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The 2-hydroxybiaryl motif forms the core of numerous biologi-
cally and synthetically important molecules (Fig. 1a). This 
includes more than 4,000 natural products, many of which 

possess antimalarial, anti(retro)viral or cytotoxic properties1–4. 
The frequency with which 2-hydroxybiaryls occur in functional 
molecules reflects the well-defined steric profile that results from 
the rigid biaryl axis (a feature that has been exploited routinely in 
1,1′-bi-2-naphthol-derived asymmetric catalysts5,6) and the hydro-
gen-bonding abilities that are conferred by the phenolic hydroxyl 
group. Phenols constitute the most common type of hydroxyl in 
synthetic drugs,7 and the combined rigidity and hydrogen-bonding 
properties of the 2-hydroxybiaryl moiety have been implicated in 
the bioactivity of both natural8 and synthetic9 therapeutics. Phenolic 
hydroxyls are better hydrogen-bond donors and poorer hydrogen-
bond acceptors than aliphatic alcohols, and the donicity of this 
function can be modulated both by substitution of the phenolic ring 
itself10, and also by through-space interactions with the flanking 
aromatic ring11. The ability of chemists to access diverse 2-hydroxy-
biaryls therefore enables precise modulation of the properties and 
ultimately the function of this important motif.

Given the broad significance of 2-hydroxybiaryls, methods 
for their preparation are highly valued and have been the subject 
of much research effort. The most widely used strategies involve 
metal-catalysed arylation of a hydroxyarene-derived substrate via 
either cross-coupling12 or C–H functionalization13–20; however, 
although extremely powerful, the atom and step economies of these 
approaches are impacted by the need to prefunctionalize the sub-
strate. Cross-coupling, for example, typically requires challenging 
ortho-selective halogenation or borylation of the hydroxyarene13, 
whereas C–H functionalization demands installation and sub-
sequent removal of Lewis-basic directing groups. Pioneering 
approaches that entirely avoid additional directing groups21–23—
or that allow the in  situ installation and removal of co-catalytic 
directing groups21,24–26—represent an almost ideal solution to the 
problems of step and atom efficiencies, but suffer from practical 
limitations such as moderate scope and poor selectivity. In addi-
tion to the potential issues surrounding the step count, the extant 

cross-coupling and C–H arylation strategies rely on activation of a 
carbon–halogen bond, resulting in chemoselectivity issues for poly-
halogenated substrate combinations. Thus, there is still an unmet 
need for expedient, user-friendly ortho-arylation methods that can 
be applied directly to unmodified hydroxyarenes. Here we report 
the development of modular arylbismuth(v) reagents as a general 
solution to this challenge.

Pioneered by Barton and co-workers in the 1980s, Bi(v)-
mediated oxidative arylation of phenols and naphthols does not 
require prefunctionalization of the substrate (Fig. 1b)27–30. This 
methodology benefits further from the low cost of bismuth and its 
salts, as well as the high stability and low toxicity of triarylbismuth 
reagents (for example, LD50(BiPh3) = 180 g kg–1 (ref. 31). However, 
despite these appealing attributes, the synthetic potential of both 
Bi(v) and Bi(iii)32 reagents for C–H arylation has been largely over-
looked. This is due to several major challenges that limit its current 
practicality (Fig. 1b), including:
	a.	 the poor availability of arylbismuth reagents, which necessitates 

their multistep synthesis;
	b.	 the often unpredictable, substrate-controlled chemoselectivity 

between Cortho- versus O-arylation;
	c.	 the waste associated with transfer of just one of the three aryl 

groups available in Ar3BiX2; and
	d.	 the lack of systematic studies of reaction scope or mechanism, 

which impedes extrapolation of the methodology to untested 
substrate combinations.

In this communication we present a convenient and general 
protocol for the Bi(v)-mediated arylation of phenols and naphthols 
that addresses each of the challenges outlined above. Arylation 
is achieved in a single telescoped operation that does not require 
exclusion of either air or moisture. All of the reagents employed are 
commercially available and the bismuth-containing co-product can 
be efficiently recovered and recycled. By exploiting reactivity that 
is orthogonal to conventional metal-catalysed manifolds, diverse 
aryl and heteroaryl partners can be rapidly coupled to phenols and 
naphthols under mild conditions. Supporting mechanistic studies 
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render the methodology predictable and provide new fundamental 
insights into the reactivity of organobismuth compounds.

