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Abstract: Michael-type addition of enamino esters to 3,4,6-tri-O-
benzyl-2-nitro-D-glucal under solvent-free conditions formed
C-glycosides in excellent yields with high stereoselectivity. Reduc-
tion of the nitro group afforded the corresponding bicyclic 2-amino
C-glycosides.
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C-Glycosides, either synthetic or naturally occurring, are
an important class of bioactive compounds.1 In contrast to
their O-analogues, C-glycosides are less vulnerable to en-
zymatic and chemical hydrolyses, which has led to signif-
icant interest in their viability as drug candidates and
enzyme inhibitors. The synthesis of C-glycosides has
hence attracted much attention from synthetic organic
chemists and methods for the formation of C-glycosides
are well documented in the literature.2 The synthetic strat-
egy for C-glycosides usually involves the construction of
the anomeric C–C bond using the nucleophilic, electro-
philic, or radical character of the anomeric center, and
concerted reactions have also been employed for C-gly-
cosidation.3 Electrophilic reactions were probably most
widely applied to C-glycosidation and commonly used C-
nucleophiles include organometallics, cyanides, C-sily-
late compounds, alkenes, and activated aromatic and b-di-
carbonyl compounds. Only a few applications of enamino
esters as nucleophiles for C-glycosidation have been re-
ported in the literature.4 Due to their easy preparation,
considerable stability, and bisnucleophility, enamino es-
ters are a remarkable class of synthetic intermediates with

diverse reactive properties, and they have been widely
used in the synthesis of alicyclic, aromatic and heterocy-
clic compounds.5 Hence, it would be significant not only
in carbohydrate chemistry but also in synthetic organic
chemistry to develop a convenient, efficient and practical
method for the C-glycosidation of enamino esters.

Solvent-free reactions, due to the advantages of less pol-
lution, lower expense, and easier procedures, have attract-
ed considerable attention from synthetic organic
chemists.6 However, the application of solvent-free reac-
tions in carbohydrate chemistry has been limited.7 Herein,
we report a solvent-free C-glycosidation method by using
Michael-type addition of enamino esters to 3,4,6-tri-O-
benzyl-2-nitro-D-glucal (1).8

The 2-nitro-D-glucal 1 was prepared according to a report-
ed method.9 Enamino ester 2d was chosen as a model sub-
strate in the test reactions with 1 (Scheme 1; R1 = Ph,
R2 = Bn). Considering that the Michael addition reactions
were usually performed with the aid of a base,10 the reac-
tions between 1 and 2d were initially carried out in the
presence of various bases, such as: NaH, t-BuOK,
CH3ONa, DBU, Et3N or DMAP, and in various solvents
(CH2Cl2, MeCN, THF, 1,4-dioxane, toluene or DMF).
Unfortunately, either no reaction occurred or complex
mixtures of products were generated under such reaction
conditions. Subsequently, in order to optimize the reac-
tion conditions, the influence of concentration on the out-
come of the glycosidation was examined, and the reaction
between 1 and 2d was attempted in concentrations rang-
ing from 0.05 M to solvent-free conditions. To our de-

Scheme 1 Solvent-free and stereoselective C-glycosidation by Michael-type addition of enamino esters to 2-nitro-D-glucal
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light, the reaction proceeded smoothly to give C-
glycoside 3d under solvent-free conditions. The appropri-
ate temperature for the reaction, in terms both of yield and
reaction time, was found to be 110 °C.11 The reaction be-
tween a variety of enamino esters12 2a–k and 1 were then
attempted (Table 1). All reactions were complete within
5–8 hours and resulted in the formation of the desired C-
glycosides 3a–k in good yield (85–94%) with excellent b-
stereoselectivity. The reactions of the enamino esters de-
rived from ethyl acetoacetate (2i–k) with 1 should be per-
formed at temperatures below 95 °C (Table 1, entries 9,
10, and 11) to avoid low yields. Although both b-C- and
N-positions of enamino esters can act as nucleophilic cen-
ters and either could, in principle, be involved in the reac-
tions with 1, no N-glycoside was detected. Therefore, the
reactions between 1 and 2 proceeded smoothly with excel-
lent regio- and stereoselectivity. The presence of a nitro
group at C-2 seemed to allow anchimeric assistance and
consequently orientated the glycosylation in the direction
of the b-anomer.

