(3)*H*), 5.23–5.30 (1H, m, C(2')*H*), 5.47–5.55 (1H, m, C(3')*H*), 7.06–7.26 (11H, m, *Ph*), 7.31–7.34 (4H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.7 (C(a)*Me*), 17.7 (*C*(4')), 37.7 (*C*(2)), 50.7 (NCH₂Ph), 56.7 (*C*(a))), 59.4 (*C*(3)), 64.9 (*C*(1')), 124.9 (*C*(2')), 126.5, 126.8, 127.2, 127.8, 128.0, 128.1, 128.1, 128.2 (*o*,*m*,*p*-*Ph*), 130.9 (*C*(3')), 141.4, 141.7, 144.0 (*i*-*Ph*), 171.5 (*C*(1)); *m*/z (ESI⁺) 414 ([M + H]⁺, 100%); HRMS (ESI⁺) C₂₈H₃₂NO₂⁺ ([M + H]⁺) requires 414.2428; found 414.2418.

(*E*)-3'-Phenylprop-2'-en-1'-yl (3*R*,α*S*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 34

Step 1. TFA (8 mL) was added to a solution of 12^{11} (1.70 g, 4.09 mmol, >99 : 1 dr) in CH₂Cl₂ (16 mL) at rt and the resultant mixture was stirred at rt for 16 h. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and washed with NaHCO₃ (100 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL) and the combined organic extracts were then dried and concentrated *in vacuo* to give a yellow oil (1.75 g, >99 : 1 dr).

Step 2. A solution of the residue (1.75 g, >99:1 dr) in CH_2Cl_2 (18 mL) was treated sequentially with (COCl)₂ (0.37 μ L, 4.29 mmol) and DMF (14 µL, 0.18 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated in vacuo. A solution of (E)-3-phenylprop-2-en-1-ol (770 mg, 5.73 mmol, >99:1 dr) was then added to a solution of the residue in CH₂Cl₂ (18 mL) at 0 °C. The reaction mixture was allowed to warm to rt and stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic extracts were washed with brine (300 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 6\%$ Et₂O in 30-40 °C petrol) gave 34 as a colourless oil (1.47 g, 76%, >99:1 dr); $[\alpha]_{\rm D}^{20}$ -14.6 (c 1.0 in CHCl₃); ν_{max} (ATR) 3027, 2935 (C–H), 1732 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.33 (3H, d, J 6.9, C(α)Me), 2.72 (1H, dd, J 14.6, 9.6, C(2)H_A), 2.82 (1H, dd, J 14.6, 5.8, C(2)H_B), 3.77 (1H, d, J 14.6, NCH_AH_BPh), 3.85 (1H, d, J 14.6, NCH_A H_B Ph), 4.12 (1H, q, J 6.9, C(α)H), 4.57–4.67 (3H, m, C(3)H, C(1')H₂), 6.09-6.16 (1H, dt, J 15.8, 6.4, C(2')H), 6.56 (1H, d, I 15.8, C(3')H), 7.25-7.44 (16H, m, Ph), 7.52-7.54 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.8 (C(α)*Me*), 37.7 (*C*(2)), 50.7 (N*C*H₂Ph), 56.7 $(C(\alpha))$, 59.4 (C(3)), 64.8 (C(1')), 123.1 (C(2')), 126.5, 126.6, 126.8, 127.2, 127.8, 127.9, 128.0, 128.0, 128.1, 128.1, 128.2, 128.5, (o,m,p-Ph), 133.8 (C(3')), 136.2, 141.3, 141.6, 144.0 (i-Ph), 171.5 (C(1)); m/z (ESI⁺) 476 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{33}H_{33}NNaO_2^+$ ([M + Na]⁺) requires 498.2404; found 498.2388.

Methyl (2*S*,3*R*,1'*S*,α*S*)-2-(1'-phenylprop-2'-en-1'-yl)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 39

Method A (from 42) – step 1. TMSCl (780 μ L, 6.18 mmol) was added dropwise to a solution of 42 (980 mg, 2.06 mmol,

>99:1 dr) in PhMe (9.8 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 6.31 mL, 6.31 mmol) was added dropwise at -78 °C and the resultant mixture was stirred at -78 °C for 15 min. The reaction mixture was then heated at reflux for 1 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂ (200 mL) and 1.0 M aq. HCl (150 mL), and the aqueous layer was extracted with CH₂Cl₂ (2 × 200 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated *in vacuo* to give 37 as an off-white solid (962 mg, 90:10 dr).

Method A - step 2 (for 37). A solution of the residue of 37 (962 mg, 90:10 dr) in MeCN (9.8 mL) was treated sequentially with DBU (0.62 mL, 4.12 mmol) and MeI (0.28 mL, 4.53 mmol) at rt. The resultant mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (50 mL) and 2.0 M aq. HCl (50 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (100 mL) and brine (100 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 39 as a colourless oil (487 mg, 48% from 42, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +28.9 (c 1.0 in CHCl₃); ν_{max} (ATR) 3027, 2946 (C-H), 1736 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.83 (3H, d, J 6.9, C(α)Me), 2.96 (1H, dd, J 9.6, 4.4, C(1')H), 3.20 (3H, s, OMe), 3.49 (1H, d, J 14.0, NCH_AH_BPh), 3.53 (1H, dd, J 11.7, 4.4, C(2)H), 4.01 (1H, d, J 14.0, NCH_AH_BPh), 4.15 (1H, d, J 11.7, C(3)H), 4.16 (1H, q, J 6.9, C(α)H), 4.36 (1H, dd, J 16.9, 1.7, C(3') H_A), 4.80 (1H, dd, J 10.0, 1.7, C(3') $H_{\rm B}$, 6.22 (1H, app dt, J 16.9, 10.0, C(2')H), 6.87-6.89 (2H, m, Ph), 6.99-7.33 (18H, m, Ph); δ_C (100 MHz, CDCl₃) 15.1 (C(a)Me), 49.3 (C(1')), 50.8 (OMe), 50.9 (NCH₂Ph), 54.5 (C(2)), 55.5 ($C(\alpha)$), 61.7 (C(3)), 117.7 (C(3')), 126.3, 126.4, 126.8, 127.3, 127.6, 127.7, 127.9, 128.1, 128.3, 128.3, 129.0, 129.6 (o,m,p-Ph), 135.5 (C(2')), 137.4, 139.6, 142.7, 144.3 (i-Ph), 172.6 (C(1)); m/z (ESI⁺) 490 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{34}H_{35}NNaO_2^+$ ([M + Na]⁺) requires 512.2560; found 512.2541.

Method B (from 34) - step 1. TMSCl (956 µL, 7.57 mmol) was added dropwise to a solution of 34 (1.20 g, 2.52 mmol, >99:1 dr) in PhMe (12 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 7.57 mL, 7.57 mmol) was added dropwise at -78 °C and the resultant mixture was stirred at -78 °C for 15 min. The reaction mixture was heated at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was then partitioned between CH₂Cl₂ (200 mL) and 1.0 M aq. HCl (150 mL), and the aqueous layer was extracted with CH₂Cl₂ $(2 \times 200 \text{ mL})$. The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo to give a 70:30 mixture of 37 and 38. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 8\%$ acetone in 30-40 °C petrol) gave 37 as a white solid (632 mg, >99:1 dr); mp 77–79 °C; $[\alpha]_{D}^{20}$ +57.5 (c 1.0 in CHCl₃); ν_{max} (ATR) 3028, 2971 (C-H), 1704 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.95 (3H, d, J 7.0, C(α)Me), 3.03 (1H, dd, J 9.9, 3.4, C(1')H), 3.51 (1H, dd, J 11.7, 3.4, C(2)H), 3.58 (1H, d, J 13.5, NCH_AH_BPh),

4.07 (1H, q, J 7.0, C(α)H), 4.19 (1H, d, J 13.5, NCH_AH_BPh), 4.23 (1H, d, J 11.7, C(3)H), 4.52 (1H, dd, J 17.1, 1.8, C(3')H_A), 4.87 (1H, dd, J 9.9, 1.8, C(3')H_B), 6.09 (1H, app dt, J 17.1, 9.9, C(2')H), 6.98-7.01 (3H, m, Ph), 7.06-7.14 (5H, m, Ph), 7.16-7.21 (3H, m, Ph), 7.36–7.39 (9H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.5 $(C(\alpha)Me)$, 48.6 (C(1')), 51.0 (NCH_2Ph) , 52.3 (C(2)), 56.9 $(C(\alpha))$, 61.5 (C(3)), 118.0 (C(3')), 126.3, 127.3, 127.3, 127.4, 128.0, 128.1, 128.3, 128.5, 128.5, 128.6, 129.2, 129.9 (o,m,p-Ph), 135.9 (C(2')), 136.8, 137.5, 141.2, 142.6 (i-Ph), 176.1 (C(1)); m/z (ESI⁺)476 ($[M + H]^+$, 100%); HRMS (ESI⁺) $C_{33}H_{34}NO_2^+$ ($[M + H]^+$) requires 476.2584; found 476.2571. Further elution (eluent 30-40 °C petrol-acetone, 92:8) gave 38 as a yellow oil (175 mg, >99:1 dr); $[\alpha]_{D}^{20}$ +39.2 (c 1.0 in CHCl₃); ν_{max} (ATR) 3029, 2928 (C-H), 1707 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.96 (3H, d, J 7.0, C(α)Me), 3.05 (1H, dd, J 7.7, 3.6, C(1')H), 3.33 (1H, dd, J 11.4, 3.6, C(2)H), 3.55 (1H, d, J 13.2, NCH_AH_BPh), 4.03 (1H, q, J 7.0, C(α)H), 4.12 (1H, d, J 13.2, NCH_AH_BPh), 4.16 (1H, app d, J 11.4, C(3)H), 4.55 (1H, app d, J 17.1, C(3')H_A), 4.77 (1H, d, J 10.0, C(3')H_B), 6.30-6.38 (1H, m, C(2')H), 6.75-6.78 (2H, m, Ph), 6.94-7.02 (3H, m, Ph), 7.09-7.28 (12H, m, Ph), 7.35-7.41 (3H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.7 (C(α)Me), 49.5 (C(1')), 50.5 (*C*(2)), 51.1 (NCH₂Ph), 57.9 (*C*(α)), 60.9 (*C*(3)), 113.9 (*C*(3')), 126.4, 128.0, 128.0, 128.1, 128.4, 128.6, 128.6, 128.8, 128.8, 128.8, 129.5, 130.1 (o,m,p-Ph), 135.0, 135.2, 138.9, 139.5 (i-Ph), 141.2 (C(2')), 174.0 (C(1)); m/z (ESI⁺) 476 ([M + H]⁺, 100%); HRMS $(ESI^{+}) C_{33}H_{34}NO_{2}^{+} ([M + H]^{+})$ requires 476.2584; found 476.2579.

Method B – step 2 (for 37). A solution of 37 (472 mg) in MeCN (4.7 mL) was treated sequentially with DBU (296 μ L, 1.98 mmol) and MeI (135 μ L, 2.18 mmol) at rt. The reaction mixture was stirred at rt for 16 h, then concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂ (50 mL) and 2.0 M aq. HCl (50 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (100 mL) and brine (100 mL), then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30–40 °C petrol– Et₂O, 98:2) gave **39** as a colourless oil (350 mg, 38% from **34**, >99:1 dr).

Method B - step 2 (for 38). A solution of 38 (150 mg) in MeCN (1.5 mL) was treated sequentially with DBU (94 µL, 0.63 mmol) and MeI (43 µL, 0.69 mmol) at rt. The reaction mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (10 mL) and 2.0 M aq. HCl (10 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (40 mL) and brine (40 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 40 as a colourless oil (133 mg, 13% from 34, >99:1 dr); $\left[\alpha\right]_{D}^{20}$ +33.1 (c 1.0 in CHCl₃); ν_{max} (ATR) 3028, 2946 (C–H), 1739 (C=O), 1494 (C=C); δ_H (400 MHz, CDCl₃) 0.98 (3H, d, $J 6.9, C(\alpha)Me$, 3.28 (3H, s, OMe), 3.38 (1H, app t, J 8.1, C(1')H), 3.67 (1H, d, J 13.9, NCH_AH_BPh), 3.83 (1H, dd, J 11.2, 8.1, C(2)H), 4.18 (1H, d, J 13.9, NCH_AH_BPh), 4.24 (1H, d, J 11.2, C(3)H), 4.32 (1H, q, J 6.9, $C(\alpha)H$), 4.58–4.68 (2H, m, $C(3')H_2$), 5.55–5.64

(1H, m, C(2')*H*), 7.01–7.03 (2H, m, *Ph*), 7.15–7.47 (18H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.4 (C(α)*Me*), 50.8 (O*Me*), 50.9 (NCH₂Ph), 51.4 (*C*(1')), 54.0 (*C*(2)), 55.9 (*C*(α)), 62.3 (*C*(3)), 114.4 (*C*(3')), 126.2, 126.3, 126.6, 127.4, 127.7, 127.7, 127.8, 128.0, 128.1, 128.4, 128.9, 129.9 (*o*,*m*,*p*-*Ph*), 138.2, 139.0, 139.6 (*i*-*Ph*), 141.1 (*C*(2')), 144.4 (*i*-*Ph*), 172.6 (*C*(1)); *m*/*z* (ESI⁺) 490 ([M + H]⁺, 100%); HRMS (ESI⁺) C₃₄H₃₆NO₂⁺ ([M + H]⁺) requires 490.2741; found 490.2750.