Results and discussion
Strategic blueprint. As outlined in Fig. 1c, our strategy was based 
on tethering two aryl rings of a homoleptic triarylbismuthane to 
form a bismacycle. The resulting diaryl scaffold would function as 
an inert spectator, enabling selective transfer of an exocyclic aryl 
group to and from the bismuth centre33–35. As a consequence, the effi-
ciency with respect to the valuable aryl moiety would be improved, 
and the reactivity and selectivity of the arylating agent could be 
tuned by modification of the bismacyclic scaffold. We envisaged 
that in  situ preparation of diverse bismacycle(v) arylating agents 
could be achieved from a universal bismacycle(iii) halide precursor 
via a modular, one-pot transmetallation/oxidation sequence. This 
telescoped process would avoid the need for multistep synthesis of 
each new bismacyclic reagent, which—in combination with a stable 
bismacycle(iii) precursor that is readily available on scale—would 
greatly enhance the practicality of the methodology.

Synthesis of a universal Bi(iii) precursor. We first had to identify 
an appropriate bismacyclic scaffold to deliver our proposed meth-
odology. Initial assessments indicated that the sulfone-bridged bis-
macycle previously reported by Suzuki34,36,37 (Fig. 2) was uniquely 
competent in model transmetallation, oxidation and C–H arylation 
reactions (Supplementary Section 2). A library of bismacycle halides 

and pseudohalides based on this scaffold (1-X) were prepared sim-
ply by changing the Brønsted acid employed in protodebismutha-
tion of a common arylbismacycle(iii) intermediate (Supplementary 
Section 4). By telescoping the bismacycle construction and pro-
todebismuthation steps (Fig. 2), bismacycle tosylate 1-OTs was 
synthesized and isolated without chromatographic purification in 
excellent yield on a decagram scale (11 g of 1-OTs, 93% yield over 
both steps). Unusually for a diarylbismuth (pseudo)halide, 1-OTs 
is stable towards both hydrolysis (at neutral pH) and aryl ligand 
redistribution reactions. The compound can be handled and stored 
without exclusion of air, water or light, and shows no sign of decom-
position following storage for two years under ambient laboratory 
conditions. Inspection of its solid-state structure reveals a short 
transannular contact between the bismuth centre and one oxygen 
of the sulfone (Bi⋯O = 2.556(5) Å), which is probably responsible 
for this uncharacteristic stability34,38,39. Bismacycle tosylate 1-OTs is 
commercially available through Key Organics (catalogue number 
NS-00138).

Development and scope of a one-pot arylation procedure. Having 
identified bismacycle tosylate 1-OTs as an easily accessible uni-
versal precursor, we turned our attention to development of the 
transmetallation process required to install an exocyclic aryl group 
at the Bi(iii) centre. Conventionally, transmetallation of an aryl 
group to Bi(iii) is achieved using reactive organometallic reagents 
(ArLi, ArMgX or ArZnX)29, which require careful handling and 
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Fig. 1 | Occurrence and Bi(v)-mediated synthesis of 2-hydroxybiaryls. a, The 2-hydroxybiaryl motif is ubiquitous to societally important molecules, 
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have restricted functional group compatibility. Such methods were 
deemed antithetical to our objective of developing a practical and 
general one-pot procedure for the arylation of phenols and naph-
thols, which demands that transmetallation occurs from a conve-
nient aryl donor under mild conditions. We therefore envisaged 
using a boron-based aryl donor, given the ease of handling and 
ready commercial availability of many arylboronic acids and esters. 
However, although B–to–Bi transmetallation is well precedented 
for Bi(v) (refs. 40–44), this process is limited to just two examples 
for Bi(iii): aryl transfer from tetraarylborates to Bi(OAc)3 (ref. 45) 
and from arylboronic acids to monoarylbismuth(iii) oxides46. After 
investigation of different arylboron reagents and reaction variables 
(Supplementary Section 3), we identified robust conditions for 
transmetallation from boronic acids to 1-OTs (Table 1). Notably, 
excellent conversions were achieved with just 1.1 equivalents of the 
arylboronic acid. The presence of added water and base, the choice 
of solvent and the identity of the (pseudo)halide associated with the 
bismacyclic precursor were found to be critical to the success of the 
transmetallation (Supplementary Section 3).

