

Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO_2 to Methanol

Nomaan M. Rezayee, † Chelsea A. Huff, † and Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States

Supporting Information

ABSTRACT: This Communication describes the hydrogenation of carbon dioxide to methanol via tandem catalysis with dimethylamine and a homogeneous ruthenium complex. Unlike previous examples with homogeneous catalysts, this CO_2 -to- CH_3OH process proceeds under basic reaction conditions. The dimethylamine is proposed to play a dual role in this system. It reacts directly with CO_2 to produce dimethylammonium dimethylcarbamate, and it also intercepts the intermediate formic acid to generate dimethylformamide. With the appropriate selection of catalyst and reaction conditions, >95% conversion of CO_2 was achieved to form a mixture of CH_3OH and dimethylformamide.

apidly increasing atmospheric carbon dioxide levels are Rprojected to have detrimental consequences on the global climate.¹ One strategy to address this problem involves remediating CO₂ emissions via capture at a point source, with subsequent sequestration in underground geological formations. This approach, termed "carbon capture and sequestration" (CCS), has been the subject of extensive research and commercialization efforts.² However, CCS suffers from the fundamental limitation that it fails to productively utilize CO₂.^{3,4} An attractive and complementary approach would be to use captured CO_2 as a carbon source for the synthesis of fuels and/or chemicals such as methanol.⁵ Over the past 40 years, there has been significant work on the development of CuZnO and other heterogeneous catalysts for the conversion of CO₂ to CH₃OH;^{5,6} however, these systems generally operate at high temperatures (>200 °C), which limits conversion in this entropically unfavorable reduction reaction.⁷ Additionally, it remains challenging to rationally tune the reactivity and selectivity of such heterogeneous catalysts. Single-site homogeneous catalysts could offer an attractive alternative, since they generally operate at lower temperatures and contain readily tunable ligand environments.

Despite many years of effort,^{8,9} homogeneous catalysts capable of selectively converting CO₂ and H₂ to CH₃OH have been disclosed only recently.^{10–13} In 2011, our group reported a combination of three homogeneous catalysts (1–3) that operate in tandem to sequentially convert CO₂ to formic acid, methyl formate, and ultimately CH₃OH (Scheme 1).¹⁰ More recently, several reports by Leitner have demonstrated that the combination of ruthenium complex 4 and NHTf₂ catalyzes the conversion of CO₂ to CH₃OH via either a formic acid or methyl formate intermediate.¹³ However, both of these systems operate

Scheme 1. Homogeneous Catalysts for the Hydrogenation of $\rm CO_2$ to $\rm CH_3OH$

under acidic conditions, and are thus incompatible with the bases typically utilized for CO_2 capture.²

In the current study, we sought an alternative strategy that would combine CO_2 capture to form a carbamate salt (A in Scheme 2a) with hydrogenation to generate CH_3OH (Scheme

Scheme 2. Proposed Tandem CO₂ Capture/Hydrogenation Sequence

2b).¹⁴ Conceptually, this approach is very different than those in Scheme 1, as it involves catalysis under basic, rather than acidic conditions. Thus, it should be compatible with CO_2 capture processes. We report herein the successful implementation of this strategy by employing the combination of NHMe₂ and a homogeneous ruthenium hydrogenation catalyst ([Ru]). Under our developed reaction conditions, NHMe₂ and [Ru] catalyze the hydrogenation of CO_2 to a mixture of DMF and CH_3OH with up to 96% conversion of CO_2 in a single batch reactor.

