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ABSTRACT: A new protocol for regioselective nucleophilic 
cage B-H substitution in o-carboranes has been proposed, 
which is complementary to the strategies of transition metal 
catalysis and electrophilic substitution. Magnesium-mediated 
site-selective nucleophilic cage B(3,6)-H and B(9)-H substitu-
tion reactions of o-carboranes give a series of B(3,6)-dialkyl-
ated and B(9)-alkylated/arylated o-carboranes in high yields. 
Both steric and electronic factors of cage C-substituents play 
crucial roles in controlling the site-selectivity. 

Carboranes are carbon-boron molecular clusters with 3-D 
aromaticity (σ-aromaticity),1 which are often viewed as ana-
logs to 2-D benzenes (π-aromaticity).2 They share some com-
mon features of aromatic molecules such as thermal stability 
and ability to undergo electrophilic substitution reactions. 
Strong electrophile E+ attacks preferentially B-H vertices most 
distant from the cage carbon atoms in icosahedral framework, 
leading to the formation of new B-E bond(s) and releasing of 
H+ (Scheme 1a).1a,3 Such reaction proceeds stepwise in the or-
der B(9,12)-H > B(8,10)-H > B(4,5,7,11)-H >> B(3,6)-H, which 
corresponds to the charge distribution of the cage (see 
Scheme 1 for numbering system).4 It is noted that the degree 
of substitution in the aforementioned electrophilic reactions 
has hardly been controlled owing to electronic effects.1a,3 How-
ever, in the case of transition metal electrophiles, selective 
cage B-H metalation has been achieved via tuning the bulki-
ness of the coordinating ligands and/or directing group strat-
egy, which has led to the development of catalytic selective 
functionalization of cage B-H vertices.5,6 

On the other hand, similar to nucleophilic benzene C-H 
substitution,7 nucleophilic B-H substitution in o-carboranes 
was unknown till our recent publication (Scheme 1b).8 Gener-
ally, strong nucleophiles such as MeO- and F- first attack the 
most electron-deficient cage B(3) that is bonded to both cage 
carbon atoms, followed by an attack of the second equivalent 
of the nucleophile on the same boron atom to remove one B-
H vertex from o-carborane framework, leading to the for-
mation of dicarbollide ion [nido-C2B9H11

2-],9 the most popular 
inorganic π ligand.10 We thought that nucleophilic cage B-H 
substitution could be achieved if the second attack of the nu-
cleophile could be blocked and the departure of H- from the 
cage boron could be promoted by a hydride abstractor. Our 
recent proof-of-concept study shows that the replacement of 
two C-H vertices with two C-Ph ones in o-carborane enables 
regioselective nucleophilic B(4)-H substitution with Grignard 
reagents RMgX for the first time (Scheme 1b).8  

In such a nucleophilic cage B(4)-H substitution reaction, 
the presence of two aryl groups on two cage carbon atoms is 

vital to decrease the electron density on B(4)-H vertex and to 
prevent the most electron-deficient B(3)-H one from being at-
tacked by the nucleophiles. These results indicate the huge 
impact of cage C-substituents on nucleophilic cage B-H sub-
stitution reactions, suggesting that selective nucleophilic cage 
B-H substitution among ten B-H vertices may be achieved by 
tuning electronic/steric properties of two cage C-substituents. 
In this Communication, we report organomagnesium-medi-
ated regioselective nucleophilic alkylation/arylation of o-car-
boranes at the most electron deficient B(3,6) positions or at 
the most electron-rich B(9,12) sites (Scheme 1c).  

 
        Scheme 1. Cage B-H Substitution Reactions 
 

 
 
Our investigation began with the functionalization at the 

most electron-deficient B(3,6) sites. Though B(3,6)-H bonds 
are the most susceptible to nucleophilic attack by hard nucle-
ophiles such as MeO- and F-, they do not react with soft nu-
cleophiles such as Grignard reagents and organolithium com-
pounds. Previous work indicates that aryls on cage carbons 
can sterically block B(3,6) positions. Thus, electron-withdraw-
ing yet sterically less bulky cage C-substituents are desired. In 
this regard, acetylene is an appropriate moiety. Unfortunately, 
many attempts to prepare 1,2-(C≡CR)2-o-carborane failed. We 
then prepared 1-methyl-2-phenylethynyl-o-carborane (1a) as 
the model substrate. Reaction of 1a with 1 equiv of isopropyl 
magnesium chloride at room temperature in toluene for 18 h 
gave 1-methyl-2-phenylethynyl-3,6-diisopropyl-o-carborane 
(2a) in 21% GC yield (entry 1, Table S1 in the SI). If the amount 
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of iPrMgCl was increased to 2.1 equiv, 2a was generated in 
quantitative GC yield (73% isolated yield; entry 3, Table S1). 