The scope of B–to–Bi transmetallation is extensive under our 
optimal conditions (Table 1), with electronically (2a–2l) and steri-
cally (2m–2p) diverse aryl and heteroaryl (2t–2aa) boronic acids 
reacting in excellent spectroscopic yield. Although protodebis-
muthation renders isolation challenging for more electron-rich aryl 
moieties (for example, 2t and 2w), this is irrelevant in the proposed 
one-pot procedure where isolation of intermediates is neither nec-
essary nor desirable. Notably, polyfluorophenyl moieties are trans-
ferred smoothly and afford stable, isolable arylbismacycles (2q–2s), 
despite the susceptibility of the corresponding boronic acids to pro-
todeboronation47,48. The mildness of the transmetallation protocol is 
reflected in the diversity of compatible functionality, much of which 
is not tolerated by conventional organometallic routes to arylbis-
muthanes. Previous attempts to circumvent these incompatibilities 
have led to low yields of triarylbismuthanes containing, for example, 
aryliodides (21% yield via an aryldiazonium salt)49 and aryl esters 
(26% yield over four steps)50, both of which can be installed quan-
titatively in a single step by our method (2h, 2i). Similarly, triaryl-
bismuthanes that contain thienyl, furanyl, pyrrolyl or unprotected 
indolyl groups that are accessible in only moderate yields (28–53%) 
via conventional organometallic routes51–55 can now also be pre-
pared in excellent yield (2t–2z, >99% yield).

With conditions for transmetallation in hand, we next addressed 
the oxidation and arylation steps of our proposed methodology. We 
found that oxidation of aryl bismacycles 2 with meta-chloroper-
benzoic acid (mCPBA) is rapid and that the in situ generated Bi(v) 
species are efficient arylating agents without the addition of base. 
Conveniently, commercial mCPBA can be used without prior puri-
fication, and the transmetallation (Table 1), oxidation and arylation 
procedures can be performed as a single telescoped operation (Fig. 3a).  
Arylation is typically complete within seconds at room tempera-
ture, occurs with exclusive transfer of the exocyclic aryl moiety 
and exhibits perfect Cortho-versus-O chemoselectivity with respect 

to the substrate. The co-product of this one-pot procedure was  
identified spectroscopically as bismacycle meta-chlorobenzoate 
1-OmCB (Fig. 3a), the bismacyclic component of which can be 
recovered in excellent yield as the corresponding acetate (1-OAc) 
simply by column chromatography with acetic acid as the co-elu-
ent. This material undergoes near-quantitative transmetallation  
under our standard conditions, allowing for effective recovery 
and recycling of the bismacyclic scaffold. Together this represents 
a facile process that proceeds from a readily available, universal 
precursor, is convenient to execute (no inert atmosphere/anhy-
drous conditions) and achieves economy with respect to both the 
aryl group being transferred (1.1 equiv. arylboronic acid relative to 
1-OTs) and the bismacycle itself (high-yielding recovery and recy-
cling via 1-OAc).

The resulting one-pot process exhibits excellent scope with 
respect to the aryl group being installed on the substrate (Fig. 
3b), with electron-donating (3–7), -withdrawing (9–15), sterically 
demanding (16 and 17) and synthetically useful substituents (6, 7, 
10, 12, 13) all being well tolerated. Although the propensity of poly-
fluorophenylboronic acids towards protodeboronation48 renders 
them challenging partners in conventional cross-coupling48,56,57, 
these moieties can be installed conveniently using our Bi(v)-
mediated arylation methodology (14 and 15), allowing facile access 
to product motifs that are prized in materials chemistry research58. 
Notably, the bismacyclic framework improves reactivity relative to 
conventional Bi(v) reagents: following transmetallation and oxida-
tion, arylation of 2-naphthol is complete in seconds at room tem-
perature without the need for additional base. This high reactivity 
stands in contrast to Barton’s triarylbismuth(v) reagents, which 
arylate 2-naphthol over several hours in the presence of guanidine 
or hydride bases. For example, whereas a mesityl group is trans-
ferred to 2-naphthol rapidly at room temperature by our method 
(17, 89%), only 61% yield is obtained after 27 h at 50 °C using tri-
mesitylbismuth dichloride59.

