A short synthesis of biologically active lignan analogues

Stefan Kamlage,^a Michael Sefkow,^a Beatrice L. Pool-Zobel^b and Martin G. Peter*^a

- ^a Institut für Organische Chemie und Strukturanalytik, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany. E-mail: peter@serv.chem.uni-potsdam.de
- ^b Institut für Ernährungswissenschaften, Friedrich-Schiller-Universität Jena, Dornburger Str. 25, D-07743 Jena, Germany

Received (in Cambridge, UK) 20th October 2000, Accepted 12th January 2001 First published as an Advance Article on the web 31st January 2001

 β -Benzyl- γ -butyrolactones were synthesized in four transition metal catalysed reactions from butynediol, and alkylated to afford new, biologically active lignan analogues.

Lignans, dimers of phenylpropenes, are ubiquitous secondary plant metabolites. 1 They exhibit notable biological activities, in particular antiviral,² cytotoxic³ and canceroprotective⁴ properties. Many lignan syntheses have been reported in the past. 1,5 Two different strategies were most frequently followed for the synthesis of butyrolactone lignans 1: 1. oxidative dimerization of p-hydroxycinnamic acids⁶ and 2. alkylation of β -benzyl- γ butyrolactones 2.7 Following these routes, between 6 and 13 steps were necessary to obtain this class of lignans. We reported recently the Stille coupling8 of unsymmetrically protected 2-tributylstannylbuten-1,4-diols 3 with a variety of benzyl bromides.9 This coupling reaction was the key step for the preparation of lactones 2 from butynediol 4 (Scheme 1, Route A) but several protecting group manipulations were necessary and the overall yields were low (6–15%). Thus, a regioselective oxidation of 2-tributylstannylbut-2-en-1,4-diol (5) to lactone 6 was desirable for a short synthesis of lactone 2 (Scheme 1, Route B). Herein we report the synthesis of lactone 2 using only four transition metal catalysed reactions. Key step was the hitherto unknown, regioselective oxidation of diol 5 to lactone

The palladium catalysed *cis*-selective addition of tributyl-stannane to butynediol **4** is well documented.¹¹ The quality of

Route A

5 steps

2 steps

SnBu₃

SnBu₃

HO

The step of the s

Scheme 1

diol 4 was crucial in this step. Purification of this compound prior to its use was necessary to obtain diol 5 in 92% yield (Scheme 2).

The hydroxy group at C(4) of diol **5** can be regioselectively protected using bulky silyl groups like the TBDMS group.¹² We assumed that selective oxidation of this hydroxy group may occur if a sterically demanding oxidation reagent like TPAP¹³ in conjunction with NMO was employed. The selective oxidation of a primary hydroxy group in the presence of a secondary using this oxidation system was reported by Bloch and Brillet¹⁴ but a regioselective oxidation of one of two primary hydroxy groups has not been published yet.

Treatment of diol 4 with 2.5 equivalents of NMO and 5 mol% TPAP at rt for 17 h afforded the lactones 6 and 7 in 15% yield and in a 4:1 ratio (Table 1, entry 1). The major compound isolated was furane 10 (30%) formed by elimination of water after initial oxidation to lactol 11 (Scheme 3).

Improved yields and selectivities were achieved when the initial temperature was below 0 °C and the reaction mixture gradually warmed to rt over a period of 17 h (entries 2 and 3). Increasing the amount of TPAP and longer reaction times produced the lactones 6 and 7 in ca. 50% yield but the

Scheme 2

rac-2a-h

331

 $\begin{array}{l} \textbf{Table 1} \ \textit{Reaction conditions for the TPAP-catalysed oxidation of diol 5 to} \\ \textbf{1} \ \textit{1} \ \textit{2} \ \textit{2} \ \textit{3} \ \textit{4} \ \textit{4} \end{array}$

Entry	TPAP/mol%	T/°C	t/h	Yield (%)	Ratio 6 : 7 ^a
1	5	23	17	15	3,7:1
2	5	$-30 \rightarrow 23$	17	21	22:1
3	5	$-78 \rightarrow 23$	17	32	22:1
4	7,5	$-78 \rightarrow 23$	62	47	25:1
5	10	$-78 \rightarrow 23$	62	49	20:1
6	7.5 + 2.5 + 2.5	$-78 \rightarrow 23$	62	50	5,4:1

9a-h

selectivity decreased with higher contents of the oxidation reagent (entries 4–6).

