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ABSTRACT: Multitarget ligands are interesting candidates for drug discovery and development due to improved safety and efficacy. 

However, rational design and optimization of multitarget ligands is tedious because affinity optimization for two or more targets has 

to be performed simultaneously. In this study, we demonstrate that, given a molecular fragment, which binds to two targets of interest, 

computer-aided fragment growing can be applied to optimize compound potency, relying either on ligand- or structure-derived 

information. This methodology is applied to the design of dual inhibitors of soluble epoxide hydrolase and leukotriene A4 hydrolase.

Designed multitarget ligands (DMLs) are in the focus of 

modern drug discovery, and offer the advantage of higher 

efficacy compared to selective ligands.1,2 Diverse strategies 

exist to generate a lead structure which affects two (or even 

more) targets of interest.3,4 However, classical approaches like 

pharmacophore linking often yield DMLs with unfavorable 

pharmacokinetic properties due to high molecular weight.5 

Fragment-based approaches are very successful to generate 

high-quality leads with acceptable ligand efficiency, and 

several studies demonstrated the feasibility of fragment-based 

discovery of DMLs.6,7 The initial step of fragment identification 

is often successful and delivers a starting point for further 

optimization.8 However, established strategies like fragment 

growing or merging are much more demanding for two or even 

more targets. The study on the discovery of indeglitazar, a pan-

peroxisome proliferator-activated receptor agonist9, as well as 

the study on PLX647, a dual FMS and KIT kinase inhibitor,10 

demonstrated fragment growing for simultaneous optimization 

of potency. The aforementioned studies were performed on 

related targets in presence of experimental structural 

information. However, in many cases, the binding modes of a 

fragment in complex with all targets of interest are not 

available. In this case, screening of available derivatives can 

lead to success,8 while computational approaches offer a 

rational way for fragment growing.11 Shang et al. implemented 

an iterative fragment growing strategy, which led to the design 

of moderately potent dual cyclooxygenase-2 (COX-

2)/leukotriene A4 hydrolase (LTA4H) inhibitors.12 

In this study we present that fragment growing for DMLs is 

possible by using ligand-based or structure-based information. 

We developed two different in silico strategies to identify a 

DML affecting soluble epoxide hydrolase (sEH) and LTA4H. 

Both enzymes hydrolyze epoxides of the arachidonic acid. sEH 

converts the epoxyeicosatrienoic acids towards their 

corresponding vicinal diol,13 while LTA4H hydrolyses the 

instable leukotriene A4 towards the 5,12-dihydroxy derivative 

leukotriene B4.14 The simultaneous inhibition of both enzymes 

might lead to synergistic anti-inflammatory effects, which have 

already been demonstrated for simultaneous inhibition of sEH 

and 5-lipoxygenase activating protein (FLAP).15 Recently, we 

demonstrated the feasibility of dual sEH/LTA4H inhibitors 

which bear the potential as novel anti-inflammatory agents.16 
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Figure 1. Identification of dual fragments using a self-

organizing map. Training a SOM (50x50 neurons) with known 

active sEH (red circles) and LTA4H (blue circles) ligands led to 

identification of 1, a previously reported sEH inhibitor, which is 

located within the LTA4H cluster. The reference sEH inhibitor 2 

(TPPU) and the LTA4H inhibitor 3 (bestatin) were located within 

the respective cluster.
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As a first step, a fragment, which can act as a starting point for 

optimization, was identified. In a previous study by Achenbach 

et al.8 we demonstrated that self-organizing maps17 (SOMs) 

offer an opportunity to identify fragments binding to both 

targets. Therefore, we extracted reported sEH and LTA4H 

inhibitors from ChEMBL DB18 v24 and trained a SOM using 

OSIRIS DataWarrior (Idorsia Pharmaceuticals). The analysis of 

the SOM revealed that LTA4H (blue circles) and sEH (red 

circles) ligands build distinct clusters (Figure 1). The few 

compounds which were assigned to the opposite cluster were 

manually examined. One of these compounds was fragment 1, 

which was initially identified by Amano et al. as a fragment, 

which binds to sEH and exhibits moderate potency and ligand 

efficacy.19 The published co-crystal structure of 1 in complex 

with sEH shows that the highly lipophilic benzyloxy phenyl 

moiety occupies a lipophilic tunnel in the active site (PDB code 

4Y2T; Figure 2A). The hydroxyl group exhibits directed 

hydrogen bonds towards Asp335, Tyr383, and Tyr466, three 

residues important for the catalytic activity of sEH. The 

lipophilic pocket, which is located behind the three 

aforementioned residues (Figure 2A, gray dashed circle), offers 

space for fragment growing. We evaluated the inhibition of sEH 

by 1 in a fluorescence-based enzyme activity assay20 and could 

measure an IC50 of 79 ± 16 µM. Given the MW=242 and heavy 

atom count (HAC) of 18, the ligand efficiency results in LE = 

1.4*pIC50/(HAC) = 0.32,21 which qualifies it as an acceptable 

starting point for fragment growing.21 However, the ligand-

lipophilicity efficiency LLE = pIC50-clogP = 0.34 is very low 

and needs to be improved during optimization.22
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Figure 2. Starting point for fragment growing. A. Co-crystal 

structure of 1 with sEH hydrolase domain (PDB code: 4Y2T). B. 