X-ray crystal structure determination for 37

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structures was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for 37 [$C_{34.5}H_{36}NO_{2.5}$]: M = 504.67, orthorhombic, $P2_12_12_1$, a = 12.3150(1) Å, b = 15.4817(2) Å, c = 29.8308(3) Å, V = 5687.45(10) Å³, Z = 8, $\mu = 0.571$ mm⁻¹, colourless plate, crystal dimensions = $0.15 \times 0.21 \times 0.26$ mm³. A total of 11 951 unique reflections were measured for $3 < \theta < 77$ and 11 907 reflections were used in the refinement. The final parameters were $wR_2 = 0.118$ and $R_1 = 0.045$ [$I > -3.0\sigma(I)$], with Flack enantiopole = 0.02(16).¹⁷ CCDC 982703.[†]

(Z)-But-2'-en-1'-yl (3*R*,α*S*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 41

Step 1. TFA (7 mL) was added to a solution of 12^{11} (1.60 g, 3.85 mmol, >99:1 dr) in CH₂Cl₂ (15 mL) at rt and the resultant mixture was stirred at rt for 16 h. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and washed with NaHCO₃ (100 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL) and the combined organic extracts were then dried and concentrated *in vacuo* to give a yellow oil (1.58 g, >99:1 dr).

Step 2. A solution of the residue (1.58 g, >99:1 dr) in CH_2Cl_2 (16 mL) was treated sequentially with $(COCl)_2$ (0.35 mL, 4.05 mmol) and DMF (13 µL, 0.17 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated in vacuo. A solution of (Z)-but-2-en-1-ol^{10,34} (0.39 g, 5.39 mmol, >99:1 dr) was then added to a solution of the residue in CH₂Cl₂ (16 mL) at 0 °C. The reaction mixture was allowed to warm to rt and stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic extracts were washed with brine (300 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 7\%$ Et₂O in 30–40 °C petrol) gave 41 as a colourless oil (960 mg, 60%, >99:1 dr); $[\alpha]_{D}^{20}$ -8.0 (c 1.0 in CHCl₃); ν_{max} (ATR) 3028 (C–H), 1732 (C=O), 1493 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.25 (3H, d, J 6.8, C(α)Me), 1.61–1.63 (3H, m, $C(4')H_3$), 2.59 (1H, dd, J 14.6, 9.4, $C(2)H_A$), 2.69 (1H, dd, J 14.6, 5.6, $C(2)H_B$), 3.68 (1H, d, J 14.8, NCH_AH_BPh), 3.75 (1H, d, J 14.8, NCH_AH_BPh), 4.02 (1H, q, J 6.8, C(α)H), 4.40-4.51 (3H, m, C(3)H, C(1')H₂), 5.31-5.38 (1H, m, C(2')H, 5.61–5.70 (1H, m, C(3')H), 7.17–7.37 (11H, m, Ph),

7.41–7.45 (4H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.0 (*C*(4')), 15.8 (C(α)*Me*), 37.6 (*C*(2)), 50.7 (NCH₂Ph), 56.7 (*C*(α)), 59.4 (*C*(3)), 59.9 (*C*(1')), 124.1 (*C*(2')), 126.5, 126.8, 127.1, 127.8, 128.0, 128.0, 128.1, 128.1, 128.2 (*o*,*m*,*p*-*Ph*), 129.3 (*C*(3')), 141.4, 141.7, 144.0 (*i*-*Ph*), 171.6 (*C*(1)); *m*/*z* (ESI⁺) 414 ([M + H]⁺, 100%); HRMS (ESI⁺) C₂₈H₃₁NNaO₂⁺ ([M + Na]⁺) requires 436.2247; found 436.2234.

(Z)-3'-Phenylprop-2'-en-1'-yl (3R,αS)-3-[N-benzyl-N-(α-methylbenzyl)amino]-3-phenylpropanoate 42

Step 1. TFA (2 mL) was added to a solution of 12^{11} (500 mg, 1.20 mmol, >99 : 1 dr) in CH₂Cl₂ (4 mL) at rt and the resultant mixture was stirred at rt for 16 h. The reaction mixture was then diluted with CH₂Cl₂ (50 mL) and washed with NaHCO₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic extracts were then dried and concentrated *in vacuo* to give a yellow oil (475 mg, >99 : 1 dr).

Step 2. A solution of the residue (475 mg, >99:1 dr) in CH_2Cl_2 (5 mL) was treated sequentially with (COCl)₂ (108 μ L, 1.26 mmol) and DMF (4 µL, 0.05 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated in vacuo. A solution of (Z)-3-phenylprop-2-en-1-ol^{10,35,36} (226 mg, 1.69 mmol, >99:1 dr) was then added to a solution of the residue in CH₂Cl₂ (5 mL) at 0 °C. The reaction mixture was allowed to warm to rt and stirred at this temperature for 16 h. Sat aq. NaHCO₃ (50 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 10\%$ Et₂O in 30-40 °C petrol) gave 42 as a colourless oil (342 mg, 60%, >99:1 dr); $[\alpha]_{\rm D}^{20}$ -12.1 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 3027, 2969 (C-H), 1733 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.12 (3H, d, J 6.9, C(α)Me), 2.51 (1H, dd, J 14.7, 9.4, C(2)H_A), 2.60 (1H, dd, J 14.7, 5.6, C(2)H_B), 3.57 (1H, d, J 14.8, NCH_AH_BPh), 3.64 (1H, d, J 14.8, NCH_AH_BPh), 3.91 (1H, q, J 6.9, C(α)H), 4.37 (1H, dd, J 9.4, 5.6, C(3)H), 4.51-4.60 (2H, m, C(1')H₂), 5.45 (1H, dt, J 11.7, 6.6, C(2')H), 6.44-6.47 (1H, m, C(3')H), 7.02-7.25 (16H, m, Ph), 7.31–7.33 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.9 $(C(\alpha)Me)$, 37.5 (C(2)), 50.7 (NCH_2Ph) , 56.7 $(C(\alpha))$, 59.3 (C(3)), 61.3 (C(1')), 125.7 (C(2')), 126.6, 126.8, 127.2, 127.4, 127.8,128.0, 128.0, 128.1, 128.1, 128.2, 128.3, 128.6 (o,m,p-Ph), 132.6 (C(3')), 135.9, 141.3, 141.6, 143.9 (i-Ph), 171.5 (C(1)); m/z (ESI⁺)476 ($[M + H]^+$, 100%); HRMS (ESI⁺) C₃₃H₃₃NNaO₂⁺ ($[M + Na]^+$) requires 498.2404; found 498.2382.

Methyl (2*S*,3*R*,1′*S*,α*S*)-2-(but-3′-en-2′-yl)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-3-phenylpropanoate 44

Step 1. TMSCl (541 μ L, 5.08 mmol) was added dropwise to a solution of 41 (590 mg, 1.69 mmol, >99 : 1 dr) in PhMe (7 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 4.28 mL, 4.28 mmol) was added dropwise at -78 °C and the resultant mixture was stirred at -78 °C for 15 min. The reaction mixture was then heated at reflux for 1 h, then allowed to cool to rt and concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂

(200 mL) and 1.0 M aq. HCl (150 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 200 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo to give 43 as an orange oil (582 mg, 96:4 dr); $[\alpha]_{D}^{20}$ +59.4 (c 1.0 in CHCl₃); ν_{max} (ATR) 3029, 2965 (C–H), 1704 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.13–1.19 (6H, m, $C(1')H_3$, $C(\alpha)Me$, 1.94–2.02 (1H, m, C(2')H), 3.11 (1H, dd, J 11.6, 2.5, C(2)H), 3.66 (1H, d, J 13.4, NCH_AH_BPh), 4.16 (1H, q, J 6.9, C(α)H), 4.23–4.28 (2H, m, NCH_A H_B Ph, C(3)H), 4.47–4.51 $(1H, m, C(4')H_A), 4.70-4.73 (1H, m, C(4')H_B), 5.58-5.67 (1H, m, m)$ C(3')H, 7.25–7.49 (15H, m, Ph); δ_C (125 MHz, CDCl₃) 13.9 $(C(\alpha)Me)$, 20.1 (C(1')), 38.1 (C(2')), 50.8 (C(2)), 51.1 (NCH_2Ph) , 57.5 (*C*(α)), 61.4 (*C*(3)), 115.5 (*C*(4')), 127.6, 128.2, 128.3, 128.6, 128.7, 129.4, 130.0 (o,m,p-Ph), 136.4, 136.6 (i-Ph), 139.2 (C(3')), 140.4 (*i-Ph*), 175.5 (*C*(1)); m/z (ESI⁺) 414 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{28}H_{32}NO_2^+$ ([M + H]⁺) requires 414.2428; found 414.2432.

Step 2. A solution of the residue of 43 (582 mg, 96:4 dr) in MeCN (5.9 mL) was treated sequentially with DBU (0.51 mL, 3.39 mmol) and MeI (0.23 mL, 3.73 mmol) at rt. The resultant mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (50 mL) and 2.0 M aq. HCl (50 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (100 mL) and brine (100 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 44 as a colourless oil (517 mg, 85%, 96:4 dr); $[\alpha]_{D}^{20}$ +98.2 (c 1.0 in CHCl₃); ν_{max} (ATR) 3027, 2968 (C-H), 1736 (C=O), 1494 (C=C); δ_H (400 MHz, CDCl₃) 0.78 (3H, d, J 7.1, C(1')H₃), 0.85 (3H, d, J 6.9, C(α)Me), 1.79-1.88 (1H, m, C(2')H), 3.22 (1H, dd, J 12.0, 4.2, C(2)H), 3.43 (3H, s, OMe), 3.46 (1H, d, J 14.2, NCH_AH_BPh), 3.98 (1H, d, J 14.2, NCH_AH_BPh), 4.06 (1H, d, J 12.0, C(3)H), 4.13 (1H, q, J 6.9, C(α)H), 4.22-4.27 (1H, m, C(4')H_A), 4.62 (1H, dd, J 10.0, 2.0, C(4')H_B), 5.62 (1H, app dt, J 17.2, 10.0, C(3')H), 7.08-7.17 (4H, m, Ph), 7.19-7.29 (11H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.2 (C(α)Me), 19.6 (C(1')), 37.5 (C(2')), 50.7 (NCH_2Ph) , 50.8 (OMe), 53.4 (C(2)), 55.8 $(C(\alpha))$, 61.5 (C(3)), 115.2 (C(4')), 126.3, 126.6, 127.3, 127.6, 127.9,128.0, 128.1, 128.9, 129.5 (o,m,p-Ph), 137.7 (i-Ph), 138.8 (C(3')), 139.8, 144.3 (*i-Ph*), 172.9 (*C*(1)); m/z (ESI⁺) 428 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{29}H_{34}NO_2^+$ ([M + H]⁺) requires 428.2584; found 428.2583.

Methyl (2S,3R,1'S)-2-(but-2'-yl)-3-amino-3-phenylpropanoate 45

Pd(OH)₂/C (100 mg, 50% w/w by substrate) was added to a degassed solution of 44 (200 mg, 0.47 mmol, 96:4 dr) in MeOH (6 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 24 h. The reaction mixture was then filtered through Celite® (eluent MeOH) and concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (15 mL) and the resultant solution was washed with satd aq. NaHCO₃ (15 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL) and the combined organic extracts were then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent CHCl₃–MeOH, 99:1) gave 45 as a colourless oil (83 mg, 76%, 96:4 dr); $[\alpha]_{\rm D}^{20}$ +33.7 (*c* 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 3386 (N–H), 2963 (C–H), 1727 (C=O), 1154; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.81 (3H, t, *J* 7.4, C(4')*H*₃), 0.96 (3H, d, *J* 6.7, C(1')*H*₃), 0.99–1.07 (1H, m, C(3')*H*_A), 1.45–1.60 (2H, m, C(2')*H*, C(3')*H*_B), 1.70 (2H, br s, N*H*₂), 2.57 (1H, dd, *J* 7.8, 6.7, C(2)*H*), 3.59 (3H, s, O*Me*), 4.26 (1H, d, *J* 7.8, C(3)*H*), 7.24–7.28 (3H, m, *Ph*), 7.30–7.36 (2H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.6 (*C*(4')), 17.2 (*C*(1')), 25.8 (*C*(3')), 34.2 (*C*(2')), 51.0 (O*Me*), 55.1 (*C*(3)), 59.4 (*C*(2)), 126.3, 127.1, 128.4 (*o*,*m*,*p*-*Ph*), 144.2 (*i*-*Ph*), 174.6 (*C*(1)); *m*/z (ESI⁺) 236 ([M + H]⁺, 100%); HRMS (ESI⁺) C₁₄H₂₂NO₂⁺ ([M + H]⁺) requires 236.1645; found 236.1643.

Methyl (2*S*,3*R*,1'*S*)-2-(1'-phenylpropyl)-3-amino-3-phenylpropanoate 46

Pd(OH)₂/C (200 mg, 50% w/w by substrate) was added to a degassed solution of 39 (400 mg, 0.82 mmol, >99:1 dr) in MeOH (12 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 24 h. The reaction mixture was then filtered through Celite® (eluent MeOH) and the filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (15 mL) and the resultant solution was washed with satd aq. NaHCO₃ (15 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL), then the combined organic extracts were dried and concentrated in vacuo. Purification via flash column chromatography (eluent CHCl₃-ⁱPrOH, 99:1) gave 46 as a pale yellow oil (184 mg, 76%, >99 : 1 dr); $[\alpha]_{D}^{20}$ +4.2 (c 1.0 in CHCl₃); ν_{max} (ATR) 3397 (N–H), 3027, 2962 (C–H), 1725 (C=O); δ_H (400 MHz, CDCl₃) 0.59 (3H, t, J 7.3, C(3')H₃), 1.44–1.56 (2H, m, $C(2')H_2$, 1.66 (2H, br s, NH₂), 2.89 (1H, app td, J 10.0, 4.4, C(2)H), 2.91-2.97 (1H, m, C(1')H), 3.39 (3H, s, OMe), 3.66 (1H, d, J 4.4, C(3)H), 7.02-7.05 (2H, m, Ph), 7.08-7.12 (1H, m, Ph), 7.15–7.20 (5H, m, Ph), 7.25–7.29 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz, $CDCl_3$ 12.0 (C(3')), 27.2 (C(2')), 47.3 (C(1')), 51.0 (OMe), 54.8 (C(3)), 59.4 (C(2)), 125.8, 126.7, 126.8, 128.0, 128.2, 128.6 (o,m,p-Ph), 141.7, 144.3 (i-Ph), 174.4 (C(1)); m/z (ESI⁺) 298 $([M + H]^+, 100\%);$ HRMS (ESI^+) $C_{19}H_{23}NNaO_2^+$ $([M + Na]^+)$ requires 320.1621; found 320.1611.

