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ABSTRACT: Solvent-controlled divergent domino annulation reactions between 2-hydroxy-2-methylchromene derivatives and
prop-2-ynylsulfonium salts have been developed. Specifically, a sequential [4 + 2] and [4 + 2] annulation reaction occurred in 1,2-
dichloroethane affording sulfur-containing benzo-fused dioxabicyclo[3.3.1]nonanes. In contrast, by changing the solvent to toluene,
the reaction course switched to a [4 + 2] and [4 + 1] annulation reaction to afford dihydrofuro[2,3-c]chromenes. It is noteworthy
that the prop-2-ynylsulfonium salt participates in the transformation with its γ-carbon atom for the first time.

Sulfur ylides, a special type of methylene-transfer reagent,
are widely utilized for the construction of epoxide,

aziridine, and cyclopropane architectures.1 Along with the
deepening amount of research, sulfur ylides were used to
synthesize complex cyclic skeletons beyond three-membered
rings.2 Vinylsulfonium salts, as two-carbon synthons, are a class
of good Michael acceptors in organic synthesis.3 After
nucleophilic attack onto the vinylsulfonium species, the
transiently formed sulfonium ylide undergoes protonation or
a second nucleophilic addition to the electrophilic group to
generate intermediate A. This step is followed by elimination
of the corresponding sulfide or SN2 substitution to afford
different molecules (Scheme 1A, eq 1).
Different from vinylsulfonium salts, prop-2-ynylsulfonium

salts4−6 could isomerize to allenic sulfonium salts under basic
conditions and be attacked by a nucleophile at the β-carbon
atom first. The obtained zwitterionic intermediate B and the
resonance structure B′ can undergo a similar process to access
α-regioselective intermediate C and γ-regioselective inter-
mediate D. The intermediate D shows analogous reactivity to
vinylsulfonium salts and could be attacked by nucleophiles for
the second time at the β-carbon atom (Scheme 1A, eq 2).
Compared with the well-established α-C nucleophilicity,

propargylsulfonium salts’ γ-C nucleophilicity has been rarely

exploited. Only one example has been reported in our previous
work, in which the ylide intermediate B′ undergoes proton
transfer followed by ring closure, leading to indole-fused 4H-
benzo[e][1,3]oxazines bearing a thioether moiety.5 Herein, we
develop sequential annulation domino reactions for the
production of highly functionalized sulfur-containing benzo-
fused dioxabicyclo[3.3.1]nonane derivatives and dihydrofuro-
[2,3-c]chromene derivatives in a solvent-controlled manner. In
these reactions, the β, γ sites of propargylsulfonium salts
participated in the transformation rather than α, β sites. It
should be noted that intermediate B′ undergoes intramolecular
Michael addition distinguished from protonation (Scheme
1B).
The syntheses of benzo-fused dioxabicyclo[3.3.1]nonane7

and related bioactive natural products8 have been reported in
numerous literature citations. However, to the best of our
knowledge, no sulfur substituent of benzo-fused
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dioxabicyclo[3.3.1]nonane skeleton has been reported. Orga-
nosulfur compounds have attracted great attention because of
their diversified bioactivity and chemical properties.9 On the
other hand, there are few reports on the synthesis of
dihydrofuro[2,3-c]chromene frameworks.10 Therefore, new
synthetic approaches for the efficient construction of sulfur-
containing benzo-fused bridged dioxabicyclo[3.3.1]nonane and
dihydrofuro[2,3-c]chromene are highly desirable.
We commenced our investigation by the treatment of 3-

acetyl-2-hydroxy-2-methylchromene 1a and prop-2-ynylsulfo-
nium salt 2a with 2.0 equiv of Cs2CO3 as base in CH3CN at 25
°C (see the Supporting Information). Gratifyingly, product 3aa
and 4aa were indeed obtained in 46% and 19% yields. A survey
of commonly used solvents revealed that the reaction media
exerted a significant influence on the yields. 1,2-Dichloro-
ethane (DCE) turned out to be the best solvent, leading to 3aa
in 83% yield with trace amounts of 4aa. Interesting, product
4aa as the major product (41%) was obtained in toluene.
Subsequently, screening of inorganic and organic base did not
afford better results. After the exploration of temperatures and
the ratio of base, 3aa and 4aa were finally attained in 83% and
46% yields, respectively.
Having established the optimal reaction conditions, the