Proposed binding mode of 1 in complex with LTA4H, based on co-

crystal structure of a similar fragment (PDB code: 3CHO). 1 is 

shown as orange sticks, the molecular surface of the binding site is 

colored by lipophilicity (green: lipophilic; magenta: hydrophilic), 

grey dashed circle indicates unoccupied space in the binding site. 

C. Fragment growing strategy towards amides 4a-k. Red arrows 

indicate H-bond acceptor, blue arrows H-bond donor capabilities 

of the hydroxyl moiety, which is bioisosterically replaced by the 

secondary amide.

Despite the low LLE, 1 bears a benzyloxy phenyl moiety, a 

typical feature of LTA4H inhibitors, described by Kirkland et 

al.23 We measured the inhibitory activity of 1 towards LTA4H 

by using a fluorescence-based enzyme activity assay24 yielding 

an IC50 of 5 ± 0.8 µM (LE = 0.41; LLE = 1.54). We used the 

published X-ray structure of an inhibitor bearing the benzyloxy 

phenyl moiety (PDB code 3CHO) to predict the binding mode 

of 1 in complex with LTA4H (Figure 2B).23 The lipophilic 

tunnel in the binding site of LTA4H, which is important for 

potent and thermodynamically favorable binding,25 is fully 

occupied by the lipophilic benzyloxy phenyl residue. The 

hydroxyl moiety exhibits an H-bond towards backbone 

carbonyl of Gly269, which is located near the catalytically 

important zinc ion. The adjacent pocket is not occupied and can 

be potentially used for fragment growing (Figure 2B, grey 

dashed circle). 

Given the binding modes of 1 to both enzymes, we decided on 

bioisosteric replacement of the hydroxyl group by a secondary 

amide. This amide exhibits similar H-bond donor and acceptor 

features and allows the extension of the fragment 1 by coupling 

of amine building blocks to 3-(4-benzyloxy) phenyl propionic 

acid 5 (Figure 3C). Therefore, we prepared a virtual 

combinatorial library of secondary amides extending 5. 

Commercially available amine building blocks, from six 

vendors most frequently used in our lab (Acros, Alfa-Aesar, 

Apollo Scientific, Fluorochem, Sigma Aldrich, TCI), were 

extracted from ZINC database26 and duplicates were removed. 

Filtering for amides and sulfonamides has been performed, in 

order to remove these epoxide mimetics, which would bias the 

virtual library towards sEH. The combinatorial library was 

generated using the Combinatorial Library application in the 

MOE GUI. The two fragments were combined using a virtual 

amide condensation reaction. After applying a molecular 

weight filter (MW K 500 Da) and removing tertiary amides 

resulting from the condensation procedure, the final 

combinatorial library contained 20,630 compounds for 

subsequent computer-aided prioritization (Figure 3A).

In order to demonstrate the applicability of computer-aided 

design to fragment growing of multi-target ligands, we chose 

two complementary strategies. The ligand-based strategy relies 

solely on the information of previously published active 

ligands. The structure-based design strategy relies on the 

information contained in the X-ray structures of both enzymes 

in complex with various inhibitors. Therefore, we compiled 

datasets (Figure 3A) to train machine learning algorithms to 

predict the activity towards sEH and LTA4H. First, all co-

crystallized ligands for LTA4H and sEH were retrieved from 

the Protein Data Bank.27 This resulted in 43 unique co-

crystalized LTA4H compounds and 92 co-crystalized sEH 

compounds in complex with the respective targets. 

Furthermore, active compounds from ChEMBL database were 

retrieved. The 1,022 active LTA4H compounds (Target 
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aAll values were measured at least thrice as triplicates (n U 3), 

mean ± SD is displayed.

This study, although successful in yielding dual active 

structures, has some limitations, which should be kept in mind 

when transferring the strategy to other target combinations. 

First, both targets, sEH and LTA4H convert similar ligands � 

arachidonic acid epoxides � that leads to similar binding sites, 

at least concerning the hydrophobicity patterns. It is unclear, 

whether the aforementioned strategy is applicable to completely 

dissimilar targets. Furthermore, the machine learning algorithm 

profits from the large number of available active ligands for 

both targets. Given a novel target without numerous published 

actives, machine learning will possibly fail to predict activity. 

Finally, the computational approach just delivers ideas for 

synthesis which have to be carefully selected by an experienced 

medicinal chemist able to assess the synthetic accessibility, 

familiar with the structure-activity relationships of the 

respective targets, and estimate the potential physicochemical 

properties of the suggested ligands. Incorporation of more 

advanced in silico filters could simplify the crucial step of 

cherry picking.

In this study, we developed a computer-aided fragment-

growing strategy for multi-target ligands. We applied it to the 

design of dual inhibitors of LTA4H and sEH, epoxide hydrolase 

enzymes located in the arachidonic acid cascade. Starting from 

fragment 1, a lipophilic dual inhibitor of both proteins with 

acceptable ligand efficacy, a large combinatorial library of 

possible expanded ligands was prepared. Machine learning 

technique, Random Forest, was applied to classify active and 

inactive compounds based on either structure- or ligand-derived 

fingerprints. Both, structure- and ligand-based prediction 

models yielded dual-target ligands, which were confirmed by 

synthesis in subsequent in vitro evaluation. Thus, this study 

demonstrates, that computer-aided fragment growing is 

applicable to multi-target ligand design in presence or absence 

of structural information.
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