Installation of several heteroarenes, including those with basic 
nitrogen and an unprotected indole, can be achieved in good yield 
(18–20). However, very electron-rich heteroaryl groups are not 
well tolerated due to the sensitivity of the intermediate aryl bisma-
cycle 2 to protodebismuthation and the inherent instability of the 
corresponding Bi(v) species (for example, 2-furyl gives 0% yield, 
Supplementary Table 2). Despite this limitation, the synthesis of 
18–20 represents important first examples of heteroaryl Bi(v) spe-
cies being used directly as arylating agents.

Electronically diverse naphthols are arylated in excellent yield 
with complete regio- and (Cortho-versus-O) chemoselectivity (Fig. 
3c, 21–25). The methodology is equally applicable to heterocyclic 
naphthol analogues (27–30), a class of substrates that has not been 
explored previously in either Bi(v)-mediated arylation or C–H 
functionalization. Synthetically useful functionality such as bro-
mides, iodides and boronic esters (13, 22–24) are also compatible 
with the reaction, further illustrating its complementarity to both 
conventional cross-coupling and C–H functionalization strategies.
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Although 1-naphthol is a poor substrate for established Bi(v) 
reagents (48% with BiPh5)28 and metal-catalysed C–H functional-
ization (38–43% with 5 mol% rhodium at T ≥ 100 °C)24–26, it is ary-
lated efficiently using our protocol (26, 86%). The contrast between 
our results and those of Barton et  al.28 are especially striking and 
again highlight the enhanced reactivity conferred by Suzuki’s sul-
fone-bridged bismacycle scaffold34.

A similar reactivity enhancement is observed for phenols (Fig. 
3d, 31–42), which are arylated rapidly at room temperature by 
the bismacyclic system but require extended reaction times and 
elevated temperatures with Barton’s Bi(v) reagents (for example, 
Ph3BiCl2: 48 h in refluxing THF with a guanidine base)60. In addi-
tion to benefitting reactivity, the use of a bismacycle also improves 
the chemoselectivity of phenol arylation: where Barton and co-
workers observe competing Cortho- and O-arylation, we observe 
exclusive Cortho-arylation. Our methodology therefore provides not 
only an improvement on extant Bi(v)-mediated arylation meth-
ods, but also a useful complement to the copper-catalysed, oxy-
gen-selective phenol arylation reported by Chan, Evans and Lam  
using boronic acids61,62, or by Gagnon using Bi(iii) reagents63.  
By contrast, the occurrence of 2,6-diarylation60 is not apprecia-
bly influenced by the use of a bismacycle, but can be largely sup-
pressed by using a higher relative stoichiometry of the phenol 
(Supplementary Fig. 8).

The scope of phenols extends from moderately electron-defi-
cient to very electron-rich substrates under these modified con-
ditions (31–34). The excess phenol remains unreacted and can be 
recovered in excellent yield (for example, in the synthesis of 45, 
excess estrone is isolated in 97% yield). Very electron-deficient phe-

nols such as 4-nitro- or 4-cyanophenol are not arylated under our 
standard conditions and can also be recovered unchanged from the 
reaction mixture.

Arylation of meta-substituted phenols has not been adequately 
explored in either the extant bismuth60,64 or C–H functionaliza-
tion24–26 literature, but typically occurs with low regioselectivity. 
Competing 2,6-diarylation precludes the construction of meaning-
ful structure–selectivity relationships from the few examples that do 
exist. Given that non-symmetrically (meta) substituted phenols also 
react to form regioisomeric mixtures under our conditions (35–40), 
we sought to understand the factors that govern this selectivity in 
greater detail.