(2S,3R,1'S)-2-(But-2'-yl)-3-amino-3-phenylpropanoic acid 47

A solution of 45 (63 mg, 0.27 mmol, 96 : 4 dr) in 6.0 M aq. HCl (8.8 mL) was heated at reflux for 5 days. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in H₂O (2 mL) and purified on DOWEX 50WX8 ion exchange resin (hydrogen form, 100-200 mesh, eluent 1.0 M aq. NH₄OH) to give 47 as a white solid (54 mg, 91%, 96:4 dr); mp 190–192 °C; $[\alpha]_{\rm D}^{20}$ +27.1 (c 0.3 in H₂O); $\nu_{\rm max}$ (ATR) 3604, 2965 (C–H), 1649 (C=O), 1498 (C=C); $\delta_{\rm H}$ (400 MHz, MeOH-d₄) 0.88 (3H, t, J 7.2, C(4')H₃), 1.10 (3H, d, J 6.8, $C(1')H_3$, 1.06–1.17 (1H, m, $C(3')H_A$), 1.50–1.64 (2H, m, C(2')H, $C(3')H_B$, 2.49–2.52 (1H, m, C(2)H), 4.51 (1H, d, J 6.4, C(3)H), 7.38–7.52 (5H, m, Ph); $\delta_{\rm C}$ (100 MHz, MeOH- d_4) 12.3 (C(4')), 17.7 (C(1')), 27.7 (C(3')), 36.1 (C(2')), 56.1 (C(3)), 59.1(C(2)), 128.5, 130.0, 130.3 (o,m,p-Ph), 139.0 (i-Ph), 179.4 (C(1)); m/z (ESI⁺) 222 ([M + H]⁺, 100%); HRMS (ESI⁺) C₁₃H₁₉NNaO₂ $([M + Na]^{+})$ requires 244.1308; found 244.1314.

(2*S*,3*R*,1'*S*)-2-(1'-Phenylpropyl)-3-amino-3-phenylpropanoic acid 48

A solution of 46 (73 mg, 0.24 mmol, >99:1 dr) in 6.0 M aq. HCl (10 mL) was heated at reflux for 5 days. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in H₂O (2 mL) and purified on DOWEX 50WX8 ion exchange resin (hydrogen form, 100-200 mesh, eluent 1.0 M aq. NH₄OH) to give 48 as a white solid (61 mg, 88%, >99:1 dr); mp 209–211 °C (sub); $[\alpha]_{\rm D}^{20}$ -19.6 (c 0.2 in H₂O); ν_{max} (ATR) 2957 (C-H), 1613, 1571, 1496; δ_H (500 MHz, D₂O) 0.57 (3H, t, J 7.3, C(3')H₃), 1.47-1.56 (1H, m, C(2')H_A), 1.60-1.67 (1H, m, C(2')H_B), 2.71 (1H, td, J 10.8, 3.7, C(1')H), 2.84 (1H, dd, J 10.8, 3.7, C(2)H), 4.05 (1H, d, J 3.7, C(3)H), 7.10-7.12 (2H, m, Ph), 7.27-7.34 (6H, m, Ph), 7.36-7.39 (2H, m, Ph); δ_{C} (125 MHz, D₂O) 11.1 (C(3')), 27.1 (C(2')), 47.1 (C(1')), 54.1 (C(3)), 58.6 (C(2)), 126.0, 127.1, 128.5, 128.8, 129.0, 129.1 (*o*,*m*,*p*-*Ph*), 136.3, 141.3 (*i*-*Ph*), 179.1 (*C*(1)); *m*/*z* (ESI⁺) 284 $([M + H]^+, 100\%);$ HRMS (ESI⁺) $C_{18}H_{22}NO_2^+$ ($[M + H]^+$) requires 284.1645; found 284.1645.

(Z)-Pent-2'-en-1'-yl (3R, α S,E)-3-[N-benzyl-N-(α -methyl-benzyl)-amino]hex-4-enoate 66

Step 1. TFA (8 mL) was added to a solution of 64^{29a} (2.00 g, 5.27 mmol, >99:1 dr) in CH₂Cl₂ (16 mL) at rt and the resultant mixture was stirred at rt for 16 h. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and washed with NaHCO₃ (100 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL) and the combined organic extracts were then dried and concentrated *in vacuo* to give a yellow oil (1.97 g, >99:1 dr).

Step 2. A solution of the residue (1.97 g, >99:1 dr) in CH₂Cl₂ (21 mL) was treated sequentially with (COCl)₂ (0.53 mL, 6.18 mmol) and DMF (18 µL, 0.24 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated in vacuo. A solution of (Z)-pent-2-en-1-ol³⁷ (0.72 g, 8.41 mmol, >99:1 dr) in CH₂Cl₂ (2 mL) was then added to a solution of the residue in CH₂Cl₂ (21 mL) at 0 °C. The reaction mixture was allowed to warm to rt and stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic extracts were washed with brine (300 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 66 as a colourless oil (1.30 g, 54%, >99:1 dr); $[\alpha]_{D}^{20}$ +5.8 (c 1.0 in CHCl₃); ν_{max} (ATR) 2966 (C–H), 1733 (C=O), 1494 (C=C); δ_{H} (400 MHz, CDCl₃) 0.89 (3H, t, J 7.5, C(5')H₃), 1.29 (3H, d, J 6.9, C(α)Me), 1.61 (3H, d, J 5.4, C(6)H₃), 1.99 (2H, qdd, J 7.5, 7.5, 1.3, C(4')H₂), 2.23 (1H, dd, J 14.2, 8.2, C(2)H_A), 2.38 (1H, dd, J 14.2, 6.6, C(2)H_B), 3.57 (1H, d, J 14.6, NCH_AH_BPh), 3.62 (1H, d, J 14.6, NCH_A H_B Ph), 3.69–3.74 (1H, m, C(3)H), 3.92 (1H, q, J 6.9, $C(\alpha)H$, 4.34–4.39 (1H, m, $C(1')H_A$), 4.44–4.49 (1H, m, $C(1')H_B$, 5.26–5.33 (1H, m, C(2')H), 5.39–5.55 (3H, m, C(4)H, C(5)H, C(3')H), 7.09–7.14 (2H, m, Ph), 7.17–7.22 (4H, m, Ph), 7.24–7.29 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (C(5')), 16.8 $(C(\alpha)Me)$, 18.0 (C(6)), 20.8 (C(4')), 38.6 (C(2)), 50.3 (NCH_2Ph) ,

56.7 (*C*(3)), 56.8 (*C*(α)), 60.0 (*C*(1')), 122.9 (*C*(2')), 126.5, 126.6 (*o*,*m*,*p*-*Ph*), 127.1 (*C*(5)), 127.8, 127.9, 128.0, 128.3 (*o*,*m*,*p*-*Ph*), 131.1 (*C*(4)), 136.5 (*C*(3')), 141.3, 144.3 (*i*-*Ph*), 171.7 (*C*(1)); *m*/*z* (ESI⁺) 392 ([M + H]⁺, 100%); HRMS (ESI⁺) C₂₆H₃₄NO₂⁺ ([M + H]⁺) requires 392.2584; found 392.2584.

(*Z*)-4'-Phenylbut-2'-en-1'-yl (3*R*,α*S*,*E*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]hex-4-enoate 67

Step 1. TFA (18 mL) was added to a solution of **64**^{29*a*} (4.13 g, 10.9 mmol, >99:1 dr) in CH₂Cl₂ (33 mL) at rt and the resultant mixture was stirred at rt for 16 h. The reaction mixture was then diluted with CH₂Cl₂ (100 mL) and washed with NaHCO₃ (100 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL) and the combined organic extracts were then dried and concentrated *in vacuo* to give a yellow oil (4.31 g, >99:1 dr).

Step 2. A solution of the residue (4.31 g, >99:1 dr) in CH_2Cl_2 (43 mL) was treated sequentially with (COCl)₂ (0.98 mL, 11.4 mmol) and DMF (33 µL, 0.43 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated in vacuo. A solution of (Z)-4-phenylbut-2-en-1-ol³⁸ (2.26 g, 15.3 mmol, >99:1 dr) was then added to a solution of the residue in CH₂Cl₂ (43 mL) at 0 °C. The reaction mixture was allowed to warm to rt and stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic extracts were washed with brine (300 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 5\%$ Et₂O in 30-40 °C petrol) gave 67 as a colourless oil (3.04 g, 62%, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +7.0 (c 1.0 in CHCl₃); ν_{max} (ATR) 3027, 2935 (C–H), 1733 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.31 (3H, d, J 6.8, C(α)Me), 1.62 (3H, d, J 5.2, C(6) H_3), 2.26 (1H, dd, J 14.2, 8.1 C(2) H_A), 2.41 (1H, dd, J 14.2, 6.6, $C(2)H_B$), 3.35 (2H, d, J 7.6, $C(4')H_2$), 3.58 (1H, d, J 14.6, NCH_AH_BPh), 3.64 (1H, d, J 14.6, NCH_AH_BPh , 3.71–3.76 (1H, m, C(3)H), 3.94 (1H, q, J 6.8, C(α)H), 4.47 (1H, dd, J 12.8, 6.8, C(1')H_A), 4.58 (1H, dd, J 12.8, 7.2, C(1')H_B), 5.41-5.54 (3H, m, C(5)H, C(2')H, C(4)H), 5.66-5.74 (1H, m, C(3')H), 7.08-7.15 (5H, m, Ph), 7.19-7.24 (6H, m, Ph), 7.26–7.30 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.8 (C(α)Me), 18.0 (C(6)), 33.7 (C(4')), 38.6 (C(2)), 50.3 (NCH₂Ph), 56.7 (C(3)), 56.8 $(C(\alpha))$, 59.9 (C(1')), 124.4 (C(2')), 126.1, 126.5, 126.6, 127.8, 127.9, 128.0, 128.3, 128.3, 128.5 (o,m,p-Ph), 127.1 (C(5)), 131.0 (C(4)), 132.9 (C(3')), 139.8, 141.3, 144.3 (i-Ph), 171.6 (C(1)); m/z (ESI^{+}) 454 $([M + H]^{+}$, 100%); HRMS (ESI^{+}) $C_{31}H_{36}NO_{2}^{-1}$ $([M + H]^{+})$ requires 454.2741; found 454.2741.

(Z)-4'-Methylpent-2'-en-1'-yl (3*R*,α*S*,*E*)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]hex-4-enoate 68

Step 1. TFA (4 mL) was added to a solution of 64^{29a} (0.95 g, 2.50 mmol, >99:1 dr) in CH₂Cl₂ (8 mL) at rt and the resultant mixture was stirred at rt for 16 h. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and washed with NaHCO₃ (100 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL) and the combined organic extracts were then dried

and concentrated *in vacuo* to give a yellow oil (900 mg, >99:1 dr).

Step 2. A solution of the residue (900 mg, >99:1 dr) in CH_2Cl_2 (9 mL) was treated sequentially with (COCl)₂ (0.2 mL, 2.62 mmol) and DMF (8 µL, 0.10 µmol) at 0 °C. The reaction mixture was allowed to warm to rt over 1 h then concentrated in vacuo. A solution of (Z)-4-methylpent-2-en-1-ol^{29a} (350 mg, 3.49 mmol, >99:1 dr) was then added to a solution of the residue in CH₂Cl₂ (9 mL) at 0 °C. The reaction mixture was allowed to warm to rt and stirred at rt for 16 h. Satd aq. NaHCO₃ (100 mL) was then added and the resultant mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic extracts were washed with brine (300 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 5\%$ Et₂O in 30–40 °C petrol) gave 68 as a colourless oil (510 mg, 50%, >99 : 1 dr); $[\alpha]_{D}^{20}$ +12.1 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 2962 (C-H), 1734 (C=O), 1494 (C=C); δ_H (400 MHz, CDCl₃) 0.87 (6H, app d, J 6.8, C(5')H₃, C(4')Me, 1.29 (3H, d, J 6.9, $C(\alpha)Me$), 1.61–1.62 (3H, m, $C(6)H_3$), 2.23 (1H, dd, J 14.3, 6.6, C(2)H_A), 2.38 (1H, dd, J 14.3, 8.0, C(2)H_B), 2.47-2.56 (1H, m, C(4')H), 3.57 (1H, d, J 14.4, NCH_AH_BPh), 3.62 (1H, d, J 14.4, NCH_AH_BPh), 3.69–3.74 (1H, m, C(3)H), 3.92 $(1H, q, J 6.9, C(\alpha)H), 4.37 (1H, ddd, J 12.7, 6.8, 1.2, C(1')H_A),$ 4.47 (1H, ddd, J 12.7, 6.8, 1.2, C(1')H_B), 5.17-5.23 (1H, m, C(2')H), 5.31–5.37 (1H, m, C(3')H), 5.39–5.46 (1H, m, C(5)H), 5.46-5.52 (1H, m, C(4)H), 7.09-7.15 (2H, m, Ph), 7.17-7.31 (8H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.8 (C(α)Me), 18.0 (C(6)), 23.0 (C(5'), C(4')Me), 26.9 (C(4')), 38.6 (C(2)), 50.3 (NCH₂Ph), 56.7 (C(3)), 56.8 $(C(\alpha))$, 60.2 (C(1')), 121.1 (C(2')), 126.5, 126.6 (o,m,p-Ph), 127.1 (C(5)), 127.8, 127.9, 128.0, 128.3 (o,m,p-Ph), 127.1 (C(5)), 127.8, 127.9, 128.0, 128.3 (o,m,p-Ph), 127.1 (C(5)), 127.8, 127.9, 128.0, 128.3 (o,m,p-Ph), 128.3 (o,m,Ph), 131.0 (C(4)), 141.3 (i-Ph), 142.2 (C(3')), 144.3 (i-Ph), 171.7 (C(1)); m/z (ESI⁺) 406 ([M + H]⁺, 100%); HRMS (ESI^{+}) $C_{27}H_{36}NO_{2}^{+}$ $([M + H]^{+})$ requires 406.2741; found 406.2745.