substrate scope of sequential [4 + 2] and [4 + 2] annulation
reaction was first examined. As summarized in Scheme 2, the
presence of a methyl group at the C5 position of the aromatic
ring afforded the desired product 3ba in a slightly lower yield.
Electron-rich substrate 2c gave a relatively poor chemo-
selectivity (3ca and 4ca). In contrast, electron-deficient
substrate with NO2 substitution led to the highest yield of
bridged product 3da, albeit in a comparatively lower
diastereoselectivity (4:1 dr). 5-Halogen-substituted substrates

did not obviously affect the reaction efficiency, affording the
target products 3ea−3fa in 82−87% yields. The structure of
3fa was unambiguously confirmed by single-crystal X-ray
analysis (for the relative stereochemistry, see S-Figure 1).
Meanwhile, the tested substrates with a substituent at another
position of the aromatic ring also performed well in this
process, providing the corresponding products 3ga−3qa in
45−81% yields, whereas 3oa resulted in reduced yield (45%)
likely due to the large steric hindrance. Moreover, an aromatic
ring with disubstituted or extended π-framework could be
effective for this transformation (3ra−3sa). Replacement of
the methyl group at the R1 and R2 positions with phenyl group
led to 3ta in somewhat lower yield (58%). The substituent of
the ester group at the R1 position was also examined, affording
3ua in 48% yield. The observed lower yield could be attributed
to other competing reactions. When R1 is a phenyl group and
R2 is a methyl group, it can generate the desired products as a
pair of regioisomers (3va/3va′).
To further demonstrate the versatility of this protocol,

different propargylsulfonium salts were explored (Scheme 3).
Aliphatic substituted and phenyl-substituted sulfonium salts
were suitable for the reaction, producing the products 3ab−
3ad in excellent yields (74−91%), with low diastereoselective
(0.8:1 to 2.4:1). Treatment of diethyl prop-2-ynylsulfonium
bromide 2e afforded the product 4aa as the major product in
54% yield with 3ae in 30% yield. When ethyl methyl prop-2-
ynylsulfonium bromide 2f was employed, the product 3ae was
obtained in 15% yield because of the low reactivity of 2f.
Next, we attempted to examine the scope of the sequential

[4 + 2] and [4 + 1] annulation reaction (Scheme 4). The
chromenes 1 with electron-donating groups (−Me, −OMe) or
electron-withdrawing groups (−Cl, −Br) on the phenyl ring

Scheme 1. (A) Different Reaction Pathways for Reactions
with Vinylsulfonium Salts and Propargylsulfonium Salts;
(B) This Work

Scheme 2. Substrate Scope of Sequential [4 + 2] and [4 + 2]
Annulationsa,b

aReactions of 1 (0.20 mmol) and 2a (0.40 mmol) were carried out in
the presence of Cs2CO3 (0.40 mmol) in 1 mL of DCE at 25 °C.
bIsolated yields are shown. cReaction temperature: 50 °C.
dDetermined by 1H NMR analysis.
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worked smoothly, wherein the desired dihydrofuro[2,3-
c]chromene derivatives were delivered in moderate yields
ranging from 41% to 69%. A small number of byproducts were
observed during these reactions. Among them, electron-rich
groups at C5-position of the aromatic ring showed better
reactivity than electron-poor groups (4ba−4ca vs 4ea−4fa).
Besides, when the 5-NO2-substituted substrate 1d was
employed in the reaction, we got the bridged product 3da
rather than 4da, presumably because of the electronic effect.
In order to verify the sequential annulation reaction process

to late-stage synthetic applications, estrone-derived chromene
1w was subjected to reaction. To our delight, the desired
products 3wa and 4wa were obtained in 85% and 63% yields
with a 1:1 diastereomeric ratio, respectively (Scheme 5).
To demonstrate the practicability of these transformations,

we reduced the amount of prop-2-ynylsulfonium salt 2a and
base in gram-scale synthesis (Scheme 6a). Gratifyingly, the
annulation products 3fa and 4ca were scaled up without
compromising the efficiency. Then several derivatizations were

performed to show the utility of our products. The
condensation, bromination, and Suzuki−Miyaura coupling of
3fa generated the corresponding products 5−7. Moreover,
oxidation of sulfone group in the presence of different amounts
of m-CPBA can readily produce compounds 8 and 9 in
excellent yields (Scheme 6b). Next, the carbonyl group of 4ca

Scheme 3. More Exploration of Propargylsulfonium Salts
for Synthesis of Products 3a,b

aReactions of 1a (0.20 mmol) and 2 (0.40 mmol) were carried out in
the presence of Cs2CO3 (0.40 mmol) in 1 mL of DCE at 25 °C.
bIsolated yields are shown. cDetermined by 1H NMR analysis. dThe
two diastereomers can be separated by column chromatography.