For the arylation of 3-fluorophenol—where the 2- and 6- posi-
tions are electronically different65,66 but sterically similar67—moder-
ate selectivity (2.6:1, 35:35ʹ) is observed for the more electron-rich 
6-position. Further investigation revealed that this regioselectivity 
was not appreciably impacted by variation of the reaction tem-
perature (Supplementary Fig. 9) or the electronic properties of the 
aryl moiety being transferred (reaction constant (ρ) = 0.23; Fig. 3d, 
inset Hammett plot). Where the 2- and 6-positions are differenti-
ated sterically rather than electronically, moderate regioselectivity 
is again observed (3.4:1; 36:36ʹ). The apparent preference for ary-
lation of the more electron-rich, less sterically encumbered site is 
borne out in the arylation of other non-symmetrically substituted 
phenols (37–40) and gives an excellent linear correlation against a 
hybrid descriptor derived from Verloop’s Sterimol B5 parameters67, 
experimentally derived σpara (ref. 65) and computed σortho (ref. 66) val-
ues (Supplementary Fig. 11 and Supplementary Table 3), where σ is 
the substituent constant.

Table 1 | Transmetallation to universal bismacyclic precursor 1-OTs from aryl- and heteroarylboronic acids
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The utility of our methodology is showcased in the concise syn-
thesis of leukotriene B4 receptor agonist 43 (ref. 68,69) and cannabi-
noid mimetic 44 (ref. 70), and in the late-stage arylation of estrone 
45 and a naproxen derivative 46 (Fig. 4). The preference of Bi(v) 
for arylation of estrone at the 4-position is apparently unique in 
the literature, and provides a direct complement to metal-catalysed 

directed C–H arylations which favour functionalization of the 
2-position17,71–74. Both 2- and 4-arylated estrones exhibit biological 
activity75, so the ability to access both regioisomers in a single opera-
tion is of potential utility in discovery projects.

The complementarity of our bismuth-mediated arylation to con-
ventional cross-coupling was exploited in the concise synthesis of 
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estrogen receptor agonist 48 (ref. 76) and β-HSD1 inhibitor 49 (ref. 77)  
(Fig. 4). Although 48 and 49 were previously prepared in seven 
steps (which included four separate cross-coupling and three non-
productive halogenation/deprotection operations), our methodol-
ogy delivers both compounds in >90% yield in just three total steps 
via common intermediate 47.

Having investigated their scope, we sought to better understand 
the transmetallation, oxidation and arylation processes. We envis-
aged that an appreciation of the fundamental processes would 
not only provide new fundamental insight, but would also help to 
explain observations and ultimately guide application and future 
development of our methodology.

Mechanistic observations pertaining to transmetallation. 
Transmetallation from electron-neutral or -rich boronic acids to 
bismacycle tosylate 1-OTs reaches completion in less than 2 h with-
out observable intermediates (Table 1). In contrast, cyano- and tri-
fluoromethyl-substituted phenylboronic acids require ~6 h to reach 
completion; in these cases, an ill-defined mixture of species accu-
mulates prior to formation of aryl bismacycle 2j or 2k. The mix-
ture of intermediates could be recreated by subjecting bismacycle 
tosylate 1-OTs to the transmetallation conditions in the absence 
of boronic acid (Fig. 5a). This allowed isolation of μ-oxo-bridged 
dimer 12O, which was found to equilibrate with the corresponding 
monomeric bismuth hydroxide 1-OH in the presence of trace water. 
Analogous behaviour has been reported for related bismuth(iii) 
hydroxides and oxides78,79. Reaction of isolated dimer 12O with 
4-fluorophenylboronic acid in the absence of base afforded aryl bis-
macycle 2f quantitatively in under 1 min at room temperature. The 
higher rate of transmetallation to 12O (<1 min, r.t.) versus 1-OTs 
(~1 h with base, 60 °C) indicates that 1-OH/12O are kinetically  
competent intermediates. The accumulation of these Bi–oxo  
species for electron-deficient boronic acids suggests a substrate-
dependent change in rate-determining step for the overall trans-
metallation process. The potential involvement of a Bi–O–B 
pre-transmetallation intermediate (Fig. 5a, inset) is analogous to 
the Pd–oxo transmetallation pathway in Suzuki–Miyaura cross-
coupling80–82, and has been implicated in Si–to–Bi52 and B–to–Bi46 
transmetallation.