Methyl (S,S,S,S,E)-2-(pent-1'-en-3'-yl)-3-[N-benzyl-N-(α -methylbenzyl)amino]hex-4-enoate 81

Step 1. TMSCl (1.94 mL, 15.3 mmol) was added dropwise to a solution of 66 (2.00 g, 5.11 mmol, >99:1 dr) in PhMe (20 mL) at -78 °C, and the resultant solution was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 15.3 mL, 15.3 mmol) was added dropwise at -78 °C and the resultant mixture was stirred at -78 °C for 15 min. The reaction mixture was stirred at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was then partitioned between CH₂Cl₂ (200 mL) and 1.0 M aq. HCl (150 mL). The aqueous layer was extracted with CH_2Cl_2 (2 × 200 mL) and the combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo to give a 85:15 mixture of 71 and 76. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 5\%$ acetone in 30–40 °C petrol) gave 76 as a yellow oil (308 mg, >99:1 dr); $[\alpha]_{D}^{20}$ -7.9 (c 1.0 in CHCl₃); ν_{max} (ATR) 2965 (C-H), 1702 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, $CDCl_3$) 0.61 (3H, t, J 7.3, C(5')H₃), 0.97–1.08 (1H, m, C(4')H_A), 1.09-1.16 (1H, m, C(4')H_B), 1.34 (3H, d, J 6.8, C(α)Me), 1.61 (3H, d, J 4.9, C(6)H₃), 2.17–2.24 (1H, m, C(3')H), 2.39 (1H, app

t, I 6.5, C(2)H), 3.47 (1H, dd, I 8.4, 7.5, C(3)H), 3.53 (1H, d, J 14.2, NCH_AH_BPh), 3.74 (1H, d, J 14.2, NCH_AH_BPh), 4.06 (1H, q, J 6.8, C(α)H), 4.65 (1H, dd, J 17.1, 1.7, C(1')H_A), 4.83 (1H, dd, J 10.3, 1.7, C(1') $H_{\rm B}$), 5.38–5.45 (1H, m, C(2')H), 5.47–5.56 (2H, m, C(4)H, C(5)H), 7.08-7.12 (3H, m, Ph), 7.14-7.18 (3H, m, Ph), 7.23–7.31 (4H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.7 (C(5')), 15.0 (C(α)Me), 18.0 (C(6)), 25.0 (C(4')), 43.7 (C(3')), 51.7 (NCH₂Ph), 52.0 $(C(2)), 57.7 (C(\alpha)), 62.0 (C(3)), 116.0 (C(1')), 126.9, 127.1 (o,m,p-$ Ph), 127.5 (C(4)), 128.2, 128.2, 128.3, 128.8 (o,m,p-Ph), 130.6 (C(5)), 139.0 (C(2')), 140.0, 143.0 (i-Ph), 177.3 (C(1)); m/z (ESI⁺)392 ($[M + H]^+$, 100%); HRMS (ESI⁺) C₂₆H₃₃NNaO₂⁺ ($[M + Na]^+$) requires 414.2404; found 414.2404. Further elution (eluent 30-40 °C petrol-acetone, 95:5) gave 71 as a yellow oil (1.11 g, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +26.8 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 2964 (C-H), 1703 (C=O), 1495 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.64 (3H, t, J 7.5, C(5')H₃), 1.41–1.55 (1H, m, C(4')H_A), 1.47 (3H, d, J 7.0, $C(\alpha)Me$, 1.63–1.75 (1H, m, $C(4')H_B$), 1.81 (3H, dd, J 6.5, 1.5, C(6)H₃), 1.86–1.93 (1H, m, C(3')H), 2.13 (1H, dd, J 11.1, 1.8, C(2)H), 3.64 (1H, d, J 13.5, NCH_AH_BPh), 3.72 (1H, app t, J 10.0, C(3)H), 3.85 (1H, d, J 13.5, NCH_AH_BPh), 3.96 (1H, q, J 7.0, C(α)H), 4.65 (1H, dd, J 17.2, 2.1, C(1')H_A), 4.78 (1H, dd, J 10.1, 2.1, C(1')H_B), 5.38 (1H, app ddd, J 15.4, 10.0, 1.5, C(4)H), 5.51 (1H, app dt, J 17.2, 10.1, C(2')H), 5.67 (1H, dq, J 15.4, 6.5, C(5)H), 7.15-7.25 (10H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.3 (C(5')), 17.2 (C(α)Me), 18.3 (C(6)), 26.5 (C(4')), 46.0 (C(3')), 47.1 (C(2)), 51.1 (NCH_2Ph) , 59.9 $(C(\alpha))$, 60.6 (C(3)), 116.6 (C(1')), 126.0 (C(4)), 128.0, 128.1, 128.3, 128.6, 128.6, 129.6 (o,m,p-Ph), 133.9 (C(5)), 135.2 (i-Ph), 138.8 (C(4')), 140.0 (*i-Ph*), 174.0 (C(1)); m/z (ESI⁺) 392 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{26}H_{33}NNaO_2^+$ ([M + Na]⁺) requires 414.2404; found 414.2404.

Step 2 (for 71). A solution of 71 (906 mg) in MeCN (4 mL) was treated sequentially with DBU (692 µl, 4.63 mmol) and MeI (317 µL, 5.09 mmol) at rt. The reaction mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (80 mL) and 2.0 M aq. HCl (80 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL) and the combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (150 mL) and brine (150 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 81 as a colourless oil (791 mg, 38% from 66, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +4.7 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 2967 (C-H), 1733 (C=O), 1495 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.70 (3H, t, J 7.3, C(5')H₃), 0.98-1.09 (1H, m, C(4')H_A), 1.18-1.28 (1H, m, C(4')H_B), 1.31 (3H, d, J 6.9, C(a)Me), 1.68-1.70 (3H, m, C(6)H₃), 1.84 (1H, m, C(3')H), 2.68 (1H, dd, J 11.5, 4.5, C(2)H), 3.35 (3H, s, OMe), 3.43-3.48 (1H, m, C(3)H), 3.47 (1H, d, J 14.2, NCH_AH_BPh), 3.71 (1H, d, J 14.2, NCH_AH_BPh), 4.03 (1H, q, J 6.9, C(α)H), 4.63 (1H, dd, J 17.1, 2.1, $C(1')H_A$, 4.81 (1H, dd, J 10.1, 2.1, $C(1')H_B$), 5.22-5.28 (1H, m, C(4)H), 5.34-5.42 (1H, m, C(5)H), 5.50 (1H, dt, J 17.1, 10.1, C(2')H) 7.05-7.13 (2H, m, Ph), 7.14-7.22 (8H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.9 (C(5')), 16.9 (C(α)Me), 18.0 (C(6)), 26.4 (C(4')), 45.6 (C(3')), 50.3 (NCH₂Ph), 50.6 (OMe), 52.3 $(C(2)), 56.3 (C(\alpha)), 60.4 (C(3)), 116.4 (C(1')), 127.9 (C(4)), 126.2,$ 126.4, 127.6, 127.8, 128.1, 128.9 (o,m,p-Ph), 130.1 (C(5)), 137.5 (C(2')), 140.3, 144.7 (*i-Ph*), 173.2 (C(1)); m/z (ESI⁺) 406 $([M + H]^+,$

100%); HRMS (ESI⁺) $C_{27}H_{36}NO_2^+$ ([M + H]⁺) requires 406.2741; found 406.2746.

Step 2 (for 76). A solution of 76 (256 mg) in MeCN (1.0 mL) was treated sequentially with DBU (196 µL, 1.31 mmol) and MeI (90 µL, 1.44 mmol) at rt. The reaction mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (50 mL) and 2.0 M aq. HCl (50 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO3 (150 mL) and brine (150 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 86 as a white solid (179 mg, 9% from 66, >99:1 dr); $[\alpha]_{\rm D}^{20}$ -19.2 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 2966 (C-H), 1732 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.55 (3H, t, J 7.5, C(5')H₃), 0.84–0.95 (1H, m, $C(4')H_A$), 0.97–1.06 (1H, m, $C(4')H_B$), 1.30 $(3H, d, J 6.9, C(\alpha)Me)$, 1.63 $(3H, dd, J 6.4, 1.5, C(6)H_3)$, 2.18-2.25 (1H, m, C(3')H), 2.45 (1H, dd, J 8.6, 6.1, C(2)H), 3.39-3.42 (1H, m, C(3)H), 3.44 (3H, s, OMe), 3.57 (1H, d, J 14.0, NCH_AH_BPh), 3.65 (1H, d, J 14.0, NCH_AH_BPh), 3.90 (1H, q, J 6.9, C(α)*H*), 4.64 (1H, dd, *J* 17.1, 2.0, C(1')*H*_A), 4.80 (1H, dd, *J* 10.3, 2.0, C(1')H_B), 5.34-5.40 (1H, m, C(2')H), 5.40-5.47 (1H, m, C(5)H), 5.55-5.61 (1H, m, C(4)H), 7.09-7.14 (2H, m, Ph), 7.17-7.24 (6H, m, Ph), 7.30–7.31 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.4 $(C(5')), 16.6 (C(\alpha)Me), 18.1 (C(6)), 24.9 (C(4')), 44.0 (C(3')), 50.7$ (OMe), 50.9 (NCH₂Ph), 53.6 (C(2)), 57.9 (C(α)), 59.9 (C(3)), 116.1 (C(1')), 127.9 (C(4)), 126.5, 126.6, 128.0, 128.0, 128.1, 128.8(o,m,p-Ph), 129.3 (C(5)), 138.7 (C(2')), 141.3, 144.6 (i-Ph), 173.9 $(C(1)); m/z (ESI^{+}) 406 ([M + H]^{+}, 100\%); HRMS (ESI^{+})$ $C_{27}H_{36}NO_2^+$ ([M + H]⁺) requires 406.2741; found 406.2745.

X-ray crystal structure determination for 86·HBF₄

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **86**·HBF₄ [C₂₇H₃₆BF₄NO₂]: M = 493.39, monoclinic, P_{2_1} , a = 8.93933(11) Å, b = 14.19427(18)Å, c = 10.40085(16) Å, $\beta = 98.8420(13)^{\circ}$, V = 1304.05(3) Å³, Z = 2, $\mu = 0.808$ mm⁻¹, colourless block, crystal dimensions = $0.08 \times 0.10 \times 0.19$ mm³. A total of 5399 unique reflections were measured for $4 < \theta < 76$ and 5377 reflections were used in the refinement. The final parameters were $wR_2 = 0.070$ and $R_1 = 0.029$ [$I > -3.0\sigma(I$)], with Flack enantiopole = 0.03(9).¹⁷ CCDC 982704.[†]

Methyl (*S*,*S*,*S*,*S*,*E*)-2-(1'-phenylbut-3'-en-2'-yl)-3-[*N*-benzyl-*N*-(α-methylbenzyl)amino]hex-4-enoate 82

Step 1. TMSCl (1.11 mL, 8.80 mmol) was added dropwise to a solution of **67** (1.33 g, 2.93 mmol, >99:1 dr) in PhMe (13 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 8.80 mL, 8.80 mmol) was then added dropwise and the resultant mixture was stirred at -78 °C for 15 min. The reaction mixture was allowed to warm to rt then heated at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was then partitioned between CH₂Cl₂ (150 mL) and 1.0 M aq. HCl (100 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 150 mL). The combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo to give a 76:24 mixture of 72 and 77. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 12\%$ acetone in 30-40 °C petrol) gave 77 as a yellow oil (360 mg, >99:1 dr); $[\alpha]_{D}^{20}$ –21.3 (c 0.8 in CHCl₃); ν_{max} (ATR) 2928 (C–H), 1704 (C=O), 1494 (C=C); δ_H (400 MHz, CDCl₃) 1.38 (3H, d, J 6.6, $C(\alpha)Me$, 1.58–1.59 (3H, m, $C(6)H_3$), 2.42–2.47 (1H, m, C(1')H_A), 2.49–2.57 (1H, m, C(2')H), 2.67–2.69 (1H, m, C(2)H), 2.78 (1H, dd, J 12.8, 6.5, C(1')H_B), 3.40 (1H, dd, J 10.0, 5.9, C(3)H), 3.55 (1H, d, J 14.0, NCH_AH_BPh), 3.63 (1H, d, J 14.0, NCH_AH_BPh), 4.11 (1H, q, J 6.6, C(α)H), 4.54 (1H, app d, J 17.5, $C(4')H_A$, 4.82 (1H, app d, J 10.2, $C(4')H_B$), 5.25–5.32 (1H, m, C(4)H), 5.48-5.57 (1H, m, C(5)H), 5.67 (1H, ddd, J 17.5, 10.2, 8.2, C(3')H, 6.91–6.93 (2H, m, Ph), 7.04–7.28 (13H, m, Ph); δ_C (100 MHz, CDCl₃) 15.2 (C(a)Me), 17.9 (C(6)), 39.3 (C(1')), 44.2 $(C(2)), 50.2 (C(2')), 51.2 (NCH_2Ph), 56.9 (C(\alpha)), 62.4 (C(3)), 116.1$ (C(4')), 125.9, 126.9, 127.2 (o,m,p-Ph), 127.9 (C(4)), 128.1, 128.2,128.2, 128.3, 128.8, 129.4 (o,m,p-Ph), 130.8 (C(5)), 138.5 (C(3')), 139.4, 140.2, 142.0 (*i-Ph*), 176.6 (*C*(1)); m/z (ESI⁺) 454 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{31}H_{36}NO_2^+$ ([M + H]⁺) requires 454.2741; found 454.2754. Further elution (eluent 30-40 °C petrolacetone, 88:12) gave 72 as a yellow oil (1.15 g, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +13.7 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 3027, 2933 (C-H), 1704 (C=O), 1495 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.43 (3H, d, J 6.9, $C(\alpha)Me$, 1.76 (3H, dd, J 6.4, 0.9, $C(6)H_3$), 2.02 (1H, app d, J 11.0, C(2)H), 2.29 (1H, app q, J 8.0, C(2')H), 2.79 (1H, dd, J 13.4, 6.6, C(1')H_A), 3.14 (1H, dd, J 13.4, 9.3, C(1')H_B), 3.54 (1H, d, J 13.6, NCH_AH_BPh), 3.65-3.70 (2H, m, NCH_AH_BPh, C(3)H), 3.89 (1H, q, J 6.9, C(α)H), 4.64 (1H, app d, J 17.1, C(4')H_A), 4.77 (1H, dd, J 10.2, 1.7, C(4')H_B), 5.07 (1H, dd, J 14.8, 10.1, C(4)H), 5.53–5.61 (1H, m, C(5)H), 5.61-5.70 (1H, m, C(3')H), 7.02-7.03 (2H, m, *Ph*), 7.07–7.11 (3H, m, *Ph*), 7.14–7.25 (10H, m, *Ph*); $\delta_{\rm C}$ $(100 \text{ MHz}, \text{CDCl}_3)$ 16.9 $(C(\alpha)Me)$, 18.4 (C(6)), 40.0 (C(1')), 44.4 $(C(2)), 46.1 (C(2')), 51.0 (NCH_2Ph), 59.9 (C(\alpha)), 60.4 (C(3)), 116.9$ (C(4')), 125.7 (C(4)), 125.9, 128.1, 128.2, 128.3, 128.4, 128.8,128.9, 129.5, 129.6 (o,m,p-Ph), 134.3 (C(5)), 134.6 (i-Ph), 138.5 (C(3')), 139.6, 140.6 (*i-Ph*), 174.0 (C(1)); m/z (ESI⁺) 454 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{31}H_{36}NO_2^+$ ([M + H]⁺) requires 454.2741; found 454.2763.

