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ABSTRACT: The first base metal-catalyzed regioselective dehy-
drogenative alkylation of indolines using readily available alcohols
as the alkylating reagent is reported. A single air- and moisture-
stable manganese catalyst provides access to either C3- or N-
alkylated indoles depending on the solvent used. Mechanistic
studies indicate that the reaction takes place through a combined
acceptorless dehydrogenation and hydrogen autotransfer strategy.

Indoles represent a prominent and important chemical motif
in medicinal chemistry and agrochemistry.1 Several drugs

like oxypertine, bufotenine, or indomethacin include this
heterocyclic scaffold.2 In the past several years, the selective
functionalization of indoles has attracted considerable
attention.3 One of the most common methods for alkylating
indoles at the C3 position is the Lewis acid-catalyzed Friedel−
Crafts reaction using alkyl halides.4 However, due to the
generation of substantial amounts of inorganic salts and the use
of mutagenic (pseudo)haloalkanes, it remains a wasteful and
unsustainable approach. In this regard, abundant alcohols have
emerged as cheap and environmentally benign building blocks
for C−C and C−N bond formation, following acceptorless
dehydrogenation (AD) and hydrogen autotransfer (HA)
reaction strategies.5 However, a lack of regioselectivity is
observed for most of the recent methods that apply the
dehydrogenative coupling protocol for indoles, and these
approaches typically functionalize at the indole C3-

6 or N-
position.7 However, accessing both regioisomers with a single
catalyst by omitting noble metals8,9 and additional oxidants
remains challenging,10 and to date, no procedure applying a
base metal-catalyzed regio- and chemoselective alkylation of
indoles or indolines has been reported. The regioselective
alkylation with a single catalyst is rather challenging as several
reactions involving a hydrogen autotransfer (HA) or accept-
orless dehydrogenation (AD) need to be catalyzed by the same
catalyst in a chemoselective manner: (i) the dehydrogenation
of an alcohol A to provide an aldehyde B, which can either
react with indole D to give the corresponding imine E or react
with indoline C to give the iminium ion G resulting in either a
C- or an N-alkylated product; (ii) the dehydrogenative
aromatization of indoline C to provide indole D; (iii) the
selective 1,4-reduction of E to give the C3-alkylated indole F,
and (iv) the formation of N-alkylated product I through an
isomerization/deprotonation of G or alternatively through a

hydride addition/dehydrogenation sequence via the N-
alkylated product H (Scheme 1). On the basis of our interest
in the area of base metal catalysis,9,11 we decided to investigate
a manganese-catalyzed dehydrogenative alkylation of indolines
using readily available alcohols as alkylating reagents. To the
best of our knowledge, a single base metal complex catalyzing
both the AD of amines and the HA of alcohols in one protocol
is not known. Beyond that, no manganese-catalyzed amine
dehydrogenation has been reported so far. We here describe
the development of a regioselective dehydrogenative alkylation
using a single manganese catalyst and report an interesting
solvent switch that allows a targeted N- versus C-functionaliza-
tion (Scheme 1).
We commenced our investigations with the evaluation of

different Mn complexes as catalysts for the dehydrogenative
coupling of indoline (1a) using benzyl alcohol (2a) in the
presence of a base to give either C3- or N-alkylated indoles 3a
and 4a or N-alkylated indoline 5a as the product (Table 1).
Inspired by our latest results in dehydrogenative coupling
protocols, we initially tested different bifunctional Mn(I)
complexes. Mn-1, which includes a PNN-pyridyl-based
scaffold, remained unreactive in the presence of 60 mol %
KOtBu (Table 1, entry 1). Also, the pyridyl-based PNP
complex Mn-2 provided only trace amounts of 3a (Table 1,
entry 2). Interestingly, the NH-bridged PNP (Macho)
complex Mn-3 showed reactivity and the product 3a was
selectively obtained in moderate yield (Table 1, entry 3).
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Surprisingly, the PNP analogue Mn-4 provided only low
conversion (Table 1, entry 4). Furthermore, N-methylated
Mn-5 yielded trace amounts of product, illustrating the
necessity of the NH moiety (Table 1, entry 5).12 To further
optimize the reaction conditions with Mn-3, different bases
and solvents were evaluated (Table 1, entries 6−18). With
cesium bases, such as Cs2CO3 or CsOH·H2O, with toluene as
the solvent, and with 1 mol % catalyst, the yields considerably
increased to 63% and 98% (Table 1, entries 6 and 9,
respectively). Decreasing the temperature by 10 °C reduced
the yield significantly (Table 1, entry 10). The best results
were obtained when 1 mol % Mn-3 was employed with 10 mol
% CsOH·H2O in toluene (Table 1, entry 9). Conversely, with
a chance in the solvent from apolar aprotic, such as toluene or
ethers, to polar protic, such as 2,2,2-trifluoroethanol (TFE), a
complete selectivity switch was observed (Table 1, entries 11−
15). In fact, only N-alkylated indole 4a and indoline 5a were
obtained in the absence of 3a, when TFE was applied (Table 1,
entry 15). Surprisingly, no other polar protic solvents such as
tert-amyl alcohol and hexafluoroisopropanol (HFIP) afforded
equally good results (Table 1, entries 13 and 14, respectively).
Interestingly, switching the metal source from Mn to Ru
resulted in a mixture of all three products (Table 1, entry 16).
Using a mixture of TFE and toluene reduced the amount of
undesired alkylated indoline 5a (Table 1, entry 17). Finally,
increasing the dilution and decreasing the amount of base to
10 mol % and alcohol to 1.5 equiv, we obtained the alkylated
indole 4a in excellent yield and remarkable selectivity (Table 1,
entry 18). In the absence of base, PNP ligand, or Mn-3, no
conversion was observed (Table 1, entries 19−21). With our
optimized conditions in hand, we subsequently explored the
substrate scope for the regioselective coupling of different
indolines and alcohols (Scheme 2).
Notably, all indoline starting materials were synthesized by a