Mechanistic observations pertaining to oxidation and arylation. 
Oxidation of aryl bismacycle 2f with commercial mCPBA of ~75% 
purity furnishes an equilibrating mixture of stable Bi(v) species, the 
composition of which could not be elucidated directly. However, 
treatment of the mixture with base allowed for the isolation of  
bis(μ-oxo)-bridged dimer 50 (Fig. 5b). Characterization by single-
crystal diffraction reveals a distorted trigonal bipyramidal geometry  

at bismuth in the solid state (Fig. 5c), as has been observed previ-
ously in a related bis(μ-oxo)-bridged Bi(v) dimer83. Each bismuth 
centre supports a diphenylsulfone scaffold that spans an equatorial 
and apical position, and distinct equatorial and apical Bi–Ooxo bonds 
(2.03 Å versus 2.20 Å, respectively). Titration of this dimer with 
meta-chlorobenzoic acid (mCBA) allowed sequential spectroscopic 
identification of Bi(v) hydroxy benzoate 51 and Bi(v) dibenzoate 52  
(Fig. 5d). Bi(v) hydroxy benzoate 51 can also be obtained directly as 
a single species by oxidation of aryl bismacycle 2f with one equiva-
lent of purified mCPBA. For mCBA:Bi ratios of between ~1.3 and 
2, Bi(v) hydroxy benzoate 51 and Bi(v) dibenzoate 52 equilibrate 
at a rate commensurate with the NMR timescale. This results in a 
single broadened feature in the 19F NMR spectrum, consistent with 
that observed when aryl bismacycle 2f is oxidized with commercial 
(impure) mCPBA.

Bismuth(v) species 50–52 exhibit very distinct reactivity towards 
phenol (Fig. 5b). Bis(μ-oxo)-bridged dimer 50 does not arylate phe-
nol, but instead undergoes unproductive reduction to 2f in under 
1 min. By contrast, Bi(v) hydroxy benzoate 51 reacts with 1 equiva-
lent of phenol to afford the expected Cortho-arylation products quan-
titatively within seconds. Finally, in the presence of excess mCBA, 
Bi(v) dibenzoate 52 shows no reactivity towards phenol over 48 h. 
On the basis of these studies, Bi(v) hydroxy benzoate 51 is identi-
fied as the kinetically competent arylating reagent.

The dichotomous behaviour of bismacycles 50–52 highlights the 
major reactivity consequences of seemingly minor changes to the 
Bi(v) ligand sphere. Although the fundamental origins of these dif-
ferences are not yet known, we propose that the unique reactivity of 
Bi(v) hydroxy benzoate 51 reflects the ability of the basic hydrox-
ide moiety to facilitate formation of key Bi(v) phenoxy benzoate 
intermediate 54 (Fig. 5e) without added base. Similar phenoxide 
intermediates have been widely proposed in the group transfer 
chemistry of bismuth and other main-group elements84 and are well 
documented in copper-mediated phenol ortho-oxygenation85,86. 
Furthermore, Bi(v) phenoxides have been isolated and character-
ized for electron-poor phenols and have been shown to undergo 
ligand coupling upon heating87.

The divergent chemoselectivity exhibited by bismacycles 50 and 
51 has parallels in other systems that are based on bismuth(v)60, 
iodine(iii)88,89 and lead(iv)90,91, each of which engage phenols 
in either oxidation or aryl transfer processes as a function of the 
ligands at the metal centre13. Although the basicity of the ligands 
associated with Bi(v) clearly differentiates 50 and 51, the dimeric 
nature of the former may also contribute to the observed chemose-
lectivity differences. By contrast, the lack of reactivity observed in 
the presence of excess mCBA presumably reflects the absence of an 
appropriate base, either at the metal centre of Bi(v) dibenzoate 52 
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or in solution. The different reactivity of Bi(v) hydroxy benzoates 
and dibenzoates is reproduced in simple triaryl bismuth systems 
(Supplementary Figs. 14 and 15).