Step 2 (for 72). A solution of **72** (1.15 g, >99:1 dr) in MeCN (12 mL) was treated sequentially with DBU (758 µl, 5.07 mmol) and MeI (347 µL, 5.58 mmol) at rt. The resultant mixture was stirred at rt for 16 h, then concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂ (80 mL) and 2.0 M aq. HCl (80 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (150 mL) and brine (150 mL), then dried and concentrated *in vacuo*. Purification *via* flash column chromatography (eluent 30–40 °C petrol-Et₂O, 98:2) gave **82** as a pale yellow oil (777 mg, 57% from **67**, >99:1 dr); $[\alpha]_{D}^{2D}$ –12.6 (*c* 1.0 in CHCl₃); ν_{max} (ATR) 3027, 2935

(C-H), 1734 (C=O), 1495 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.28 (3H, d, J 6.9, C(α)Me), 1.67 (3H, dd, J 6.4, 1.5, C(6)H₃), 2.26-2.33 (1H, m, C(2')H), 2.38 (1H, dd, J 13.4, 8.2, C(1')H_A), 2.55 (1H, dd, J 13.4, 6.6, $C(1')H_B$), 2.72 (1H, dd, J 11.4, 3.8, C(2)H), 3.42 (3H, s, OMe), 3.45 (1H, d, J 14.0, NCH_AH_BPh), 3.46-3.52 (1H, m, C(3)H), 3.66 (1H, d, J 14.0, NCH_AH_BPh), 3.98 (1H, q, J 6.9, C(α)H), 4.50 (1H, dd, J 17.1, 2.1, C(4')H_A), 4.74 (1H, dd, J 10.2, 2.1, C(4')H_B), 5.15-5.22 (1H, m, C(4)H), 5.36 (1H, app dq, J 15.3, 6.4, C(5)H), 5.57-5.66 (1H, m, C(3')H), 6.98-7.01 (2H, m, Ph), 7.06-7.22 (13H, m, Ph); δ_C (100 MHz, $CDCl_3$) 16.9 (C(α)Me), 18.0 (C(6)), 40.1 (C(1')), 45.6 (C(2')), 50.3 (NCH_2Ph) , 50.7 (OMe), 51.6 (C(2)), 56.3 $(C(\alpha))$, 60.4 (C(3)), 116.6 (C(4')), 125.8, 126.2, 126.4, 127.6, 127.8, 127.9 (o,m,p-Ph), 127.9 (C(4)), 128.0, 128.9, 129.2 (o,m,p-Ph), 130.3 (C(5)), 137.0 (C(3')), 139.9, 140.2, 144.6 (*i-Ph*), 173.0 (C(1)); m/z (ESI⁺) 468 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{32}H_{38}NO_2^+$ ([M + H]⁺) requires 468.2897; found 468.2907.

Step 2 (for 77). A solution of 77 (359 mg, >99:1 dr) in MeCN (3.6 mL) was treated sequentially with DBU (237 µL, 1.58 mmol) and MeI (108 µL, 1.74 mmol) at rt. The resultant mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (50 mL) and 2.0 M aq. HCl (50 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (150 mL) and brine (150 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (gradient elution, 2% Et₂O in 30-40 °C petrol) gave 87 as a yellow oil (221 mg, 16% from 67, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +15.7 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 3028, 2950 (C-H), 1732 (C=O), 1496 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.27 (3H, d, J 7.0, C(α)Me), 1.63-1.65 (3H, m, C(6)H₃), 2.25 (1H, dd, J 13.7, 8.8, C(1')H_A), 2.39 (1H, dd, J 13.7, 6.4, C(1')H_B), 2.56 (1H, dd, J 8.8, 5.4, C(2)H), 2.63-2.70 (1H, m, C(2')H), 3.43-3.49 (1H, m, C(3)H), 3.48 (3H, s, OMe), 3.51 (1H, d, J 14.4, NCH_AH_BPh), 3.58 (1H, d, J 14.4, NCH_AH_BPh), 3.85 (1H, q, J 7.0, $C(\alpha)H$, 4.35–4.40 (1H, m, $C(4')H_A$), 4.66 (1H, dd, J 10.4, 2.1, C(4')H_B), 5.37-5.45 (1H, m, C(3')H), 5.40-5.48 (1H, m, C(5)H), 5.51-5.57 (1H, m, C(4)H), 6.87-6.89 (2H, m, Ph), 7.02-7.27 (13H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.0 (C(α)*Me*), 18.1 (*C*(6)), 38.7 (C(1')), 43.8 (C(2')), 50.7 (NCH₂Ph), 50.8 (OMe), 53.0 (C(2)), 57.0 $(C(\alpha))$, 59.6 (C(3)), 116.1 (C(4')), 125.8 (C(4)), 126.6 (C(5)), 127.9, 128.0, 128.0, 128.1, 128.1, 128.3, 129.0, 129.3, 129.3 (o,m,p-Ph), 138.0 (C(3')), 140.0, 140.9, 144.4 (i-Ph), 173.4 (C(1)); m/z (ESI⁺) 468 ([M + H]⁺, 100%); HRMS (ESI⁺) C₃₂H₃₈NO₂⁺ $([M + H]^{+})$ requires 468.2897; found 468.2904.

X-ray crystal structure determination for 87

Data were collected using an Oxford Diffraction SuperNova diffractometer with graphite monochromated Cu-K α radiation, using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for 87 [$C_{31}H_{35}NO_2$]: M = 453.62, orthorhombic, $P22_12_1$, a = 10.7026(7) Å, b = 15.0868(9) Å, c = 16.8872(8) Å, V = 2726.8(3) Å³, Z = 4, $\mu = 0.527$ mm⁻¹, colour-

less prism, crystal dimensions = $0.08 \times 0.11 \times 0.19 \text{ mm}^3$. A total of 5681 unique reflections were measured for $3 < \theta < 77$ and 5154 reflections were used in the refinement. The final parameters were w $R_2 = 0.205$ and $R_1 = 0.079 [I > -3.0\sigma(I)]$, with Flack enantiopole = -0.7(4).¹⁷ CCDC 982705.[†]

Methyl (S,S,S,S,E)-2-(4'-methylpent-1'-en-3'-yl)-3-[N-benzyl-N-(α -methylbenzyl)amino]hex-4-enoate 83

Step 1. TMSCl (476 µL, 3.77 mmol) was added dropwise to a solution of 68 (509 mg, 1.26 mmol, >99:1 dr) in PhMe (5 mL) at -78 °C, and the resultant mixture was stirred at -78 °C for 10 min. LiHMDS (1.0 M in THF, 3.76 mL, 3.76 mmol) was added dropwise at -78 °C and the resultant mixture was stirred at -78 °C for 15 min. The reaction mixture was then stirred at reflux for 1 h, then allowed to cool to rt and concentrated in vacuo. The residue was then partitioned between CH₂Cl₂ (200 mL) and 1.0 M aq. HCl (150 mL). The aqueous layer was extracted with CH_2Cl_2 (2 × 200 mL) and the combined organic extracts were washed with brine (150 mL), then dried and concentrated in vacuo to give an 85:15 mixture of 73 and 78. Purification via flash column chromatography (gradient elution, $0\% \rightarrow 6\%$ acetone in 30–40 °C petrol) gave 78 as a yellow oil (81 mg, >99:1 dr); $[\alpha]_{D}^{20}$ -9.7 (c 1.0 in CHCl₃); ν_{max} (ATR) 2962 (C-H), 1701 (C=O), 1494 (C=C); δ_H (400 MHz, CDCl₃) 0.34 (3H, d, J 6.7, C(4')Me_A), 0.54 (3H, d, J 6.7, $C(4')Me_B$, 1.25 (3H, d, J 6.8, $C(\alpha)Me$), 1.33–1.43 (1H, m, C(4')H), 1.57 (3H, d, J 6.4, C(6)H₃), 1.91-1.97 (1H, m, C(3')H), 2.47 (1H, app t, J 7.0, C(2)H), 3.34 (1H, dd, J 9.4, 7.0, C(3)H), 3.47 (1H, d, J 14.4, NCH_AH_BPh), 3.69 (1H, d, J 14.4, NCH_AH_BPh), 3.93 (1H, q, J 6.8, C(a)H), 4.51-4.56 (1H, m, C(1')H_A), 4.74-4.77 (1H, m, C(1')H_B), 5.38-5.47 (2H, m, C(5)H, C(2')H), 5.54-5.61 (1H, m, C(4)H), 7.03–7.20 (8H, m, Ph), 7.27–7.29 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.6 (C(α)Me), 17.6 (C(4')Me_A), 17.9 (C(6)), 21.2 $(C(4')Me_B)$, 27.6 (C(4')), 49.0 (C(3')), 51.1 (C(2)), 51.5 (NCH₂Ph), 57.3 (C(α)), 61.0 (C(3)), 117.5 (C(1')), 126.7, 126.8 (o,m,p-Ph), 127.6 (C(4)), 128.0, 128.1, 128.3, 128.8 (o,m,p-Ph), 130.2 (C(5)), 136.1 (C(2')) 140.6, 143.7 (i-Ph), 179.2 (C(1)); m/z (ESI⁺) 406 ([M + H]⁺, 100%); HRMS (ESI⁺) C₂₇H₃₆NO₂⁺ $([M + H]^+)$ requires 406.2741; found 406.2748. Further elution (eluent 30-40 °C petrol-acetone, 94:6) gave 73 as a yellow oil $(382 \text{ mg}, >99: 1 \text{ dr}); [\alpha]_{D}^{20} + 5.0 (c \ 1.0 \text{ in CHCl}_3); \nu_{max} (ATR) 2960$ (C-H), 1702 (C=O), 1495 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.57 (3H, d, J 6.7, C(4')Me_A), 0.64 (3H, d, J 6.7, C(4')Me_B), 1.40 (1H, app td, J 10.0, 1.7, C(3')H), 1.48 (3H, d, J 7.1, C(α)Me), 1.83 (3H, dd, J 6.5, 1.8, C(6)H₃), 2.14-2.24 (C(2)H, C(4')H), 3.67 (1H, d, J 13.4, NCH_AH_BPh), 3.74–3.79 (1H, m, C(3)H), 3.78 (1H, d, J 13.4, NCH_A*H*_BPh), 3.91 (1H, q, *J* 7.1, C(α)*H*), 4.59 (1H, dd, *J* 17.3, 2.5, $C(1')H_A$, 4.79 (1H, dd, J 10.0, 2.5, $C(1')H_B$), 5.33 (1H, app ddd, J 15.5, 9.6, 1.8, C(4)H), 5.52 (1H, ddd, J 17.3, 10.2, 10.0, C(2')H), 5.66 (1H, dq, J 15.5, 6.5, C(5)H), 7.15-7.27 (10H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 17.9 (C(α)Me), 18.3 (C(6)), 20.6, 22.1 $(C(4')Me_2)$, 28.4 (C(4')), 43.9 (C(2)), 51.4 (NCH_2Ph) , 52.2 (C(3')), 60.6 $(C(\alpha)), 60.6 (C(3)), 117.0 (C(1')), 125.7 (C(4)), 128.0, 128.1,$ 128.1, 128.7, 128.7, 129.6 (o,m,p-Ph), 134.2 (C(5)), 135.1 (i-Ph), 138.5 (C(2')), 140.3 (*i-Ph*), 174.0 (C(1)); m/z (ESI⁺) 406 ([M + H]⁺,

100%); HRMS (ESI⁺) $C_{27}H_{36}NO_2^+$ ([M + H]⁺) requires 406.2741; found 406.2747.