With the optimal reaction conditions in hand, we explored 
the substrate scope and the results were summarized in Table 
1. Both primary and secondary alkyl magnesium chlorides un-
derwent smoothly such nucleophilic substitution reaction to 
give 1-methyl-2-phenylethynyl-3,6-dialkyl-o-carboranes (2) in 
good to high yields. No reaction with tBuMgCl was observed, 
probably due to steric reasons. It is noteworthy that these 3,6-
dialkylated o-carboranes may only be prepared using de-
boronation-capitation-deboronation-capitation method.1a,11 
Transition metal catalyzed cross-coupling methodology is not 
feasible for the synthesis of cage B-alkylated o-carboranes ow-
ing to facile β-hydrogen elimination reactions. Electrophilic B-
H substitution does not proceed at B(3,6)-H vertices.1a,3 Thus, 
nucleophilic B-H substitution provides a complementary 
method for convenient synthesis of 3,6-dialkyl-o-carboranes. 

 
Table 1. Synthesis of 3,6-Dialkylated o-Carboranesa 

 

 

 
                      aIsolated yields. 

 
Compounds 2 were characterized by 1H, 13C, and 11B NMR 

spectroscopy as well as high-resolution mass spectrometry. 
Their 11B NMR spectra exhibited a similar pattern of 2:1:1:3:3 
spanning the range of -16 to 1 ppm with the substituted cage 
boron being observed at ca. 1 ppm as indicated by 1H coupled 
11B NMR spectra. Single-crystal X-ray analyses of 2a unambig-
uously confirm cage B(3,6) selectivity. 

Having achieved nucleophilic B-H substitution at B(3,6) 
and B(4,5,7,11) sites,8 we wondered if the nucleophilic B-H sub-
stitution could be realized at distal positions. This seems very 
challenging since (1) the electron density at B(8,9,10,12) posi-
tions is much higher than that of B(3,6) and B(4,5,7,11) vertices, 
and (2) the electronic properties of cage C-substituents have 
little impact on the distal B(8,9,10,12) sites in such σ-system. 
These analyses suggest that relatively electron-deficient 
B(3,4,5,6,7,11) vertices must be protected in order to achieve 
nucleophilic substitution at distal positions. With this in mind, 

we chose 1,2-(TMS)2-o-carborane (TMS = Me3Si) as the model 
substrate since (1) these groups can be easily removed after the 
reactions, releasing the two cage carbons for further function-
alization, and (2) space-filling model indicates that 
B(3,4,5,6,7,11) vertices can be sterically protected by two TMS 
groups on cage carbons (vide infra). 

We initially examined the reaction of 1,2-(TMS)2-o-
carborane with 1.2 equiv of iPrMgCl in Et2O at 60 oC for 24 h, 
followed by desilylation in acetone via the addition of 10 equiv 
of K2CO3, which gave 9-iPr-o-carborane (4a) in 75% GC yield. 
We noted that the partial desilylation product was observed 
by GC before adding K2CO3, indicating that the C(cage)-SiMe3 
bonds were not so stable under the basic conditions. It has 
been documented that the stability of C-SiR3 bond is closely 
related to steric hindrance of R substituents.12 Thus, the effects 
of silyls on the nucleophilic substitution reactions were eval-
uated and the results were compiled in Table S2 in the SI. 

 
Table 2. Synthesis of 9-(R/Ar)-o-carboranesa 

 

 
aIsolated yield. b60 oC in toluene 

It was found that 1,2-(DMPS)2-o-carborane (3a; DMPS = di-
methylphenylsilyl) afforded 4a in 80% GC yield (entries 1-3, 
Table S2). Screening the amount of Grignard reagent indi-
cated that 1.3 equiv offered the best result (entries 4-7, Table 
S2). Higher loadings led to the formation of disubstituted spe-
cies (entries 6-7 Table S2). In view of the yield and selectivity 
of 4a, the reaction conditions established in entry 5 in Table 
S2 were chosen as the optimal conditions. 

Under the above optimized reaction conditions, the sub-
strate scope was examined, and the results were summarized 
in Table 2. It showed that both alkyl and aryl Grignard reagents 

Page 2 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

were compatible with the reaction, giving cage B(9)-substi-
tuted o-carboranes. Generally, alkyl Grignard reagents offered 
higher yields of 4 than those of aryl Grignard reagents. Het-
eroatom-containing Grignard reagents reacted slower and re-
quired higher temperature (60 oC) yet gave lower yields of 4 
(4k, 4l and 4n), due probably to some interactions between 
these heteroatoms and Mg2+. Sterically bulky tertiary carbon 
nucleophiles such as tBuMgCl offered a relatively lower yield of 
4b, whereas o-tolyl magnesium chloride failed to afford any 
product 4q. On the other hand, CH3MgBr generated an insep-
arable mixture of isomeric species.  