novel Mn-3-catalyzed hydrogenation protocol starting from
the corresponding indoles (see the Supporting Information for

details). Initially, the dehydrogenative C3-alkylation was
investigated (Scheme 2a). Subjecting unsubstituted indoline
1a to the standard conditions using simple benzylic alcohols
furnished alkylated indoles 3a−c in good yields. Electron-
donating and electron-withdrawing groups on the aromatic
ring, regardless of their position, were tolerated, and the
desired products 3d−g were obtained in good yields,
demonstrating that the steric hindrance of the substituents
has no significant effect on the yield. Likewise, an alcohol
bearing a heterocycle such as pyridine could also be used as the
coupling partner (3h). Primary aliphatic alcohols were also
successfully applied as alkylating reagents, affording the

Scheme 1. Dehydrogenative Alkylation of Indolines Table 1. Optimization of the Reaction Conditionsa

entry catalyst base solvent
yield (%),
3a:4a:5a

1 Mn-1 KOtBu Tol 2:0:0
2 Mn-2 KOtBu Tol 7:0:0
3 Mn-3 KOtBu Tol 56:0:0
4 Mn-4 KOtBu Tol 10:0:0
5 Mn-5 KOtBu Tol 8:0:0
6b Mn-3 Cs2CO3 Tol 63:0:0
7b Mn-3 K2CO3 Tol 5:0:0
8b Mn-3 NaH Tol 47:0:0
9b Mn-3 CsOH·H2O Tol 98:0:0
10b,c Mn-3 CsOH·H2O Tol 80:0:0
11 Mn-3 CsOH·H2O 1,4-dioxane 7:0:0
12 Mn-3 CsOH·H2O CPME 49:1:2
13 Mn-3 CsOH·H2O t-AmOH 29:2:1
14 Mn-3 CsOH·H2O HFIP 0:1:2
15 Mn-3 CsOH·H2O TFE 0:41:9
16 Ru-1 CsOH·H2O TFE 19:26:20
17 Mn-3 CsOH·H2O 2:1 TFE/Tol 0:68:6
18d−f Mn-3 CsOH·H2O 2:1 TFE/Tol 0:98:0
19e Mn-3 − TFE or Tol −
20e,g Mn(CO)5Br CsOH·H2O TFE or Tol −
21e − CsOH·H2O TFE or Tol −

aReaction conditions: 1a (0.2 mmol) and 2a (0.4 mmol) in toluene
(1.0 M) at 135 °C for 20 h under an argon atmosphere. Yields were
determined by GC analysis using ethylbenzene (0.2 mmol) as an
internal standard. Abbreviations: Tol, toluene; CPME, cyclopentyl
methyl ether; t-AmOH, tert-amyl alcohol; HFIP, 1,1,1,3,3,3-
hexafluoro-2-propanol; TFE, 2,2,2-trifluoroethanol. bWith 1 mol %
Mn. cAt 125 °C. dFor a 0.17 M reaction mixture. eWith 10 mol %
base, 1.5 equiv of benzyl alcohol. fWith a 36 h reaction time. gWith 5
mol % Mn.
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corresponding indoles 3i−l in good yields. Gratifyingly,
secondary alcohols such as norbonyl or isopropyl alcohol,
which are less prone to undergoing condensation and
hydrogenations,6i,13 were also used as suitable coupling
partners, and the corresponding indoles 3m and 3n were
obtained in moderate to good yields. To demonstrate the
general applicability of the reaction, benzyl alcohol (2a) was
coupled with a variety of substituted indolines providing the
desired products 3o−r in good to excellent yields.
Next, we investigated the substrate scope for the