Step 2 (for 73). A solution of 73 (382 mg, >99:1 dr) in MeCN (3.9 mL) was treated sequentially with DBU (281 µL, 1.88 mmol) and MeI (129 µL, 2.07 mmol) at rt. The reaction mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH_2Cl_2 (50 mL) and 2.0 M aq. HCl (50 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL) and the combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (150 mL) and brine (150 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 83 as a colourless oil (272 mg, 52% from 68, >99:1 dr); $[\alpha]_{D}^{20}$ +1.2 (c 1.0 in CHCl₃); ν_{max} (ATR) 2958 (C-H), 1737 (C=O), 1495 (C=C); δ_H (400 MHz, CDCl₃) 0.65 (3H, d, J 6.6, C(4')Me_A), 0.80 (3H, d, J 6.6, C(4')Me_B), 1.22-1.29 (1H, m, C(4')H), 1.31 $(3H, d, J 6.9, C(\alpha)Me)$, 1.58 (1H, app td, d)J 9.5, 3.8, C(3')H), 1.69 (3H, dd, J 6.4, 1.2, C(6)H₃), 2.83 (1H, dd, J 11.4, 3.8, C(2)H), 3.34 (3H, s, OMe), 3.42-3.48 (1H, m, C(3)H), 3.48 (1H, d, J 13.9, NCH_AH_BPh), 3.71 (1H, d, J 13.9, NCH_A*H*_BPh), 4.03 (1H, q, *J* 6.9, C(α)*H*), 4.58 (1H, dd, *J* 17.1, 2.5, $C(1')H_A$, 4.80 (1H, dd, J 10.2, 2.5, $C(1')H_B$), 5.17–5.24 (1H, m, C(4)H), 5.31-5.40 (1H, m, C(5)H), 5.51 (1H, dt, J 17.1, 10.2, C(2')H), 7.05–7.12 (2H, m, Ph), 7.13–7.23 (8H, m, Ph); $\delta_{\rm C}$ (100 MHz, $CDCl_3$ 17.2 (C(α)Me), 18.1 (C(6)), 21.0 (C(4')Me_B), 21.3 (C(4')Me_A), 30.0 (C(4')), 49.6 (C(2)), 50.5 (NCH₂Ph), 50.6 (OMe), 51.2 $(C(3')), 56.5 (C(\alpha)), 60.7 (C(3)), 116.8 (C(1')), 126.1, 126.4, 127.6,$ 127.8, 127.9, 129.0 (o,m,p-Ph), 128.1 (C(4)), 130.2 (C(5)), 136.9 (C(2')), 140.3, 144.8 (*i-Ph*), 173.3 (C(1)); m/z (ESI⁺) 420 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{28}H_{38}NO_2^+$ ([M + H]⁺) requires 420.2897; found 420.2900.

Step 2 (for 78). A solution of 78 (72 mg, >99:1 dr) in MeCN (0.7 mL) was treated sequentially with DBU (53 µL, 0.36 mmol) and MeI (24 µL, 0.39 mmol) at rt. The reaction mixture was stirred at rt for 16 h, then concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (10 mL) and 2.0 M aq. HCl (10 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extracts were then washed sequentially with satd aq. NaHCO₃ (40 mL) and brine (40 mL), then dried and concentrated in vacuo. Purification via flash column chromatography (eluent 30–40 °C petrol- Et_2O , 98:2) gave 88 as a white solid (44 mg, 7% from 68, >99:1 dr); $[\alpha]_{\rm D}^{20}$ -27.1 (c 1.0 in CHCl₃); ν_{max} (ATR) 2960 (C-H), 1731 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.30 (3H, d, J 6.7, C(4')Me_A), 0.57 (3H, d, J 6.7, C(4')Me_B), 1.28 (3H, d, J 6.7, C(α)Me), 1.34 (1H, dd, J 11.9, 6.7, C(4')H), 1.65 (3H, dd, J 6.4, 1.5, C(6)H₃), 2.00 (1H, ddd, J 9.9, 7.6, 5.2, C(3')H), 2.56 (1H, app t, J 7.6, C(2)H), 3.36 (1H, dd, J 9.9, 7.6, C(3)H), 3.44 (3H, s, OMe), 3.56 (1H, d, J 14.2, NCH_AH_BPh), 3.69 (1H, d, J 14.2, NCH_AH_BPh), 3.90 (1H, q, J 6.7, C(α)H), 4.61 (1H, dd, J 17.1, 2.3, C(1')H_A), 4.84 $(1H, dd, J 9.9, 2.3, C(1')H_B), 5.40-5.52 (2H, m, C(5)H, C(2')H),$ 5.68-5.75 (1H, m, C(4)H), 7.10-7.13 (2H, m, Ph), 7.17-7.27 (6H, m, *Ph*), 7.33–7.35 (2H, m, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.2 (C(α)*Me*), 17.2 $(C(4')Me_A)$, 18.1 (C(6)), 21.2 $(C(4')Me_B)$, 27.5 (C(4')), 49.3 (C(3')), 50.8 (OMe), 51.1 (NCH₂Ph), 52.1 (C(2)), 57.2 (C(α)), 59.8 (C(3)), 117.4 (C(1')), 126.6, 126.6 (o,m,p-Ph), 127.9 (C(4)),

128.0, 128.1, 128.2, 128.8 (*o*,*m*,*P*-*Ph*), 129.5 (*C*(5)), 136.1 (*C*(2')), 141.3, 144.5 (*i*-*Ph*), 174.5 (*C*(1)); *m*/*z* (ESI⁺) 420 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{28}H_{38}NO_2^+$ ([M + H]⁺) requires 420.2897; found 420.2898.

Methyl (*S*,*S*,*S*,*S*)-2-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-5ethylcyclopent-3-ene-1-carboxylate 91

Grubbs I catalyst (292 mg, 0.36 mmol) was added to a degassed solution of 81 (360 mg, 0.89 mmol, >99:1 dr) in CH₂Cl₂ (36 mL) at rt and the resultant mixture was heated at 40 °C for 24 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 91 as a colourless oil (200 mg, 62%, >99:1 dr); $[\alpha]_{D}^{20}$ +198.8 (c 1.0 in CHCl₃); ν_{max} (ATR) 2965 (C–H), 1729 (C=O), 1493 (C=C); δ_H (400 MHz, CDCl₃) 0.75 (3H, t, J 7.3, C(2')H₃), 0.97-1.08 (1H, m, $C(1')H_A$, 1.18–1.29 (1H, m, $C(1')H_B$), 1.27 (3H, d, J 7.0, $C(\alpha)Me$), 2.67-2.75 (1H, m, C(5)H), 2.89 (1H, dd, J 9.4, 6.0, C(1)H), 3.37 (3H, s, OMe), 3.58 (1H, d, J 15.4, NCH_AH_BPh), 3.62 (1H, d, J 15.4, NCH_A H_B Ph), 3.77 (1H, q, J 7.0, C(α)H), 4.35–4.38 (1H, m, C(2)H), 5.64-5.66 (1H, m, C(4)H), 5.70-5.73 (1H, m, C(3)H), 7.09-7.25 (8H, m, Ph), 7.31-7.33 (2H, m, Ph); δ_C (100 MHz, $CDCl_3$ 12.5 (C(2')), 16.3 (C(α)Me), 24.5 (C(1'), 48.4 (C(5)), 50.1 (NCH_2Ph) , 50.6 (C(1)), 51.1 (OMe), 57.8 $(C(\alpha))$, 67.5 (C(2)), 126.5, 126.5, 127.7, 127.8, 128.1, 128.1 (o,m,p-Ph), 132.5 (C(4)), 134.8 (C(3)), 141.7, 144.0 (*i-Ph*), 174.1 (CO₂Me); m/z (ESI⁺) 364 $([M + H]^+, 100\%);$ HRMS $(ESI^+) C_{24}H_{30}NO_2^+ ([M + H]^+)$ requires 364.2271; found 364.2275.

Methyl (*S*,*S*,*S*,*S*)-2-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-5benzylcyclopent-3-ene-1-carboxylate 92

Grubbs I catalyst (282 mg, 0.34 mmol) was added to a degassed solution of 82 (400 mg, 0.86 mmol, >99:1 dr) in CH_2Cl_2 (40 mL) at rt and the resultant mixture was heated at 40 °C for 48 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 92 as a colourless oil (349 mg, 96%, >99:1 dr); $[\alpha]_{\rm D}^{20}$ +185.6 (c 1.0 in CHCl₃); $\nu_{\rm max}$ (ATR) 3027, 2946 (C–H), 1730 (C=O), 1494 (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.28 (3H, d, J 6.9, C(α)Me), 2.23 $(1H, dd, J 13.2, 10.6, C(1')H_A), 2.58 (1H, dd, J 13.2, 5.6, C(1')H_B),$ 2.95 (1H, dd, J 9.4, 5.6, C(1)H), 3.11-3.19 (1H, m, C(5)H), 3.34 (3H, s, OMe), 3.60 (2H, app s, NCH₂Ph), 3.78 (1H, q, J 6.9, C(α)H), 4.43-4.46 (1H, m, C(2)H) 5.45 (1H, app dt, J 5.6, 2.1, C(4)H), 5.66 (1H, app dt, J 5.6, 2.1, C(3)H), 6.98–7.01 (2H, m, Ph), 7.05–7.25 (11H, m, Ph), 7.30–7.33 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz, $CDCl_3$) 16.2 (C(α)Me), 37.7 (C(1')), 47.9 (C(5)), 50.1 (NCH₂Ph), 50.3 (C(1)), 51.2 (OMe), 57.7 $(C(\alpha))$, 67.8 (C(2)), 126.0, 126.6, 126.6, 127.7, 127.9, 128.1, 128.1, 128.2, 128.8 (o,m,p-Ph), 132.6 (C(3)), 134.6 (C(4)), 140.1, 141.6, 144.0 (i-Ph), 174.0 (CO_2Me) ; m/z (ESI⁺) 426 ([M + H]⁺, 100%); HRMS (ESI⁺) C₂₉H₃₂NO₂⁻ $([M + H]^{+})$ requires 426.2428; found 426.2439.

Methyl (*S*,*S*,*S*,*S*)-2-[*N*-benzyl-*N*-(α-methylbenzyl)amino]-5isopropylcyclopent-3-ene-1-carboxylate 93

Grubbs I catalyst (197 mg, 0.24 mmol) was added to a degassed solution of 83 (251 mg, 0.60 mmol, >99:1 dr) in CH₂Cl₂ (25 mL) at rt and the resultant mixture was heated at 40 °C for 48 h then concentrated in vacuo. The residue was dissolved in degassed CH₂Cl₂ (25 mL) and Grubbs I catalyst (197 mg, 0.24 mmol) was added to the resultant solution. The reaction mixture was heated at 40 °C for 48 h then concentrated in vacuo. Purification via flash column chromatography (eluent 30-40 °C petrol-Et₂O, 98:2) gave 93 as a colourless oil (85 mg, 38%, >99:1 dr); $[\alpha]_{D}^{20}$ +204.5 (c 1.0 in CHCl₃); ν_{max} (ATR) 2958 (C-H), 1734 (C=O), 1494 (C=C); δ_H (400 MHz, CDCl₃) 0.68 (3H, d, J 6.6, C(1')Me_A), 0.75 (3H, d, J 6.6, $C(1')Me_B$, 1.26 (3H, d, J 6.9, $C(\alpha)Me$), 1.55–1.63 (1H, m, C(1')H), 2.65 (1H, app t, J 8.0, C(5)H), 2.96 (1H, dd, J 9.2, 5.9, C(1)H), 3.38 (3H, s, OMe), 3.62 (2H, app s, NCH₂Ph), 3.81 (1H, q, I 6.9, C(α)H), 4.28 (1H, d, J 5.9, C(2)H), 5.68–5.71 (2H, m, C(3)H, C(4)H), 7.10-7.15 (2H, m, Ph), 7.18-7.25 (6H, m, Ph), 7.31-7.33 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.5 (C(α)Me), 20.0 (C(1')Me_A), 22.7 $(C(1')Me_{\rm B})$, 28.8 (C(1')), 50.0 (NCH_2Ph) , 50.5 (C(1)), 51.2 (OMe), 54.1 (C(5)), 58.2 (C(α)), 68.3 (C(2)), 126.5, 127.7, 127.8, 128.0, 128.1 (o,m,p-Ph), 133.1 (C(3)), 133.4 (C(4)), 141.9, 144.3 (*i-Ph*), 174.4 (CO_2Me); m/z (ESI⁺) 378 ([M + H]⁺, 100%); HRMS (ESI⁺) $C_{25}H_{32}NO_2^+$ ([M + H]⁺) requires 378.2428; found 378.2437.

Methyl (S,S,S)-2-amino-5-ethylcyclopentane-1-carboxylate 96

 $Pd(OH)_2/C$ (87 mg, 50% w/w) was added to a degassed solution of 91 (173 mg, 0.48 mmol, >99:1 dr) in MeOH (12 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 24 h. The reaction mixture was then filtered through Celite® (eluent MeOH) and the filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (15 mL) and the resultant solution was washed with satd aq. NaHCO₃ (15 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL) and the combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent CHCl₃-MeOH, 94:6) gave 96 as a white solid (55 mg, 67%, >99:1 dr); mp 64–66 °C; $[\alpha]_{\rm D}^{20}$ +15.7 (c 0.5 in CHCl₃); ν_{max} (ATR) 3344 (N–H), 2959, 2932 (C–H), 1730 (C=O); δ_H (400 MHz, CDCl₃) 0.80 (3H, t, J 7.3, C(2')H₃), 1.01–1.12 (1H, m, $C(1')H_A$, 1.23–1.39 (3H, m, $C(3)H_A$, $C(4)H_A$, $C(1')H_B$), 1.81–1.91 (1H, m, C(4) H_B), 2.00–2.09 (3H, m, C(3) H_B , N H_2), 2.13-2.23 (1H, m, C(5)H), 2.53 (1H, dd, J 9.1, 7.1, C(1)H), 3.54–3.65 (1H, m, C(2)H), 3.62 (3H, s, OMe); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.4 (C(2')), 24.7 (C(1')), 29.2 (C(4)), 34.0 (C(3)), 42.9 $(C(5)), 51.2 (OMe), 54.9 (C(2)), 57.4 (C(1)), 174.5 (CO_2Me); m/z$ (ESI^{+}) 172 ([M + H]⁺, 100%); HRMS (ESI⁺) C₉H₁₈NO₂⁺ ([M + H]⁺) requires 172.1332; found 172.1336.