  Compounds 4 were characterized by 1H, 13C, and 11B NMR 
spectroscopy as well as high-resolution mass spectrometry. 
Their 11B NMR spectra exhibited a similar pattern of 1:1:2:4:2 
spanning the range of -16 to 11 ppm with the substituted cage 
boron being observed at ca. 11 ppm as indicated by 1H coupled 
11B NMR spectra. The molecular structures of 4g and 4h were 
further confirmed by single-crystal X-ray analyses.  

To eliminate any ambiguities of site-selectivity, compound 
4b was converted to 5b using Ni-catalyzed cage C-arylation 
method (Scheme 2).13 Single-crystal X-ray analyses of 5b un-
ambiguously confirmed the cage B(9) selectivity. 

 
                   Scheme 2. Synthesis of 5b 
 

 

            Scheme 3. Kinetic Isotope Effect 
 

 

To gain some insight into the reaction pathway, several con-
trol experiments were carried out. Treatment of 3a with 1.3 
equiv of iPrMgCl in the presence of 1,1-diphenylethylene gave 
4a in 75% yield under standard reaction conditions.14 No 
change was observed if the reaction ran in dark. These results 
suggested that the above B(9)-functionalization reaction may 
not involve a radical pathway. On the other hand, the for-
mation of H2 at 4.5 ppm was observed in the 1H NMR spectrum 
of the hydrolysis product from the reaction of 3a with iPrMgCl 
(see Figure S5 in the SI), which was further confirmed by GC-
TCD analysis. Such H2 was considered to originate from the 
hydrolysis of the resultant MgHCl.7 Furthermore, parallel re-
actions of 3a and [D4]3a under the standard reaction condi-
tions (Scheme 3) gave a KIE value of 1.0 by comparison of their 
reaction rates. This result suggested that the B-H bond-break-
ing may not be involved in the rate-determining step (see Fig-
ure S6). 

To understand the site-selectivity at B(9), density functional 
theory (DFT) calculations were performed at the B3LYP/6-

311++G(d,p) level of theory15 for 1,2-C2B10H12，1-Me-2-(C≡CPh)-

1,2-C2B10H10 (1a), 1,2-Ph2-1,2-C2B10H10, 1,2-(DMPS)2-1,2-C2B10H10 

(3a), and 1,2-(TMS)2-1,2-C2B10H10 (3c). The space-filling models 
of the optimized structures of both 3a and 3c clearly show that 
B(3,4,5,6,7,11)-H vertices are sterically blocked by two silyl 
groups and only B(8,9,10,12)-H ones are accessible by nucleo-
philes (see Figure S7 in the SI).  

On the other hand, NBO (natural bond orbital) analyses 
show that (1) the impact of electronic effects of cage C-substit-
uents on the vertex charge follows the order: C(1,2) > B(3,6) > 
B(4,5,7,11) > B(8,9,10,12) (see Table S3 in the SI) , and (2) the 
calculated charge of the B(9/12)-H vertex (ca. -0.06) in all com-
pounds aforementioned regardless of cage C-substituents is 
less negative than that of B(8/10)-H one (ca. -0.08), indicating 
that B(9/12)-H vertex is more susceptible to nucleophilic attack 
than B(8,10)-H one. 

On the basis of above analyses, it is rational to suggest that 
the B(9)-selectivity in the current organomagnesium-medi-
ated nucleophilic substitution reaction is controlled by both 
steric and electronic factors of the cage C-substituents. The 
NBO analyses also indicate that the vertex charge of B(3,6)-H 
in 1-Me-2-(C≡CPh)-1,2-C2B10H10 (1a) is calculated to be +0.241, 
which is more electron-deficient than that of B(3,6)-H one 
(+0.214) in o-carborane (see Table S3 in the SI). This offers an 
explanation on why 1a reacts well with Grignard reagents 
whereas o-carborane does not. 

In summary, a new protocol for regioselective nucleophilic 
cage B-H substitution in o-carboranes has been proposed and 
validated: (1) for B(3,6)-H nucleophilic substitution, less bulky 
electron-withdrawing substituents on cage carbons is neces-
sary, (2) for B(4,5,7,11)-H nucleophilic substitution, an appro-
priate size of electron-withdrawing substituents (such as aryls) 
on both cage carbons are required,8 and (3) for B(9,12)-H nu-
cleophilic substitution, very sterically hindered groups (such 
as silyls) on both cage carbons are needed to block 
B(3,4,5,6,7,11)-H vertices. This transition-metal-free strategy is 
complementary to those of transition metal-catalyzed regiose-
lective functionalization of o-carboranes,5 and electrophilic 
substitution reactions,1a,3 enabling the facile synthesis of cage 
B-alkylated/arylated carboranes in a regioselective and con-
trolled manner. This work opens a new window to the con-
trolled functionalization of boron clusters. 
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