Dimethylammonium dimethylcarbamate (DMC), which is formed upon the reaction of CO_2 with NHMe₂, was selected as a representative example of the CO_2 capture intermediate **A**. Our initial studies focused on identifying homogeneous catalysts capable of converting DMC to CH₃OH. We anticipated several

Received: November 4, 2014

key challenges associated with this transformation. First, the carbonyl functionality in DMC is very weakly electrophilic; thus, the ideal catalyst should be highly reactive toward C=O hydrogenation. Second, NHMe2, a Brønsted base and potential ligand, will be released over the course of the reaction; thus, the catalyst must be stable under basic conditions and must not be inhibited by NHMe₂. Third, the formation of trimethylamine is a possible competing side reaction (Scheme 2c);¹⁵ thus, the catalyst must be selective for hydrogenation with C-N cleavage (to produce CH₃OH) over hydrogenation with C-O cleavage (to yield NMe₃).¹⁶ These requirements led us to examine Ru complexes 3, 5, and 6 as catalysts for this reaction. These complexes are known to catalyze the hydrogenation of related ester,^{12,17} amide,¹⁸ and/or neutral carbonate¹² substrates. Additionally, catalysts 3, 5, and 6 have all been demonstrated to be compatible with amines.^{12,18} Finally, **5** has been shown to catalyze the hydrogenation of N-formylmorpholine to selectively generate CH₂OH rather than the tertiary amine. N-methylmorpholine.^{18a} The latter result suggests that selective hydrogenation with C-N cleavage to generate CH₃OH is feasible with this class of pincer catalysts.

We first examined the reaction of DMC with 1 mol % of catalysts 3, 5, or 6 at 155 °C in THF under 50 bar of H_2 . As shown in Table 1, entries 1–3, very low turnover numbers (TON

Table 1. Hydrogenation of DMC to CH₃OH^a

^{*a*}Conditions: 50 bar H₂, 0.5 mmol of DMC (0.32 M in THF), 5 μ mol of [Ru], 0.25 mmol of K₃PO₄, 18 h. TONs determined by ¹H NMR spectroscopic analysis.¹⁹ ^{*b*}Reaction time of 30 h.

between 0 and 3) were observed in all cases. We noted that exogenous bases can enhance the reactivity of ruthenium carbonyl hydrogenation catalysts.²⁰ An evaluation of different base/catalyst combinations revealed that the use of commercially available catalyst **6** and K_3PO_4 was particularly effective for our system. The addition of 50 equiv of K_3PO_4 relative to **6** resulted in up to 19 turnovers of CH₃OH at 155 °C (TON determined relative to the loading of **6**, entry 6). Importantly, this reaction was highly selective for CH₃OH over NMe₃ (<1 turnover of NMe₃ was detected). Small quantities of dimethylformamide (DMF, 3 turnovers) were also formed under these conditions.

The 6-catalyzed conversion of DMC to CH_3OH (Table 1, entry 6) provides exciting proof-of-principle for our approach.

However, there is still major room for improvement, as this result represents just 22% conversion of DMC to hydrogenated products over 18 h. Notably, increasing the reaction time to 30 h had minimal impact on conversion (entry 7). This result suggests that catalyst decomposition is competitive with DMC hydrogenation at 155 $^{\circ}$ C.

To develop a rational strategy to improve this reaction, we analyzed possible pathways from DMC to CH_3OH . Literature precedent suggests that there are at least two possible routes for the conversion of DMC to CH_3OH in this system. The most direct is shown in Scheme 3, Path A, and involves initial

Scheme 3. Possible Paths for the Hydrogenation of DMC to CH_3OH^{22}

hydrogenation of DMC to DMF (step i) followed by hydrogenation of DMF with C–N bond cleavage to produce CH₃OH (step ii). Notably, Milstein has demonstrated the Rucatalyzed hydrogenation of carbonates,¹² carbamates,¹² and amides^{18a} related to DMF and DMC. Alternatively, DMC could reversibly release CO₂ and 2 equiv of NHMe₂ (step iii, Path B). This would be followed by hydrogenation of CO₂ to formic acid (FA, step iv), a thermodynamically unfavorable reaction that would be driven to the right by amidation of FA to afford DMF (step vi) or deprotonation of FA to yield dimethylammonium formate (DMFA, step v). Selective hydrogenation of DMF (step ii) would then release CH₃OH. Importantly, Jessop has previously demonstrated the Ru-catalyzed conversion of DMC to DMF via steps iii–vi.²¹

