Evidence for Imidoylnitrene Intermediates in the **Reaction of Bromophenyldiazirine with Phosphines:** First Ring-Expansion Reaction of a Diazirine

Gilles Alcaraz,[†] Antoine Baceiredo,[†] Martin Nieger,[‡] and Guy Bertrand^{*,†}

Laboratoire de Chimie de Coordination du CNRS 205, route de Narbonne, 31077 Toulouse Cédex, France Institut für Anorganische Chemie der Universität Bonn Gerhard-Domagk-Strasse 1, D-5300 Bonn 1, Germany

Received November 24, 1993

In contrast with their acyclic isomeric diazo compounds,¹ diazirines² tolerate a variety of heteroatom substituents and, therefore, are valuable precursors for different carbenes, especially nucleophilic carbenes.³ The exchange reaction of nucleophiles with the easily available halodiazirines⁴ is the key point in the synthesis of these heterocycles. The mechanism of this reaction has been a highly controversial topic in the last few years.^{3,5} It was first suggested that the halodiazirine was in equilibrium with a diazirinium cation, which was captured by the nucleophiles.^{1a,3,4,6} From the observed products, Creary⁷ and Dailey,⁸ using a ¹⁵Nlabeled diazirine, independently concluded that the first step of the reaction with azide anion involved an $S_N 2'$ mechanism, and it was suggested that the exchange reaction with other nucleophiles proceeded by a double S_N2' reaction.⁹ Lastly, Creary demonstrated that, in the presence of light, azide ion can react with certain halodiazirines via an S_{RN}1 substitution mechanism.¹⁰

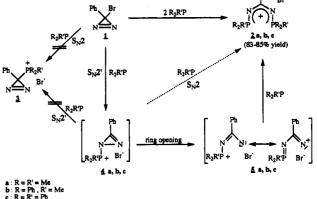
Here we report preliminary results on the reaction of bromophenyldiazirine 1 with phosphines.¹¹ These nucleophiles have been chosen since ³¹P NMR spectroscopy is a powerful tool for monitoring the reactions, and we have already shown that organophosphorus substituents allowed the stabilization of highly reactive species.¹²

Two equivalents of trimethyl-, diphenylmethyl-, and triphenylphosphine react in dichloromethane with bromophenyldiazirine 1,4 affording the bis adducts 2,13 in near quantitative yields; when a stoichiometric amount of phosphine is used, 2 is also formed and half of the starting diazirine 1 is recovered. Monitoring the reaction by ³¹P NMR spectroscopy, at low temperature, does not allow the detection of any intermediates. The rate of the reaction

[†] Laboratoire de Chimie de Coordination du CNRS

[‡] Institut für Anorganische Chemie der Universität Bonn.

(1) For reviews, see: (a) Patai, S. The Chemistry of Diazonium and Diazo Groups; Wiley: New York, 1978. (b) Regitz, M. Diazoalkanes; Georg Thieme Verlag: Stuttgart, 1977. (c) Regitz, M.; Maas, G. Diazo Compounds, Properties and Synthesis; Academic Press Inc.: Orlando, 1986


(2) For reviews, see: (a) Liu, M. T. H. Chem. Soc. Rev. 1982, 11, 127. (b) Heine, H. W. In The Chemistry of Heterocyclic Compounds-Small Ring Heterocycles-Part 2; Wiley: New York, 1983; Vol. 42, p 588. (c) Chemistry of Diazirines; Liu, M. T. H., Ed.; CRC Press, Inc.: Boca Raton, FL, 1987; Vols. I, II.

(4) Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
(5) For review, see: Creary, X. Acc. Chem. Res. 1992, 25, 31.
(6) (a) Krogh-Jespersen, K.; Young, C. M.; Moss, R. A.; Wostowski, M. Tetrahedron Lett. 1982, 23, 2339. (b) Moss, R. A.; Terpinski, J.; Cox, D. P.; Denney, D. Z.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1985, 107, 2743.
(c) Liu, M. T. H.; Paike, N. Tetrahedron Lett. 1987, 28, 3763. (d) Liu, M. T. H.; Doyle, M. P.; Loh, K.-L.; Anand, S. M. J. Org. Chem. 1987, 52, 323.
(7) Creary, X.; Sky, A. F. J. Am. Chem. Soc. 1990, 112, 368.
(8) Bainbridge, K. E.; Dailey, W. P. Tetrahedron Lett. 1987, 30, 4901.
(9) Dailey, W. P. Tetrahedron Lett. 1987, 28, 5801.
(10) Creary, X.; Sky, A. F.; Phillips, G. J. Org. Chem. 1990, 55, 2005.
(11) Difluorodiazirine has been reported to react with trivalent organo-

(11) Difluorodiazirine has been reported to react with trivalent organophosphorus derivatives to form (cyanoimino)phosphoranes and difluorophosphoranes: Mitsch, R. A. J. Am. Chem. Soc. 1967, 89, 6297.