Lactones **6** and **7** were inseparable by flash chromatography and were therefore used as a mixture for the Stille coupling. This reaction was performed with benzyl bromides **8a**–**h** as described previously. The α,β-unsaturated lactones **9a**–**h** were isolated as isomerically pure compounds (Scheme 2). Sweeney *et al.* described recently, that the reaction rates for the Stille coupling of lactones **6** and **7** with aryl halides are different. Is In analogy, only lactone **6** reacted with benzyl bromides **8a**–**h** to the coupling products **9a**–**h** (Table 2).

Table 2 Benzyl bromides 8a-h employed for the Stille coupling and yields of the reaction products 9a-h

Entry	Residue (R)	Bromide	Lactone	Yield (%)
1	4-Mesyl-3-methoxy	8a	9a	80
2	3,4,5-Trimethoxy	8b	9b	56
3	4-Methyl	8c	9c	76
4	Н	8d	9d	70
5	4-Nitro	8e	9e	24
6	2,4,6-Trimethyl	8f	9f	77
7	3-Methoxy	8g	9g	59
8	3,4-Methylendioxy	8h	9ĥ	45

Hydrogenation of lactones **9a-h** to lactones **2a-h** were achieved by means of 10% Pd on charcoal or Ra-Ni T4 (Table 3). The former catalyst, however, gave irreproducible results or no conversion. Additionally, high pressure (100 bar) and long reaction times (>24 h) were required. With Ra-Ni T4 as catalyst, complete conversion was found in all cases within 2 h at 0.1 bar positive pressure.

 $\begin{tabular}{ll} Table 3 Hydrogenation of the unsaturated lactones 9a-h using different catalysts \\ \end{tabular}$

Entry	Unsat. lactone	Product	Catalyst	p/bar	t/h	Yield (%)
1	9a	2a	Pd/C	0.1	14	93
2	9a	2a	Ra-Ni T4	0.1	2	98
3	9b	2b	Pd/C	0.1	14	0
4	9b	2b	Ra-Ni T4	0.1	2	70
5	9c	2c	Pd/C	0.1	24	98
6	9d	2d	Pd/C	50	48	97
7	9e	2e	Pd/C	0.1	14	0
8	9f	2f	Pd/C	0.1	14	0
9	9f	2f	Pd/C	100	72	88
10	9f	2f	Ra-Ni T4	0.1	2	98
11	9g	2g	Pd/C	100	14	92
12	9ĥ	2h	$Pd(OH)_2$	100	16	0
13	9h	2h	Ra-Ni T4	0.1	2	70

Alkylation of lactones **2** with benzyl halides using LDA as base and HMPA as cosolvent provides lactone lignans **1**,1,7,16 We found that alkylation using LHMDS as base and DMPU¹⁷ as non-carcinogenic substitute for HMPA afforded lactones **1** in moderate yields (Scheme 4 and Table 4).

Bioassay of the synthetic lignan analogues using colon-tumor lines HT29 revealed that compound $\bf 1f$ possesses high cytotoxic activity (IC₅₀ = 40 mM).¹⁸

We have shown that β -benzyl- γ -butyrolactones 2 were effectively synthesised from butynediol 4 in four transition

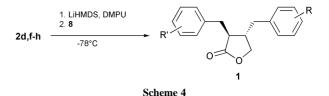


Table 4 Alkylation of lactones 2d,f-h to the symmetrically and unsymmetrically substituted lignan analogues 1

Entry	Lactone	Bromide	Residue (R')	Lignan	Yield (%)a
1	2d	8d	Н	1d	30
2	2f	8f	2,4,6-Trimethyl	1f	43
3	2f	8h	3,4-Methylendioxy	1fb	25
4	2g	8g	3-Methoxy	1g	18
5	2h	8h	3,4-Methylendioxy	1h	35
a Reac	tion conditi	ons not opt	imized.		

metal catalysed reactions. Alkylation of these compounds produced lignan analogues 1 with cytotoxic activities. An enantioselective route to this class of lignans is in progress.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) (INK A26/1-1 and B26/1-1). MS acknowledges a habilitation grant from the DFG (Se875/1-1).