X-ray crystal structure determination for 96·HCl

Data were collected using a Nonius κ -CCD diffractometer with graphite monochromated Mo-K α radiation, using standard procedures at 150 K. The structure was solved by direct

methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions.

X-ray crystal structure data for **96**·HCl [C₉H₁₈ClNO₂]: M = 207.70, monoclinic, $P2_1$, a = 5.4210(1) Å, b = 8.9375(3) Å, c = 11.4409(3) Å, $\beta = 101.8270(12)^\circ$, V = 542.55(3) Å³, Z = 2, $\mu = 0.323$ mm⁻¹, colourless block, crystal dimensions = $0.21 \times 0.23 \times 0.24$ mm³. A total of 2115 unique reflections were measured for $5 < \theta < 27$ and 2115 reflections were used in the refinement. The final parameters were w $R_2 = 0.056$ and $R_1 = 0.025$ [$I > -3.0\sigma(I)$], with Flack enantiopole = 0.03(5).¹⁷ CCDC 982706.†

Methyl (1*S*,2*S*,5*R*)-2-amino-5-benzylcyclopentane-1-carboxylate 97

Pd(OH)₂/C (99 mg, 50% w/w by substrate) was added to a degassed solution of 92 (197 mg, 0.46 mmol, >99:1 dr) in MeOH (14 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 24 h. The reaction mixture was then filtered through Celite® (eluent MeOH) and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (15 mL) and the resultant solution was washed with satd aq. NaHCO₃ (15 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL) and the combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent CHCl₃-MeOH, 98:2) gave 97 as a white solid (74 mg, 69%, >99:1 dr); mp 65–67 °C; $[\alpha]_{\rm D}^{20}$ +32.4 (c 1.0 in CHCl₃); ν_{max} (ATR) 3365 (N–H), 2950 (C–H), 1727 (C=O); δ_{H} (400 MHz, CDCl₃) 1.18-1.29 (1H, m, C(3)H_A), 1.36-1.45 (3H, m, C(4)H_A, NH₂), 1.64–1.72 (1H, m, C(4)H_B), 2.02–2.09 (1H, m, $C(3)H_B$, 2.26–2.33 (1H, m, $C(1')H_A$), 2.52–2.58 (1H, m, C(1)H), 2.59-2.68 (2H, m, C(1')H_B, C(5)H), 3.59 (3H, s, OMe), 3.62-3.68 (1H, m, C(2)H), 7.06-7.12 (3H, m, Ph), 7.17-7.21 (2H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 29.4 (C(4)), 34.1 (C(3)), 37.7 (C(1')), 42.5 (C(5)), 51.3 (OMe), 55.1 (C(2)), 57.5 (C(1)), 125.9, 128.2, 128.8 (o,m,p-Ph), 140.5 (i-Ph), 174.4 (CO_2Me) ; m/z (ESI⁺) 234 $([M + H]^+, 100\%);$ HRMS $(ESI^+) C_{14}H_{20}NO_2^+ ([M + H]^+)$ requires 234.1489; found 234.1495.

Methyl (1*S*,2*S*,5*R*)-2-amino-5-isopropylcyclopentane-1carboxylate 98

Pd(OH)₂/C (43 mg, 50% w/w by substrate) was added to a degassed solution of 93 (85 mg, 0.23 mmol, >99:1 dr) in MeOH (6 mL) at rt. The resultant suspension was stirred vigorously under H₂ (1 atm) at rt for 24 h. The reaction mixture was then filtered through Celite® (eluent MeOH) and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (15 mL) and the resultant solution was washed with satd aq. NaHCO₃ (15 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL) and the combined organic extracts were then dried and concentrated in vacuo. Purification via flash column chromatography (eluent CHCl₃-MeOH, 99:1) gave 98 as a colourless oil (17 mg, 40%, >99:1 dr); $[\alpha]_{D}^{20}$ +16.1 (c 0.2 in CHCl₃); ν_{max} (ATR) 3392 (N–H), 2956 (C–H), 1721 (C=O), 1477; $\delta_{\rm H}$ (700 MHz, CDCl₃) 0.81 (3H, d, J 3.6, $C(1')Me_A$), 0.85 (3H, d, J 3.6, $C(1')Me_B$), 1.24-1.30 (1H, m, C(3)H_A), 1.44-1.53 (2H, m, C(4)H_A, C(1')H), 1.71 (2H, br s, NH₂), 1.79–1.83 (1H, m, C(4)H_B), 1.93–1.98 (1H,

m, C(5)*H*), 2.15–2.19 (1H, m, C(3)*H*_B), 2.59 (1H, dd, *J* 8.1, 3.2, C(1)*H*), 3.53–3.55 (1H, m, C(2)*H*), 3.59 (3H, s, OM*e*); $\delta_{\rm C}$ (176 MHz, CDCl₃) 21.5 (C(1')*Me*_A), 22.3 (C(1')*Me*_B), 28.5 (*C*(4)), 29.7 (*C*(1')), 34.8 (*C*(3)), 49.9 (*C*(5)), 51.2 (OM*e*), 56.6 (*C*(2)), 56.8 (*C*(1)), 175.0 (*C*O₂Me); *m*/*z* (ESI⁺) 186 ([M + H]⁺, 100%); HRMS (ESI⁺) C₁₀H₂₀NO₂⁺ ([M + H]⁺) requires 186.1489; found 186.1493.

(S,S,S)-2-Amino-5-ethylcyclopentane-1-carboxylic acid 101

A solution of 96 (35 mg, 0.20 mmol, >99:1 dr) in 6.0 M aq. HCl (5 mL) was heated at reflux for 16 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in H₂O (2 mL) and purified on DOWEX 50WX8 ion exchange resin (hydrogen form, 100-200 mesh, eluent 1.0 M aq. NH₄OH) to give 101 as a white solid (27 mg, 85%, >99:1 dr); mp 202–204 °C; $[\alpha]_{D}^{20}$ +73.3 (c 1.0 in H₂O); ν_{max} (ATR) 3399 (O–H, N–H), 2960 (C–H), 1629 (C=O), 1570; $\delta_{\rm H}$ (400 MHz, D₂O) 0.75 (3H, t, J 7.3, C(2')H₃), 0.92-1.03 (1H, m, $C(1')H_A$, 1.23–1.33 (1H, m, $C(1')H_B$), 1.35–1.43 (1H, m, $C(4)H_A$), 1.44–1.53 (1H, m, C(3) H_A), 1.81–1.89 (1H, m, C(4) H_B), 2.08-2.17 (2H, m, C(3)H_B, C(5)H), 2.65 (1H, dd, J 8.8, 7.7, C(1)H, 3.71 (1H, app q, J 7.7, C(2)H); δ_C (100 MHz, D_2O) 11.8 (C(2')), 23.5 (C(1')), 28.2 (C(4)), 28.9 (C(3)), 42.6 (C(5)), 53.8(C(2)), 55.8 (C(1)), 179.5 (CO_2H) ; m/z (ESI^+) 158 $([M + H]^+,$ 100%); HRMS (ESI⁺) $C_8H_{16}NO_2^+$ ([M + H]⁺) requires 158.1176; found 158.1173.

(1S,2S,5R)-2-Amino-5-benzylcyclopentane-1-carboxylic acid 102

A solution of 97 (28 mg, 0.12 mmol, >99:1 dr) in 6.0 M aq. HCl (4 mL) was heated at reflux for 16 h. The reaction mixture was then allowed to cool to rt and concentrated in vacuo. The residue was dissolved in H₂O (2 mL) and purified on DOWEX 50WX8 ion exchange resin (hydrogen form, 100-200 mesh, eluent 1.0 M aq. NH₄OH) to give 102 as a white solid (26 mg, quant, >99:1 dr); mp 213–215 °C; $[\alpha]_{D}^{20}$ +4.7 (c 1.0 in H₂O); $\nu_{\rm max}$ (ATR) 3363 (N–H), 3045 (C–H), 1571 (C=O), 1402; $\delta_{\rm H}$ (400 MHz, D₂O) 1.35-1.45 (1H, m, C(4)H_A), 1.45-1.54 (1H, m, $C(3)H_A$, 1.58–1.66 (1H, m, $C(4)H_B$), 2.15–2.24 (2H, m, $C(3)H_B$, C(1')H_A), 2.52–2.61 (1H, m, C(5)H), 2.72 (1H, dd, J 13.2, 4.0, $C(1')H_B$, 2.77 (1H, app t, J 7.9, C(1)H), 3.83 (1H, app q, J 7.9, C(2)H), 7.15–7.21 (3H, m, Ph), 7.24–7.28 (2H, m, Ph); $\delta_{\rm C}$ (176 MHz, D₂O) 27.8 (C(4)), 28.6 (C(3)), 36.2 (C(1')), 42.5 (C(5)), 53.8 (C(2)), 55.8 (C(1)), 126.2, 128.6, 129.1 (o,m,p-Ph), 141.1 (i-Ph), 179.0 (CO_2H) ; m/z (ESI^+) 220 $([M + H]^+, 100\%)$; HRMS (ESI^{+}) $C_{13}H_{18}NO_{2}^{+}$ $([M + H]^{+})$ requires 220.1332; found 220.1337.

(1*S*,2*S*,5*R*)-2-Amino-5-isopropylcyclopentane-1-carboxylic acid 103

A solution of **98** (20 mg, 0.11 mmol, >99:1 dr) in 6.0 M aq. HCl (2.8 mL) was heated at reflux for 16 h. The reaction mixture was then allowed to cool to rt and concentrated *in vacuo*. The residue was dissolved in H₂O (2 mL) and purified on DOWEX 50WX8 ion exchange resin (hydrogen form, 100–200 mesh, eluent 1.0 M aq. NH₄OH) to give **103** as a white solid (17 mg, 94%, >99:1 dr); mp 200–204 °C (dec.); $[\alpha]_D^{20} + 6.0$ (c 0.2 in H₂O); ν_{max} (ATR) 3419 (N–H), 2953 (C–H), 1634 (C=O), 1510; $\delta_{\rm H}$ (700 MHz, D₂O) 0.79 (3H, d, *J* 6.6, C(1')*Me*_A), 0.87 (3H, d, *J* 6.6, C(1')*Me*_B), 1.48–1.58 (3H, m, C(3)*H*_A, C(4)*H*_A, C(1')*H*), 1.83–1.87 (1H, m, C(4)*H*_B), 1.92–1.97 (1H, m, C(5)*H*), 2.21–2.25 (1H, m, C(3)*H*_B), 2.73 (1H, dd, *J* 8.6, 4.4, C(1)*H*), 3.75 (1H, app td, *J* 7.3, 4.4, C(2)*H*); $\delta_{\rm C}$ (176 MHz, D₂O) 20.3 (C(1')*Me*_A), 21.8 (C(1')*Me*_B), 27.4 (C(4)), 29.1 (C(1')), 30.1 (C(3)), 49.4 (C(5)), 55.0 (C(1)), 55.2 (C(2)), 180.3 (CO₂H); *m/z* (ESI⁺) 172 ([M + H]⁺, 100%); HRMS (ESI⁺) C₉H₁₈NO₂⁺ ([M + H]⁺) requires 172.1332; found 172.1335.

Notes and references

- (a) R. E. Ireland and R. H. Mueller, J. Am. Chem. Soc., 1972, 94, 5897; (b) R. E. Ireland, R. H. Mueller and A. K. Willard, J. Am. Chem. Soc., 1976, 98, 2868; (c) R. E. Ireland, P. Wipf and J. D. Armstrong, J. Org. Chem., 1991, 56, 650; (d) R. E. Ireland, P. Wipf and J.-N. Xiang, J. Org. Chem., 1991, 56, 3572.
- 2 (a) D. Enders, M. Knopp and R. Schiffers, *Tetrahedron:* Asymmetry, 1996, 7, 1847; (b) H. Ito and T. Taguchi, Chem. Soc. Rev., 1999, 28, 43; (c) Y. Chai, S. Hong, H. A. Lindsay, C. McFarland and M. C. McIntosh, *Tetrahedron*, 2002, 58, 2905; (d) A. G. O'Brien, *Tetrahedron*, 2011, 67, 9639; (e) K. C. Majumdar and R. K. Nandi, *Tetrahedron*, 2013, 69, 6921.
- 3 For example, see: (a) C. P. Dell, K. M. Khan and D. W. Knight, J. Chem. Soc., Chem. Commun., 1989, 1812;
 (b) D. W. Knight, A. C. Share and P. T. Gallagher, J. Chem. Soc., Perkin Trans. 1, 1991, 1615; (c) C. Morley, D. W. Knight and A. C. Share, J. Chem. Soc., Perkin Trans. 1, 1994, 2903;
 (d) D. W. Knight, A. C. Share and P. T. Gallagher, J. Chem. Soc., Perkin Trans. 1, 1997, 2089; (e) J. P. Tellam and D. R. Carbery, Tetrahedron Lett., 2011, 52, 6027;
 (f) N. W. G. Fairhurst, M. F. Mahon, R. H. Munday and D. R. Carbery, Org. Lett., 2012, 14, 756; (g) W. R. R. Harker, E. L. Carswell and D. R. Carbery, Org. Biomol. Chem., 2012, 10, 1406; (h) P. Barbie, L. Huo, R. Müller and U. Kazmaier, Org. Lett., 2012, 14, 6064; (i) D. Becker and U. Kazmaier, J. Org. Chem., 2013, 78, 59.
- 4 For reviews, see: ref. 2*a* and *b*.
- 5 (a) S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry, 1991, 2, 183; (b) S. G. Davies, N. M. Garrido, D. Kruchinin, O. Ichihara, L. J. Kotchie, P. D. Price, A. J. Price Mortimer, A. J. Russell and A. D. Smith, Tetrahedron: Asymmetry, 2006, 17, 1793; (c) S. G. Davies, R. L. Nicholson, P. D. Price, P. M. Roberts, A. J. Russell, E. D. Savory, A. D. Smith and J. E. Thomson, Tetrahedron: Asymmetry, 2009, 20, 758; (d) S. G. Davies, A. C. Garner, R. L. Nicholson, J. Osborne, P. M. Roberts, E. D. Savory, A. D. Smith and J. E. Thomson, Corg. Biomol. Chem., 2009, 7, 2604; (e) S. G. Davies, N. Mujtaba, P. M. Roberts, A. D. Smith and J. E. Thomson, Org. Lett., 2009, 11, 1959; (f) S. A. Bentley, S. G. Davies, J. A. Lee, P. M. Roberts, A. J. Russell, J. E. Thomson and S. M. Toms, Tetrahedron, 2010, 66, 4604; (g) E. A. Brock,

S. G. Davies, J. A. Lee, P. M. Roberts and J. E. Thomson, *Org. Lett.*, 2011, **13**, 1594; (*h*) S. K. Bagal, S. G. Davies, A. M. Fletcher, J. A. Lee, P. M. Roberts, P. M. Scott and J. E. Thomson, *Tetrahedron Lett.*, 2011, **52**, 2216; (*i*) S. G. Davies, R. Huckvale, J. A. Lee, T. J. A. Lorkin, P. M. Roberts and J. E. Thomson, *Tetrahedron*, 2012, **68**, 3263.