The configurations of C-glycosides were determined on
the basis of their spectroscopic properties. For example, in
the 1H NMR spectra of 3d, the anomeric hydrogen signal
appeared as a doublet with J1¢,2¢ = 9.7 Hz. Similarly, the H-
2¢ signal appeared as a triplet with J1 = J2 = 9.7 Hz. This
clearly indicated a trans relationship between H-1¢ and H-
2¢, and between H-2¢ and H-3¢. The structure assignment
was also supported by an NOE experiment that indicated
strong interactions between H-1¢ and H-3¢/H-5¢ and be-
tween H-2¢ and H-4¢. It was inferred that H-1¢ and H-3¢/H-
5¢ were on the same side, whereas H-2¢ and H-4¢ were on

the other side. The X-ray single crystal analyses of 3d
(Figure 1) and 3i (Figure 2) unambiguously confirmed
these assignments.13

Subsequently, we focused our attention on the C-glycosi-
dation of heterocyclic enamines 4 (Table 2). The solvent-
free reactions of heterocyclic enamino esters 4a and 4b14

were conducted at 85 °C and were complete within 30
minutes, whereas the reactions of nitro-substituted hetero-
cyclic enamines 4c and 4d15 required longer reaction
times and did not go to completion. The conversion ratio
was not improved by addition of a base; on the contrary,
the yields decreased dramatically (20–25%), due to the
decomposition of 2-nitroglucal 1. C-Glycosidation of het-

Table 1 Michael-Type Addition of Enamino Esters to 2-Nitro-D-glucal

Entry Enamino ester R1 R2 Temp (°C) Time (h) Yield (%)a

1 2a Ph H 110 8 85

2 2b Ph Me 110 6 87

3 2c Ph Ph 110 5 90

4 2d Ph Bn 110 5 94

5 2e Ph n-Pr 110 7 88

6 2f Ph i-Pr 110 5 92

7 2g Ph CH2CH=CH2 110 8 92

8 2h Ph CH2CO2Et 110 8 91

9 2i Me H 95 6 91

10 2j Me CH2CH=CH2 95 5 93

11 2k Me Bn 95 3 94

a Combined isolated yields after column chromatography.
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Figure 1 X-ray crystal structure of 3d; partial hydrogen atoms bon-
ded to carbon atoms have been omitted for clarity. The intramolecular
hydrogen bond is indicated by a dashed line.
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erocyclic enamino esters could proceed when refluxing in
MeCN, albeit in lower yields. Because 2-nitroglucal 1 did
not react completely (Table 2, entries 2 and 5), a catalytic
amount of Et3N was added to solve this problem (Table 2,
entries 3 and 6). For six-membered heterocyclic enam-
ines, only the b-anomer was obtained, whereas five-mem-
bered enamines afforded a mixture of two anomers. The
results indicated that compounds with six-membered
rings showed better stereoselectivity than those with five-
membered rings.

The configurations of the C-glycosides were determined
by analysis of their 1H NMR and NOE spectra. For the a-
anomer, the H-1¢ signal appeared as a doublet with
J1¢,2¢ = 9.8 Hz, indicating a trans arrangement for H-1¢ and