(12) See, for examples: (a) Igau, A.; Grützmacher, H.; Baceiredo, A.;
Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463. (b) Igau, A.; Baceiredo,
A.; Trinquier, G.; Bertrand, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 621.
(c) Granier, M.; Baceiredo, A.; Dartiguenave, Y.; Menu, M. J.; Bertrand, G.
J. Am. Chem. Soc. 1990, 112, 6277. (d) Soleilhavoup, M.; Baceiredo, A.; Treutler, O.; Ahlrichs, R.; Nieger, M.; Bertrand, G. J. Am. Chem. Soc. 1992, 114, 10959.

Scheme 1

increasing with the nucleophilicity of the phosphines and the resulting products 2 featuring a P-N bond, and not a P-C bond. as in 3, clearly demonstrate that the first step is an $S_N 2'$ reaction leading to 1H-diazirine 4. Two mechanisms could rationalize the formation of the second P–N bond: either an S_N2 reaction of the phosphine on the second nitrogen atom induced by the presence of the electron-withdrawing phosphonio group or the formation of an electrophilic imidoyl nitrene 5 which would be trapped by phosphines.¹⁴ Since there is no precedent for the S_N2 mechanism, while the ring-opening of 1H-diazirines into imidoyl nitrenes has already been postulated to rationalize the formation of carbodiimides or related products from nitrilimines,15 we favor this later mechanism¹⁶ (Scheme 1).

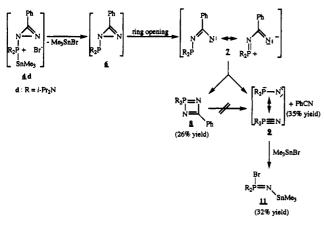
In order to confirm this hypothesis, we performed the reaction of 1 with a stoichiometric amount of bis(diisopropylamino)-(trimethylstannyl)phosphine. Indeed, the tin-phosphorus bonds are very labile, and one could expect the elimination of bromotrimethylstannane from N-phosphoniodiazirine 4 leading to N-phosphinodiazirine 6. Then, the corresponding imidoyl nitrene 7 could intramolecularly react with the phosphorus atom, leading to the hitherto unknown 1,3,2 λ^5 -diazaphosphete 8.¹⁷ Indeed, this cyclic 4- π -electron ylide 8 was isolated in 26% yield;¹⁸ ((trimethylstannyl)imino)bis(diisopropylamino)bromophosphorane 11 (32% yield),¹⁸ benzonitrile (35% yield according to gas chromatography), bromotrimethylstannane (60% yield, according to ¹H NMR spectroscopy) and uncharacterized byproducts were also formed in the reaction (Scheme 2).

Compared with the reaction of 1 with azide ion,^{7,8} here benzonitrile is also obtained, but instead of eliminating N_2 , it is quite likely that there is formation of λ^3 -phosphinonitrene- λ^5 -

502. (b) Granier, M.; Baceiredo, A.; Grützmacher, H.; Pritzkow, H.; Bertrand, G. Angew. Chem., Int. Ed. Engl. 1990, 29, 659.

(16) The possibility of the ring-opening of an N-sulfenylated diazirine intermediate into the corresponding imidoyl nitrene was not ruled out by Creary, X.; Sky, A. F.; Phillips, G.; Alonso, D. E. J. Am. Chem. Soc. 1993, 115, 7584.

(17) Note that the synthesis of a $1,3,2\lambda^5$ -diazaphosphete has been claimed,^{17a} but the product proved to be in fact a mixture of $1,3,5,2\lambda^5$ -triazaphosphinine and $1,3,5,2\lambda^5,4\lambda^5$ -triazadiphosphinine.^{17b} (a) Kukhar, V. P. Kasheva, T. N.; Kozlov, E. S. J. Gen. Chem. USSR 1973, 43, 741. (b) Schöning, G.; Glemser, O. Chem. Ber. 1976, 109, 2960.