- 6 For selected examples from this laboratory, see: (a) S. G. Davies, K. Iwamoto, C. A. P. Smethurst, A. D. Smith and H. Rodríguez-Solla, Synlett, 2002, 1146; (b) S. G. Davies, R. J. Kelly and A. J. Price Mortimer, Chem. Commun., 2003, 2132; (c) S. G. Davies, A. J. Burke, A. C. Garner, T. D. McCarthy, P. M. Roberts, A. D. Smith, H. Rodríguez-Solla and R. J. Vickers, Org. Biomol. Chem., 2004, 2, 1387; (d) S. G. Davies, J. R. Haggitt, O. Ichihara, R. J. Kelly, M. A. Leech, A. J. Price Mortimer, P. M. Roberts and D. Smith, Org. Biomol. Chem., 2004, 2, 2630; Α. E. Abraham, J. I. Candela-Lena, S. G. Davies, (e) M. Georgiou, R. L. Nicholson, P. M. Roberts, A. J. Russell, E. M. Sánchez-Fernández, A. D. Smith and J. E. Thomson, Tetrahedron: Asymmetry, 2007, 18, 2510; (f) E. Abraham, S. G. Davies, N. L. Millican, R. L. Nicholson, P. M. Roberts and A. D. Smith, Org. Biomol. Chem., 2008, 6, 1655; E. Abraham, E. A. Brock, J. I. Candela-Lena, (g)S. G. Davies, M. Georgiou, R. L. Nicholson, J. H. Perkins, P. M. Roberts, A. J. Russell, E. M. Sánchez-Fernández, P. M. Scott, A. D. Smith and J. E. Thomson, Org. Biomol. Chem., 2008, 6, 1665; (h) S. G. Davies, A. M. Fletcher, P. M. Roberts and A. D. Smith, Tetrahedron, 2009, 65, 10192; (i) S. A. Bentley, S. G. Davies, J. A. Lee, P. M. Roberts and J. E. Thomson, Org. Lett., 2011, 13, 2544; (*j*) S. G. Davies, O. Ichihara, P. M. Roberts and J. E. Thomson, Tetrahedron, 2011, 67, 216; (k) S. G. Davies, A. M. Fletcher, D. G. Hughes, J. A. Lee, P. D. Price, P. M. Roberts, A. J. Russell, A. D. Smith, J. E. Thomson and O. M. H. Williams, Tetrahedron, 2011, 67, 9975; (1) S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson and West, *Tetrahedron Lett.*, 2011, 52, 6477; С. I. (m) S. G. Davies, J. A. Lee, P. M. Roberts, J. P. Stonehouse and J. E. Thomson, Tetrahedron Lett., 2012, 53, 1119; (n) S. G. Davies, A. M. Fletcher, L. Lv, P. M. Roberts and J. E. Thomson, Tetrahedron Lett., 2012, 53, 3052; (o) S. G. Davies, A. M. Fletcher, J. A. Lee, P. M. Roberts, A. J. Russell, R. J. Taylor, A. D. Thomson and J. E. Thomson, Org. Lett., 2012, 14, 1672; (p) S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson and C. J. West, Tetrahedron, 2012, 68, 4302.
- 7 For selected examples from this laboratory, see:
 (a) T. Cailleau, J. W. B. Cooke, S. G. Davies, K. B. Ling, A. Naylor, R. L. Nicholson, P. D. Price, P. M. Roberts, A. J. Russell, A. D. Smith and J. E. Thomson, *Org. Biomol. Chem.*, 2007, 5, 3922; (b) S. G. Davies, M. J. Durbin, E. C. Goddard, P. M. Kelly, W. Kurosawa, J. A. Lee, R. L. Nicholson, P. D. Price, P. M. Roberts, A. J. Russell, P. M. Scott and A. D. Smith, *Org. Biomol. Chem.*, 2009, 7, 761.

- selected examples from this laboratory, 8 For see: (a)S. G. Davies, A. C. Garner, M. J. C. Long, R. M. Morrison, P. M. Roberts, A. D. Smith, M. J. Sweet and J. M. Withey, Org. Biomol. Chem., 2005, 3, 2762; (b) Y. Aye, S. G. Davies, A. C. Garner, P. M. Roberts, A. D. Smith and I. E. Thomson, Org. Biomol. Chem., 2008, 6, 2195; (c) E. Abraham, S. G. Davies, A. J. Docherty, K. B. Ling, P. M. Roberts, A. J. Russell, J. E. Thomson and S. M. Toms, Tetrahedron: Asymmetry, 2008, 19, 1356; (d) S. G. Davies, M. J. Durbin, S. J. S. Hartman, A. Matsuno, P. M. Roberts, A. J. Russell, A. D. Smith, J. E. Thomson and S. M. Toms, Tetrahedron: Asymmetry, 2008, 19, 2870; (e) S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson and J. Yin, Org. Lett., 2012, 14, 218.
- 9 (a) S. G. Davies, A. D. Smith and P. D. Price, *Tetrahedron:* Asymmetry, 2005, **16**, 2833; (b) S. G. Davies, A. M. Fletcher, P. M. Roberts and J. E. Thomson, *Tetrahedron: Asymmetry*, 2012, **23**, 1111.
- 10 S. G. Davies, A. M. Fletcher, P. M. Roberts, J. E. Thomson and C. M. Zammit, *Chem. Commun.*, 2013, **49**, 7037.
- 11 S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson and J. Yin, *Tetrahedron*, 2011, **67**, 6382.
- 12 (a) S. G. Davies and I. A. S. Walters, J. Chem. Soc., Perkin Trans. 1, 1994, 1129; (b) S. G. Davies, A. M. Fletcher, G. J. Hermann, G. Poce, P. M. Roberts, A. D. Smith, M. J. Sweet and J. E. Thomson, Tetrahedron: Asymmetry, 2010, 21, 6135; (c) S. G. Davies, E. M. Foster, C. R. McIntosh, P. M. Roberts, T. E. Rosser, A. D. Smith and J. E. Thomson, Tetrahedron: Asymmetry, 2011, 22, 1035.
- 13 Authentic samples of **16** and **17** were also prepared *via* an alkylation strategy: transesterification of **8** upon treatment with SOCl₂ in MeOH, followed by alkylation of the resultant methyl ester, upon sequential treatment with LiHMDS and allyl bromide, gave **16** in 54 : 46 dr, from which the major *anti*-diastereoisomer was isolated in 15% yield and 98 : 2 dr. Similarly, transesterification of **9**, followed by alkylation with allyl bromide gave **17** in 81 : 19 dr, from which the major *anti*-diastereoisomer was isolated in 11% yield and 99 : 1 dr.
- 14 Crystallographic data (excluding structure factors) for compounds **16**, **18–20**, **25**, **29**, **37**, **86**·HBF₄, **87** and **96**·HCl have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 982697–982706, respectively.
- 15 An authentic sample of 18 was also prepared directly from 20 (>99:1 dr) upon tandem hydrogenolysis/reduction in the presence of acetone which gave 18 in 68% yield and >99:1 dr.
- 16 N. Sewald, K. D. Hiller, M. Korner and M. Findeisen, J. Org. Chem., 1998, 63, 7263.
- 17 (a) H. D. Flack, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1983, 39, 876; (b) H. D. Flack and G. Bernardinelli, J. Appl. Crystallogr., 2000, 33, 1143.
- 18 I. S. Kim and M. J. Krische, Org. Lett., 2008, 10, 513.
- 19 The stereochemical outcome of this reaction is in accordance with our transition state mnemonic; see: J. F. Costello,

S. G. Davies and O. Ichihara, *Tetrahedron: Asymmetry*, 1994, 5, 1999.

- 20 Esterification of **26** upon treatment with $SOCl_2$ in MeOH was also accompanied by addition of HCl to the C=C bond.
- 21 D. Mal, Synth. Commun., 1986, 16, 331.
- 22 The configurations of the products **35** and **36** were not determined in these cases.
- 23 This phenomenon has been noted previously; for example, see: C. P. Dell, K. M. Khan and D. W. Knight, *J. Chem. Soc., Perkin Trans.* 1, 1994, 341; also see ref 3*a*.
- 24 Boat-like transition states have previously been proposed to account for trends in diastereoselectivity; for example, see: J. P. Tellam and D. R. Carbery, *J. Org. Chem.*, 2010, 75, 7809. See also: ref. 3a and 23.
- 25 For instance, see: (a) D. H. Appella, L. A. Christianson, D. A. Klein, D. R. Powell, X. Huang, J. J. Barchi and S. H. Gellman, Nature, 1997, 387, 381; (b) T. A. Martinek, G. K. Táth, E. Vass, M. Hollósi and F. Fülop, Angew. Chem., Int. Ed., 2002, 41, 1718; (c) E. Abraham, C. W. Bailey, T. D. W. Claridge, S. G. Davies, K. B. Ling, B. Odell, T. L. Rees, P. M. Roberts, A. J. Russell, A. D. Smith, L. J. Smith, H. R. Storr, M. J. Sweet, A. L. Thompson, J. E. Thomson, G. E. Tranter and D. J. Watkin, Tetrahedron: Asymmetry, 2010, 21, 1797.
- 26 For reviews, see: (a) F. Fülop, Chem. Rev., 2001, 101, 2181;
 (b) L. Kiss and F. Fülöp, Chem. Rev., 2014, 114, 1116.
- 27 (a) S. G. Davies, D. Díez, M. M. El Hammouni, A. C. Garner, N. M. Garrido, M. J. C. Long, R. M. Morrison, A. D. Smith, M. J. Sweet and J. M. Withey, *Chem. Commun.*, 2003, 2410; (b) M. E. Bunnage, A. M. Chippindale, S. G. Davies, R. M. Parkin, A. D. Smith and J. M. Withey, *Org. Biomol. Chem.*, 2003, 1, 3698; (c) S. G. Davies, A. C. Garner, M. J. C. Long, A. D. Smith, M. J. Sweet and J. M. Withey, *Org. Biomol. Chem.*, 2004, 2, 3355. See also: ref. 8*a*-*c*.
- 28 E. Abraham, T. D. W. Claridge, S. G. Davies, B. Odell, P. M. Roberts, A. J. Russell, A. D. Smith, L. J. Smith, H. R. Storr, M. J. Sweet, A. L. Thompson, J. E. Thomson,

G. E. Tranter and D. J. Watkin, *Tetrahedron: Asymmetry*, 2011, 22, 69.

- 29 (a) S. G. Davies and G. D. Smyth, J. Chem. Soc., Perkin Trans. 1, 1996, 2467; (b) S. G. Davies and G. D. Smyth, Tetrahedron: Asymmetry, 1996, 7, 1001.
- 30 Presumably, the formation of the minor diastereoisomers 75–79 is due to the rearrangement proceeding *via* an alternative higher energy chair-like transition state in which 1,3-allylic strain between the C(3)-substituents and the C(1)–O bond is minimised and the reaction occurs on the same face as the bulky *N*-benzyl-*N*-(α -methylbenzyl)-group.
- 31 Crystallographic data (excluding structure factors) for compounds **84**, **89**, **95** and **99** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 936128–936131, respectively. See also: ref. 10.
- 32 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.
- 33 J. Etxebarria, J. L. Vicario, D. Badia, L. Carrillo and N. Ruiz, J. Org. Chem., 2005, 70, 8790.
- 34 J. Rehbein, S. Leick and M. Hiersemann, *J. Org. Chem.*, 2009, 74, 1531.
- 35 D. J. Vyas and M. Oestreich, Chem. Commun., 2010, 46, 568.
- 36 J. N. Denis, A. E. Greene, A. A. Serra and M. J. Luche, *J. Org. Chem.*, 1986, **51**, 46.
- 37 (Z)-Pent-2-en-1-ol was prepared in 75% yield upon reduction of the corresponding alkynol with H₂ (1 atm), Ni(OAc)₂, NaBH₄ and (CH₂NH₂)₂ in MeOH at rt for 8 h, following a literature procedure; see: D. A. Candito, D. Dobrovolsky and M. Lautens, *J. Am. Chem. Soc.*, 2012, 134, 15572.
- 38 (Z)-4-Phenylbut-2-en-1-ol was prepared in 41% yield according to a known procedure, incorporating a Still-Genari reaction as the key stereodefining step; see: K. C. Nicolaou, E. W. Yue, S. La Greca, A. Nadin, Z. Yang, J. E. Leresche, T. Tsuri, Y. Naniwa and F. De Riccardis, *Chem. Eur. J.*, 1995, 1, 467.