dehydrogenative N-alkylation of indolines (Scheme 2b).
Under the optimized reaction conditions, several benzylic
alcohols were converted into the corresponding products 4a−c
in good yields. Electron-rich or electron-deficient alcohols were
tolerated as well and used efficiently as coupling partners to
give 4d−g in high yields. Notably, heterocyclic alcohols
bearing pyridine or thiophene moieties were successfully
employed as alkylating reagents (4h and 4i). In addition, this
transformation could be further extended to halide- and
methoxide-substituted indolines, and the corresponding N-
benzyl-substituted indoles 4j−l were obtained in good yields.
Moreover, also aliphatic alcohols appeared to be suitable
coupling partners. As such, N-butyl indole was converted,
although in a lower yield (4m). However, N-alkylated indoline
4n could be also obtained as the main product, indicating an
impeded dehydrogenation of the alkylated indoline or

isomerization of the corresponding enamine intermediate. To
better understand the reactions, several experiments were
performed to investigate the formation of related intermediates
and the mechanism in general (Scheme 3). The catalytic
indoline dehydrogenation occurs in toluene, providing indole
in quantitative yield (Scheme 3a).
However, minor conversion was observed when TFE was

added as a co-solvent. Interestingly, N-benzyl indoline could
not be dehydrogenated under the optimized conditions,
indicating an alternative mechanism for the N-alkylation
(Scheme 3b). Moreover, we anticipated aldehydes and ketones
to be crucial intermediates.
Evidently, the coupling of indoline and benzaldehyde

afforded a mixture of C3- and N-alkylated products in toluene,
suggesting that the initial dehydrogenation of indoline is
critical for the regioselectivity (Scheme 3c). However, upon
addition of TFE, both high conversion and regioselectivity
were observed and the N-alkylated indole 4a was obtained
along with traces of indoline 5a. To further prove the necessity
of indole as an intermediate for the C3-alkylation, we carried
out the alkylation reaction with benzylalcohol (2a). Indeed,
when the reaction was performed in toluene, C3-alkylated
indole 3a was provided as the sole product, highlighting
flexibility of the developed procedure. Importantly, upon
addition of TFE, only traces of the product were observed
(Scheme 3c). To further understand the mechanism of the N-

Scheme 2. Manganese-Catalyzed Dehydrogenative C3- and N-Alkylation of Indolines

aAll yields refer to the isolated products. Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), CsOH·H2O (0.3 mmol), and Mn-3 (1 mol %) in
toluene (0.5 mL) at 135 °C for 20 h. bAll yields refer to the isolated products. Reaction conditions: 1 (0.3 mmol), 2 (0.45 mmol), CsOH·H2O
(0.03 mmol), and Mn-3 (3 mol %) in toluene (0.6 mL) and TFE (1.2 mL) at 135 °C for 36 h. cReaction on a 1 mmol scale. dWith a 48 h reaction
time and 4 mol % Mn-3. eWith 0.3 mL of i-PrOH. fN-Bu indoline observed as the byproduct.
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alkylation, we performed a control reaction to exclude a base-
catalyzed isomerization/deprotonation of the iminium inter-
mediate. Thus, indolium triflate salt 4a-OTf was reacted with
CsOH·H2O (Scheme 3d). However, only traces of product 4a
were formed. This result implies that the Mn catalyst is
involved in the process that would occur via an imine
hydrogenation, indoline dehydrogenation sequence. On the
basis of these results, we propose the following reaction
mechanism for the regioselective dehydrogenative alkylation of
indolines (Figure 1).
Initially, Mn-3 reacts with CsOH to generate the active Mn

catalyst, which subsequently dehydrogenates the alcohol to the
corresponding aldehyde. In toluene, the catalyst additionally
converts indoline 1a to indole 1a′ and releases hydrogen gas in
an acceptorless dehydrogenation (AD) manner. Next, 1a′ and
the aldehyde react to form intermediate 6, which is then
transformed to the final product 3 by the Mn−H2 species
[hydrogen autotransfer (HA)]. In contrast, no dehydrogen-
ation of indoline 1a occurs in the presence of TFE. Thus, the
N-alkylation pathway occurs via the formation of indolinium
species 7.
The corresponding and more stable enamine 5 can be

observed as a side product. Upon the release of hydrogen gas,
the Mn* catalyst is regenerated again. The final product 4 is
then provided by isomerization/deprotonation of 7. To
understand this process, we conducted computational studies
to shed light on the mechanism for the N-alkylation. Under
basic conditions, an indolinium cation is formed. For the
specific case of 1-butyl-3H-indol-1-inium (see Figure 2), the
18-electron Mn−H2 species (A) acts as the hydride-borrowing
catalyst. The free activation barrier for the hydride transfer
from Mn to C1 has been calculated as 17.7 kcal mol−1