Both of the paths in Scheme 3 involve DMF as a key intermediate. We conducted independent experiments that confirm that 6 is a competent and selective catalyst for the hydrogenation of DMF to CH₃OH (eq 1). Furthermore, the

$$\begin{array}{c} 1 \text{ mol }\% \text{ 6} \\ 50 \text{ mol }\% \text{ K}_3\text{PO}_4 \\ 50 \text{ bar }H_2 \\ \hline \text{NMe}_2 \\ \hline \text{DMF}) \\ 155 \ ^\circ\text{C}, 18 \text{ h} \\ \end{array} \begin{array}{c} \text{CH}_3\text{OH} + \text{ NHMe}_2 \quad (1) \\ \text{CH}_3\text{OH} + \text{ NHMe}_2 \\ (TON = 99) \end{array}$$

addition of 0.5 mmol of DMF at the onset of the 6-catalyzed hydrogenation of DMC results in a 4-fold increase in the quantity of CH_3OH produced (eq 2). Both of these results are consistent with the proposed intermediacy of DMF in this transformation.

We next sought to utilize the proposed pathways in Scheme 3 and eqs 1 and 2 to further optimize the 6-catalyzed hydrogenation of DMC. Since catalyst decomposition appears to be problematic at 155 °C, we focused on strategies for lowering the reaction temperature. Scheme 3 implicates four different carbonyl-containing intermediates that could accumulate under the reaction conditions: DMC, DMFA, DMF, and CO₂. Among these possibilities, DMC is expected to be the most difficult to hydrogenate (since it is the least electrophilic) while CO₂ should be the most reactive toward hydrogenation (since it is the most electrophilic) (eq 3). Thus, assuming that there is some

equilibrium between DMC and CO_2 during the reaction, this analysis suggests that Path B should be accessible under milder conditions than Path A.

To test this hypothesis, we lowered the temperature for the DMC hydrogenation reaction to 95 $^{\circ}$ C (Table 2, entry 2). The

entry	(°C)	(M)	(mmol)	(%)	CH ₃ OH	DMF+DMFA
1	155	0.32	none	22	19	3
2	95	0.32	none	10	<1	10
3^b	95	1.89	none	39	<1	385
4^b	95	1.89	7.6	87	<1	872
5 ^{<i>b,c</i>}	$95 \rightarrow 155$	1.89	7.6	58	306	270

^{*a*}Conditions: 50 bar H₂, 5 μ mol of 6, 0.25 mmol of K₃PO₄, 18 h, 1.5 mL of DMC solution in THF. ^{*b*}2.6 mL of DMC solution. ^{*c*}95 °C for 18 h then 155 °C for 18 h. TONs determined by ¹H NMR spectroscopic analysis.¹⁹

sole detectable hydrogenation products were DMF and DMFA (10% conversion of DMC, TON = 10, entry 2). At this temperature, the 6-catalyzed hydrogenation of CO₂ to DMF is fast, while DMF hydrogenation is extremely slow (<1% conversion over 18 h).²³ Thus, Path B is expected to be the only accessible route to these products at this temperature. We next hypothesized that increasing the initial concentration of DMC would further accelerate Path B by increasing the equilibrium concentration of the reactive electrophile, CO₂. As predicted, moving from 0.32 M (entry 2) to 1.89 M DMC (entry 3) resulted in a significant increase in conversion of DMC (39% conversion, TON (DMF + DMFA) = 385). Finally, we reasoned that the addition of exogenous NHMe2 would further drive Path B by accelerating the trapping of the FA generated in step iv. Indeed, the addition of 7.6 mmol of NHMe₂ at the onset of the reaction resulted in high (87%) conversion of DMC over 18 h at 95 °C to form a mixture of DMF (870 turnovers) and DMFA (2 turnovers, entry 4).

The results in Table 2, entries 2–4, led us to examine a single pot, temperature ramp strategy for hydrogenating DMC to CH_3OH . This approach involves initial equilibration of DMC to CO_2 and hydrogenation at 95 °C to build up a high concentration of DMF, followed by an increase in temperature to enable the 6-catalyzed conversion of DMF to CH_3OH . Gratifyingly, a temperature ramp of 95 °C for 18 h followed by 155 °C for 18 h afforded a mixture of CH_3OH (31% yield, TON = 306) and DMF/DMFA (27% yield, TON = 270).