Notes and references

- D. C. Ayres and J. D. Loike, *Lignans: Chemical, Biological and Clinical Properties*, Cambridge University Press, Cambridge, 1990; R. S. Ward, *Nat. Prod. Rep.*, 1999, 16, 75.
- 2 Recent reviews: J. L. Charlton, J. Nat. Prod., 1998, 61, 1447; E. Eich, ACS Symp. Ser., 1998, 691, 83; A. J. Vlietinck, T. De Bruyne, S. Apers and L. A. Pieters, Planta Med., 1998, 64, 97.
- Recent reviews: S. E. Rickard and L. U. Thompson, ACS Symp. Ser., 1997, 662, 273; D. M. Tham, C. D. Gardner and W. L. Haskell, J. Clin. Endocrinol. Metab., 1998, 83, 2223; C. D. N. Humfrey, Nat. Toxins, 1998, 6, 51; J. M. Cline and C. L. Hughes, Jr., Cancer Treat. Res., 1998, 94, 107; W. Mazur and H. Adlercreutz, Pure Appl. Chem., 1998, 70, 1759; S. Bingham, Pure Appl. Chem., 1998, 70, 1777.
- 4 S. R. Stitch, J. K. Toumba, M. B. Groen, C. W. Funke, J. Leemhuis, J. Vink and G. F. Woods, *Nature*, 1980, **287**, 738; K. D. R. Setchell, A. M. Lawson, F. L. Mitchell, H. Adlercreutz, D. N. Kirk and M. Axelson, *Nature*, 1980, **287**, 740; M. Axelson, J. Sjövall, B. E. Gustafsson and K. D. R. Setchell, *Nature*, 1982, **298**, 659; L. U. Thompson, P. Robb, M. Serraino and F. Cheung, *Nutr. Cancer*, 1991, **16**, 43.
- 5 R. S. Ward, Chem. Soc. Rev., 1982, 11, 75; R. S. Ward, Tetrahedron, 1990, 46, 5029.
- 6 N. J. Cartwright and R. D. Haworth, J. Chem. Soc., 1944, 535; K. Weinges and R. Spänig, in Oxidative Coupling of Phenols, ed. W. I. Taylor and A. R. Battersby, Marcel Dekker, New York, 1967; D. E. Bogucki and J. L. Charlton, 1997, 75, 1793.
- 7 J. M. de L. Vanderlei, F. Coelho and W. P. Almeida, *Synth. Commun.*, 1998, **28**, 3047.
- 8 J. K. Stille, Angew. Chem., 1986, 98, 504; V. Farina, V. Krishnamurthy and W. J. Scott, Org. React., 1997, 50, 512.
- S. Kamlage, M. Sefkow and M. G. Peter, J. Org. Chem., 1999, 64, 2938
- 10 H. X. Zhang, F. Guibe and G. Balavoine, J. Org. Chem., 1990, 55, 1857.
- A. G. M. Barrett, T. E. Barta and J. A. Flygare, J. Org. Chem., 1989, 54, 4246
- 12 G. J. Hollingworth, G. Perkins and J. Sweeney, J. Chem. Soc., Perkin Trans. 1, 1996, 1913.
- 13 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639–666.
- 14 R. Bloch and C. Brillet, Synlett, 1991, 829.
- 15 R. Mabon, A. M. E. Richecœur and J. B. Sweeney, J. Org. Chem., 1999, 64, 328.
- 16 R. Chênevert, G. Mohammadi-Zirani, D. Caron and M. Dasser, Can. J. Chem., 1999, 77, 223.
- 17 T. Mukhopadhyay and D. Seebach, Helv. Chim. Acta, 1982, 65, 385.
- 18 T. W. Becker, M. G. Peter and B. L. Pool-Zobel, in *Proceedings of the Food and Cancer Prevention III Meeting, Norwich, UK*, 1999, ed. I. T. Johnson and G. R. Fenwick, Special Publication No 255, Royal Society of Chemistry, Cambridge, UK, p. 151.