H-2¢; while the H-2¢ signal appeared as a double doublet
with J2¢,3¢ = 3.7 Hz, indicating axial/equatorial arrange-
ment for H-2¢ and H-3¢ and a 1C4 conformation for 5a-.
This structural assignment was also supported by an NOE
experiment, which demonstrated a strong interaction be-
tween H-1¢ and H-6¢.
The presence of a nitro group at C-2¢ has several advan-
tages; in particular, it would provide access to various 2-
amino-C-glycosides,16 which are important components
of many glycoproteins that are attractive targets for the
design of C-linked carbohydrate mimetics.17 Accordingly,
we then attempted the reduction of the nitro group. A va-
riety of reagents and conditions for reduction of the nitro
groups18 were screened, including Raney Ni, Zn/Ac2O
and Zn/AcOH, but all these conditions led to unidentifi-
able mixtures of products. Fortunately, reduction of com-
pound 3 with four equivalents of zinc dust and four
equivalents of NH4Cl in ethanol proved to be a relatively
clean reaction, resulting in the formation of the unexpect-
ed bicyclic compounds 6 and 7 in good yields. Bicyclic
compounds 6 and 7 were clearly formed through a se-
quence of reactions, i.e., reduction of the nitro group, fol-
lowed by subsequent intramolecular cyclization along
with the elimination of the amino group of the aglycon.

The ratio of products 6 and 7 ranged between 3:1 to 1.2:1
(Table 3); the configurations of the products were deter-
mined by 1H NMR and NOE experiments. For compound
6, the H-3 signal appeared at d = 3.18 ppm as a double
doublet with J1 = 9.8 Hz and J2 = 8.2 Hz, and the H-7a
signal appeared at d = 3.32 ppm as a triplet with
J1 = J2 = 9.2 Hz. NOE experiments showed interactions
between H-3a and H-2/H-5/H-7 and between H-7a and

Figure 2 X-ray crystal structure of 3i; partial hydrogen atoms bon-
ded to carbon atoms have been omitted for clarity. The intramolecular
hydrogen bond is indicated by a dashed line.

Table 2 Michael-Type Addition of Heterocyclic Enamines to 2-Nitro-D-glucal

Entry 4 n, R3 Solvent Temp (°C) Additive Recovered 1 (%) Time (h) Yield (%) b/a

1 4a 0, CO2Et – 85 – – 0.5 96a 98:2b

2 4a 0, CO2Et MeCN reflux – 10 5 74a 90:10b

3 4a 0, CO2Et MeCN reflux Et3N – 5 89a 90:10b

4 4b 1, CO2Et – 85 – – 0.5 94 1:0

5 4b 1, CO2Et MeCN reflux – 15 8 70 1:0

6 4b 1, CO2Et MeCN reflux Et3N – 8 84 1:0

7 4c 0, NO2 – 85 – 7 4 86a 93:7c

8 4d 1, NO2 – 85 – 9 6 79 1:0

a Combined isolated yield after column chromatography.
b Ratio was determined from the isolated pure diastereomers.
c Ratio was determined by integration of the H-2¢ signal in the 1H NMR spectra (300 MHz).
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H-3/H-6, which indicated a trans relationship between H-
2/H-3, H-3/H-3a and H-3a/H-7a. The H-3 signal of com-
pound 7 appeared at d = 2.91 ppm as a double doublet
with J3,2 = 8.9 Hz and J3,3a = 3.0 Hz, and the H-7a signal
appeared at d = 3.24 ppm as a triplet with J1 = J2 = 9.2 Hz.
The trans relationship between H-2/H-3 and H-7a/H-3a
and the cis relationship between H-3/H-3a could be ob-
served from an NOE experiment (Figure 3).

Figure 3 Key NOE correlations for bicyclic compounds 6 and 7

In conclusion, an efficient, solvent-free C-glycosidation
method has been developed based on the Michael-type ad-
dition of enamino esters to 3,4,6-tri-O-benzyl-2-nitro-D-
glucal, which results in the formation of the desired C-gly-
cosides in good yields and with excellent regio- and stere-
oselectivity. Reduction of the nitro group gave access to
novel bicyclic 2-amino C-glycosides that are potentially
useful as bioactive compounds, such as inhibitors of gly-
cosidases. 

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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