We next applied the same strategy to the direct hydrogenation of CO_2 . These reactions were conducted with 2.5 bar CO_2 and 50 bar H_2 using the same temperature ramp described in Table 3,

Table 3. Catalyst 6/NHMe2-Catalyzed Hydrogenation of CO2 to $\rm CH_3OH^a$

CO ₂ (2.5 bar) + H ₂	cat. 6 cat. K ₃ PO ₄ 7.6 mmol NHMe ₂ THF	$H \stackrel{O}{\overset{O}{\overset{O}{_{_{_{_{_{_{}}}}}}}}} + H \stackrel{O}{\overset{O}{_{_{_{_{}}}}}} + H \stackrel{O}{\underset{_{_{_{}}}}}} + H \stackrel{O}{\underset{_{_{_{}}}}} + H \stackrel{O}{\underset{_{_{}}}}$
(50 bar)	95 °C ⇒155 °C	(DMFA)

	loading of	tim	e (h)	$\begin{array}{c} \operatorname{conv} \\ \operatorname{CO}_2 \\ (\%) \end{array}$	TON	
entry	(mol %)	at 95 °C	at 155 °C		CH ₃ OH	DMF+DMFA
1	0.10	18	18	96	220	740
2	0.10	18	36	89	267	623
3^b	0.03	18	36	82	550	1870

^{*a*}Conditions: 2.5 bar CO₂ (5 mmol), 50 bar H₂, 5 μ mol of **6**, 0.25 mmol of K₃PO₄. TONs determined by ¹H NMR spectroscopic analysis.¹⁹ ^{*b*}1.7 μ mol of **6**.

entry 5 (95 °C for 18 h ramping to 155 °C for 18 h). As shown in Table 3, entry 1, these conditions resulted in 96% conversion of CO₂ to a mixture of DMF/DMFA (74% yield, TON = 740) and CH₃OH (22% yield, TON = 220).²⁴ Extending the time at 155 °C to 48 h resulted in a relatively small increase in the TON of CH₃OH (27% yield, TON = 267) (entry 2). This is consistent with catalyst decomposition at this elevated temperature (*vide supra*). Finally, decreasing the loading of **6** to 0.03 mol % resulted in a further increase in the TON of CH₃OH (19% yield, TON = 550). Overall, these results demonstrate that the combination of an amine and a Ru pincer catalyst can be used to CH₃OH.

In summary, this Communication describes the development of a homogeneous catalytic method that enables the capture and reduction of CO_2 to CH_3OH using a combination of $NHMe_2$ and Ru catalyst 6. Unlike previous examples of homogeneous catalytic CO_2 reduction, this process proceeds under basic conditions. The amine is proposed to play a dual role in this system, directly reacting with CO_2 to produce DMC and also intercepting formic acid to form DMF. Overall, the current process proceeds with high carbon efficiency, leading to up to 96% conversion of CO_2 to a mixture of DMF and CH_3OH . We anticipate that this process can be improved further through the identification of more stable hydrogenation catalysts as well as through advances in reaction/reactor engineering. Both are currently under investigation in our group and will be reported in due course.

ASSOCIATED CONTENT

S Supporting Information

Experimental and spectroscopic details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*mssanfor@umich.edu

Author Contributions

[†]N.M.R. and C.A.H. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by NSF under the CCI Center for Enabling New Technologies through Catalysis (CENTC) Phase II Renewal, CHE-1205189. C.A.H. thanks the NSF for a Graduate Research Fellowship. N.M.R. and C.A.H. thank Rackham Graduate School for a Rackham Merit Fellowship.

REFERENCES

(1) (a) Kamijo, T.; Sorimachi, Y.; Shimada, D.; Miyamoto, O.; Endo, T.; Nagayasu, H.; Mangiaracina, A. *Energy Procedia* 2013, *37*, 813.
(b) Pera-Titus, M. *Chem. Rev.* 2013, *114*, 1413.