Scheme 4. Substrate Scope of Sequential [4 + 2] and [4 + 1]
Annulationsa,b

aReactions of 1a (0.20 mmol) and 2 (0.40 mmol) were carried out in
the presence of Cs2CO3 (0.40 mmol) in 1 mL of toluene at 40 °C.
bIsolated yields are shown.

Scheme 5. Late-Stage Modification of Estrone-Derived
Chromene

Scheme 6. Gram-Scale Synthesis and Further
Transformationa

aReaction conditions: (a) NH2OH·HCl (3.0 equiv), NaOAc (3.0
equiv), MeOH, 50 °C, 24 h; (b) Br2 (1.0 equiv), DCM, 0 °C, 40 min;
(c) 4-methoxyphenylboronic acid (2.4 equiv), Pd(PPh3) (4 mol %),
CsF (2.4 equiv), DMF, 100 °C, 24 h; (d) m-CPBA (1.2 equiv), DCM,
rt, 5 min; (e) m-CPBA (4.0 equiv), DCM, rt, 10 min.
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was reduced with DIBAl-H and gave the double-bond isomeric
product 10 in 86% yield with 1.5:1 diastereomeric ratio.
Furthermore, the product 11 could be obtained via a BBr3
demethylation strategy in 58% yield (Scheme 6c) (see the
Supporting Information for a plausible reaction mechanism).
To gain more insight into these reactions, a series of

mechanistic studies were designed and conducted. Treatment
of 5-OMe-substituted substrate 1c with methyl-substituted
sulfonium salt 2b under the standard reaction conditions gave
product 3cb in 34% yield, along with 4cb in 42% yield. We did
not observe the product 4cb′, suggesting that the prop-
argylsulfonium salts γ site took part in the formation of
chemical bonds (Scheme 7a, eq 1). The structure of 4cb was

confirmed by X-ray analysis (for the relative stereochemistry,
see S-Figure 2). Reaction of substrate 1a with CH3I afforded
the 1,3-dicarbonyl compound 12 in 90% yield after a ring-
opening process (Scheme 7a, eq 2). Additionally, the
deuterium-labeling experiment provided the deuterated prod-
uct D-3aa in 64% yield, indicating that the possible carbanion
intermediates were involved (Scheme 7b, eq 3).
On the basis of these experimental results and our previous

reports, plausible pathways for the divergent annulation
reactions of 1a and 2b are proposed (Scheme 8). In the
presence of base, 1a undergoes a ring-opening process to form
intermediate A and propargylsulfonium salt 2b facilely
isomerizes to allenic sulfonium salt 2b′. Next, nucleophilic
addition of A to the 2b′ forms intermediate B and the
resonance structure intermediate C. Subsequently, intra-

molecular Michael addition of C gives the intermediate D,
which then proceeds through divergent pathways. For path a,
the O anion attacks the β position of sulfur atom generating
the intermediate E, which can further undergo protonation to
give intermediate F. Finally, demethylation by attack of the
bromide leads to the product 3ab. On the other hand, path b
involves continuous H-shifts to form intermediate I via
intermediates G and H. Then, an intramolecular SN2′ reaction
of intermediate I affords product 4ab.11

In conclusion, we have developed divergent sequential
annulation reactions of 2-hydroxy-2-methylchromene deriva-
tives and prop-2-ynylsulfonium salts to efficiently construct
sulfur-containing benzo-fused bridged dioxabicyclo[3.3.1]-
nonanes and dihydrofuro[2,3-c]chromenes. In addition, the
methods can be further applied to late-stage modification of
estrone-derived chromene. More importantly, we have
disclosed the first example of propargylsulfonium salts γ sites
participating in the formation of chemical bonds, which further
broadens the application of sulfur ylides. Further investigation
of the mechanism and synthetic applications to construct other
biologically active compounds is ongoing in our laboratory.
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