Competitive kinetic isotope effect (KIE) studies provide valu-
able insight into the key product-forming processes that follow 
Bi(iii) → Bi(v) oxidation (Fig. 5f,g). The absence of an observable KIE 
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in intermolecular competition between d0- and d5-PhOH (Fig. 5f)  
is consistent with selectivity-determining formation of a Bi(v) 
phenoxide of type 54 (Fig. 5e). That this step involves attack by the 
phenolic oxygen on Bi(v) is supported by preliminary studies of 
competitions between different phenols (ρ+ = −1.4; Supplementary 
Fig. 20). An α-SKIE (secondary kinetic isotope effect) of 0.83 from 
intramolecular competition (Fig. 5g) suggests that the subsequent 
C–C bond-forming step involves selectivity-determining dearoma-
tization of the phenol before rapid rearomatization, as per a con-
ventional electrophilic aromatic substitution92. Notably, very similar 
α-SKIEs have been measured for copper-catalysed electrophilic 
ortho-oxygenation of phenols, which proceeds via intramolecular 
group-transfer85,93,94.

Together, these preliminary experiments provide unique insight 
into the nature of the elementary steps involved in reductive ligand 
coupling at a Bi(v) centre and add credence to Barton and co-work-
ers’s proposed (but unsubstantiated) mechanistic hypotheses60,64,84,95. 
Taken with our experimental observations (Fig. 3d), they also form 
the basis of a practical user’s guide that allows the selectivity of 
the arylation process to be predicted. Specifically: (1) selectivity 
between mixtures of phenols is determined at the point of attack on 
Bi(v), and results in preferential arylation of the more electron-rich 
phenol; and (2) regioselectivity between non-equivalent Cortho posi-
tions is determined at the point of C–C bond-formation, favours 
the less sterically hindered, more electron-rich Cortho position, and 
is only moderately sensitive to the electronic character of the aryl 
group being installed.

Conclusions
We have developed a step- and atom-economic method for the 
bismuth-mediated ortho-arylation of phenols and naphthols that 
exhibits broad substrate scope and tolerates synthetically useful 
functionality. The reaction proceeds under mild conditions with-
out the need to exclude air or moisture, and employs commercially 
available starting materials. Crucial enabling advances include the 
introduction of B–to–Bi(iii) transmetallation as a convenient new 
route to functionalized arylbismuthanes, and identification of an 
ancillary scaffold that simultaneously confers stability, selectivity 
and enhanced arylating ability on the resulting bismuth reagents. 
Supporting kinetic and structural investigations provide the first 
experimental insight into the mechanism of bismuth-mediated ary-
lation and render the synthetic methodology predictable.

We envisage that the new reactivity and fundamental under-
standing communicated herein will not only find immediate appli-
cation in synthesis, but will also underpin the development of new 
bismuth-mediated arylation strategies in the future.

Methods
General procedure for oxidative arylation of naphthols and phenols. A 
suspension of bismacycle tosylate 1-OTs (1.0 equiv.; initial concentration = 0.05 M), 
K2CO3 (1.2 equiv.) and arylboronic acid (1.1 equiv.) in toluene/water (99:1, 
v/v) was stirred at 60 °C for 2 h. After cooling to room temperature, substrates 
(naphthols, 0.90 equiv.; phenols, 3.0 equiv.) and mCPBA (titrated; 1.5 equiv.) were 
added. The reaction was stirred for 10 min at room temperature and then methanol 
(2 ml) was added. The mixture was diluted with diethyl ether and washed with 
a saturated aqueous solution of KHCO3. The organic phase was separated, dried 
(MgSO4), filtered and concentrated in vacuo before purification by flash column 
chromatography on silica gel. Following isolation of the desired arylation product, 
bismacycle acetate 1-OAc can be recovered by flushing the column with diethyl 
ether to remove organic impurities before elution with 2% acetic acid in methanol.
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