(2) (a) Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D. *Int. J. Greenh. Gas Control* **2008**, *2*, 9. (b) Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I. *J. Environ. Sci.* **2008**, *20*, 14. (c) Macdowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. *Energy Environ. Sci.* **2010**, *3*, 1645.

(3) (a) Corsten, M.; Ramírez, A.; Shen, L.; Koornneef, J.; Faaij, A. *Int. J. Greenh. Gas Control* **2013**, *13*, 59. (b) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. *Chem. Rev.* **2013**, *113*, 6621.

(4) (a) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765. (b) Riduan, S. N.; Zhang, Y. G. Dalton Trans. 2010, 39, 3347. (c) Dibenedetto, A.; Angelini, A.; Stufano, P. J. Chem. Technol. Biotechnol. 2014, 89, 334.

(5) (a) Leitner, W. Angew. Chem., Int. Ed. **1995**, 34, 2207. (b) Grabow, L. C.; Mavrikakis, M. ACS Catal. **2011**, 1, 365. (c) Choudhury, J. ChemCatChem **2012**, 4, 609. (d) Li, Y. H.; Junge, K.; Beller, M. ChemCatChem **2013**, 5, 1072. (e) Li, Y. N.; Ma, R.; He, L. N.; Diao, Z. F. Catal. Sci. Technol. **2014**, 4, 1498.

(6) (a) Waller, D.; Stirling, D.; Stone, F. S.; Spencer, M. S. Faraday Discuss. Chem. Soc. **1989**, 87, 107. (b) Spencer, M. S. Top. Catal. **1999**, 8, 259.

(7) Martino, G.; Courty, P.; Marcilly, C.; Kochloefl, K.; Lunsford, J. H. *Handbook of Heterogeneous Catalysis*; Wiley-VCH: Weinheim, 1997; p 1801.

(8) For examples of the use of boranes and silanes to convert CO₂ to the CH₃OH oxidation state with homogeneous metal catalysts, see: (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics **1989**, *8*, 1822. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. **2009**, *48*, 3322. (c) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. **2010**, *132*, 8872. (d) Huang, F.; Lu, G.; Zhao, L.; Li, H.; Wang, Z. X. J. Am. Chem. Soc. **2010**, *132*, 12388. (e) Huang, F.; Zhang, C.; Jiang, J.; Wang, Z.-X.; Guan, H. Inorg. Chem. **2011**, *50*, 3816. (f) Riduan, S. N.; Ying, J. Y.; Zhang, Y. G. ChemCatChem **2013**, *5*, 1490. (g) Wang, B. J.; Cao, Z. X. R. Soc. Chem. Adv. **2013**, *3*, 14007. (h) LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. **2014**, *53*, 789. (i) Anker, M. D.; Arrowsmith, M.; Bellham, P.; Hill, M. S.; Kociok-Kohn, G.; Liptrot, D. J.; Mahon, M. F.; Weetman, C. Chem. Sci. **2014**, *5*, 2826.

(9) For examples of the use of frustrated Lewis pairs for the conversion of CO_2 to CH_3OH , see: (a) Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. **2009**, 48, 9839. (b) Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. **2010**, 132, 1796. (c) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. **2010**, 49, 46. (d) Sgro, M. J.; Stephan, D. W. Angew. Chem., Int. Ed. **2012**, 51, 11343. (e) Zhu, J.; An, K. Chem.—Asian J. **2013**, 8, 3147. (f) Courtemanche, M. A.; Legare, M. A.; Maron, L.;

Fontaine, F. G. J. Am. Chem. Soc. **2013**, 135, 9326. (g) Courtemanche, M. A.; Legare, M. A.; Maron, L.; Fontaine, F. G. J. Am. Chem. Soc. **2014**, 136, 10708. (h) Wang, T.; Stephan, D. W. Chem. Commun. **2014**, 50, 7007. (i) Anker, M. D.; Arrowsmith, M.; Bellham, P.; Hill, M. S.; Kociok-Kohn, G.; Liptrot, D. J.; Mahon, M. F.; Weetman, C. Chem. Sci. **2014**, 5, 2826. (j) Fontaine, F. G.; Courtemanche, M. A.; Legare, M. A. Chem.— *Eur. J.* **2014**, 20, 2990.