[TS(AB)] under 1 atm and 135 °C in TFE. Thus, 1-
butylindoline is formed (B, −8.3 kcal mol−1) with the Mn(I)
species being oxidized into a Mn(II) species. State C (−8.8
kcal mol−1) represents a conformational minimum with the
hydride on C2 (five-membered ring) ready to be transferred
back to the Mn catalyst. This process, characterized by
TS(CA), shows a free activation barrier of 13.7 kcal mol−1

(22.5 kcal mol−1 relative to C) and represents the rate-limiting

Scheme 3. Mechanistic Studies for the Divergent Alkylation
of Indoline

aWith 10 mol % CsOH·H2O.

Figure 1. Proposed mechanism for the divergent dehydrogenative
alkylation of indolines involving acceptorless dehydrogenation (AD)
and hydrogen autotransfer (HA). The proton abstraction by OH−

leading to the aromatized 1-butyl-1H-indole (4m) has been
computed as a barrierless process.

Figure 2. Reaction mechanism for the isomerization of 1-
butylideneindolin-1-inium into 1-butyl-3H-indol-1-inium via Mn-
catalyzed hydride borrowing. Free energy results (1 atm, 135 °C,
kcal mol−1) are shown at the PBE0/SVP level of theory with TFE (ε
= 26.726) as the solvent. R refers to C2H5.
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step of this cycle. Thus, the 1-butyl-3H-indol-1-inium cation is
produced, and the 18-electron Mn−H2 species is regenerated.
To rationalize the influence of TFE on the remarkable

selectivity switch, we conducted further solvent screenings (see
the Supporting Information). It was found that no other
solvents with a lower or higher pKa compared to that of TFE
(12.37) could provide similar conversion and selectivity. TFE
has been shown to accelerate condensation reactions through
hydrogen-bonding activation,14 indicating that the fast
condensation of indoline and the aldehyde is key for the
selective N-alkylation reaction. Furthermore, recent computa-
tional studies by Poater showed that polar protic solvents help
to facilitate the β-hydride elimination during an acceptorless
alcohol dehydrogenation process (AAD).15

In summary, we have developed a new base metal-catalyzed
regioselective dehydrogenative alkylation of indolines with
readily available alcohols by applying a single manganese
catalyst. This catalyst can catalyze the dehydrogenation of both
alcohols and indolines as well as the selective 1,2- and 1,4-
reduction of imines using either acceptorless dehydrogenation
(AD) and hydrogen autotransfer (HA) pathways or both
processes. Additionally, we demonstrate that the selective N-
or C-alkylation can be achieved by an interesting solvent
polarity and acidity switch.
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Hydrogen Autotransfer in the N-Alkylation of Amines and Related
Compounds using Alcohols and Amines as Electrophiles. Chem. Rev.
2010, 110, 1611−1641.
(6) (a) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. Pd-
Catalyzed C3-Selective Allylation of Indoles with Allyl Alcohols
Promoted by Triethylborane. J. Am. Chem. Soc. 2005, 127, 4592−
4593. (b) Whitney, S.; Grigg, R.; Derrick, A.; Keep, A. [Cp*IrCl2]2-
Catalyzed Indirect Functionalization of Alcohols: Novel Strategies for
the Synthesis of Substituted Indoles. Org. Lett. 2007, 9, 3299−3302.
(c) Hikawa, H.; Suzuki, H.; Azumaya, I. Au(III)/TPPMS-Catalyzed
Benzylation of Indoles with Benzylic Alcohols in Water. J. Org. Chem.
2013, 78, 12128−12135. (d) Siddiki, S. M. A. H.; Kon, K.; Shimizu,
K.-I. General and Selective C-3 Alkylation of Indoles with Primary
Alcohols by a Reusable Pt Nanocluster Catalyst. Chem. - Eur. J. 2013,
19, 14416−14419. (e) Cano, R.; Yus, M.; Ramoń, D. J. Environ-
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