(10) For early reports of the Ru-catalyzed hydrogenation of CO₂ to a mixture of CO, CH₃OH, and CH₄, see: (a) Tominaga, K.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc., Chem. Commun. **1993**, 629. (b) Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. Bull. Chem. Soc. Jpn. **1995**, 68, 2837.

(11) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122. (12) For seminal work by Milstein demonstrating the 3- and 5catalyzed hydrogenation of esters, amides, and carbonates, see: Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.

(13) (a) Wesselbaum, S.; vom Stein, T.; Klankermeyer, J.; Leitner, W. Angew. Chem., Int. Ed. **2012**, *51*, 7499. (b) Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T. v.; Englert, U.; Hölscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. **2015**, *6*, 693.

(14) For a related approach that generates methyl formate from CO₂, see: Yadav, M.; Linehan, J. C.; Karkamkar, A. J.; van der Eide, E.; Heldebrant, D. J. *Inorg. Chem.* **2014**, *53*, 9849.

(15) (a) Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. *Chem. Sci.* **2013**, *4*, 2127. (b) Beydoun, K.; Vom Stein, T.; Klankermayer, J.; Leitner, W. *Angew. Chem., Int. Ed.* **2013**, *52*, 9554. (c) Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. *Angew. Chem., Int. Ed.* **2013**, *52*, 12156. (d) Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. *Angew. Chem., Int. Ed.* **2014**, *53*, 11010. (e) Sorribes, I.; Junge, K.; Beller, M. *Chem.—Eur. J.* **2014**, *20*, 7878.

(16) John, J. M.; Bergens, S. H. Angew. Chem., Int. Ed. 2011, 50, 10377.
(17) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.

(18) (a) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. **2010**, 132, 16756. (b) Oldenhuis, N. J.; Dong, V. M.; Guan, Z. Tetrahedron **2014**, 70, 4213.

(19) TONs determined by GC-FID were in agreement with the values established by NMR. For example, for Table 3, entry 1, the TONs for methanol were 220 \pm 31 (NMR) and 180 \pm 23 (GC-FID). See Supporting Information (SI) for details.

(20) (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
(b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700.
(c) Clarke, M. L.; Diaz-Valenzuela, M. B.; Slawin, A. M. Z. Organometallics 2007, 26, 16. (d) Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473. (e) Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3, 2412. (f) Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C. J. Am. Chem. Soc. 2014, 136, 3505.

(21) (a) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1994**, 116, 8851. (b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1996**, 118, 344. (c) Jessop, P. G. The Handbook of Homogeneous Hydrogenation; Wiley-VCH: Weinheim, 2008; p 489.

(22) The direct hydrogenation of DMFA to CH₃OH is another possible pathway. Although we cannot definitively rule this out, we believe that it is unlikely based on (i) the observed conversion of DMFA to DMF under the reaction conditions coupled with (ii) the higher electrophilicity of DMF versus DMFA. Additionally, the hydrogenation of $HCO_2^-NEt_3H^+$ (which cannot form the corresponding amide) under conditions similar to those in eq 2 yielded <10 turnovers of CH₃OH (versus 99 turnovers for DMF hydrogenation). See SI for details.

(23) 95 °C was selected because this temperature was found to be optimal for the hydrogenation of CO_2 to DMF (see Table S3 for details).

(24) The use of ${\rm ^{13}CO_2}$ for this reaction resulted in the formation of ${\rm ^{13}CH_3OH}$ and ${\rm H^{13}C(O)NMe_2}$ as the products, as determined by ${\rm ^{1}H}$ and ${\rm ^{13}C}$ NMR spectroscopic analysis. See SI for details.