(18) 8: white crystals, mp 136–138 °C(1.6g, 26% yield); ³¹PNMR (CDCl₃) +54.2; ¹³C NMR (CDCl₃) 22.1 (s, CH₃), 47.2 (d, $J_{PC} = 4.3$ Hz, CH), 126.6 128.2, 130.8 (s, $C_{om,p}$), 136.1 (d, $J_{PC} = 22.4$ Hz, C_{ipso}), 194.7 (d, $J_{PC} = 48.4$ Hz, NCN). 11: pale yellow oil; ³¹P NMR (C6Cl₃) – 11.8; ¹H NMR (CDCl₃) 0.41 (s, $J_{10}S_{nH} = 55.0$ Hz, $J_{10}S_{nH} = 57.6$ Hz, CH_3S_n).

⁽³⁾ For a review, see: Moss, R. A. Acc. Chem. Res. 1989, 22, 15.
(4) Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.

^{(13) 2}a: mp 170–171 °C; 85% yield; ³¹P NMR (CDCl₃) +30.1; ¹³C NMR (CDCl₃) 14.6 (d, $J_{PC} = 66.4$ Hz, CH₃), 140.7 (t, $J_{PC} = 12.7$ Hz, C_{ipeo}), 178.1 (t, $J_{PC} = 7.2$ Hz, NCN). 2b: mp 177 °C, 85% yield; ³¹P NMR (CDCl₃) +20.1; ¹³C NMR (CDCl₃) 13.4 (d, $J_{PC} = 66.1$ Hz, CH₃), 140.0 (t, $J_{PC} = 11.6$ Hz, C_{ipeo}), 179.4 (t, $J_{PC} = 6.1$ Hz, NCN). 2e: mp 101 °C; 83% yield; ³¹P NMR (CDCl₃) +16.6; ¹³C NMR (CDCl₃) 139.3 (t, $J_{PC} = 12.0$ Hz, C_{ipeo}), 178.6 (t, $L_{PC} = 6.2$ Hz, NCN) 178.6 (t, $J_{PC} = 6.2$ Hz, NCN).

 ^{(14) (}a) Haake, M. Tetrahedron Lett. 1972, 3405. (b) Smith, P. A. S. In Azides and Nitrenes; Scriven, E. F. V., Ed.; Academic Press: London, 1984.
 (15) (a) Fischer, S.; Wentrup, C. J. Chem. Soc., Chem. Commun. 1980,

Scheme 2

phosphonitrile 9,¹⁹ which is trapped, by the bromotrimethylstannane formed in the reaction, affording 11. We have checked that phosphonitrile 9, generated by photolysis of bis(diisopropylamino)phosphinous azide,¹⁹ reacts with the bromostannane to give 11; moreover, when the reaction of 1 with the stannylphosphine was carried out in the presence of a large excess of chlorotrimethylsilane, we observed (in addition to 8, benzonitrile, bromotrimethylstannane, and a very small amount of 11) the formation of ((trimethylsilyl)imino)bis(diisopropylamino)chlorophosphorane.¹⁹

These results, as a whole, clearly confirm that, in the bromophenyldiazirine exchange reactions, the first step involves an S_N2' mechanism leading to N-substituted diazirines; they confirm the possible ring-opening of these heterocycles into imidoyl nitrenes, which can either be trapped inter- or intramolecularly or decompose into nitrile and a nitrene fragment. The presence of a phosphonio group, which is a strong electron-withdrawing group, should induce a loss of antiaromatic character and therefore stabilize the N-substituted diazirine; moreover, the phosphines are excellent leaving groups. Thus, it is really surprising that the expected second S_N2' reaction, which would have led to the *C*-phosphoniodiazirine 3, does not occur. In contrast to the small anions like MeO⁻ or F⁻, the phosphino groups are very poor migrating groups, and one can question if what was believed to be an S_N2' reaction is not in fact a 1,3-sigmatropic reaction.

Acknowledgment. Thanks are due to the CNRS for financial support of this work.

^{(19) (}a) Sicard, G.; Baceiredo A.m Bertrand, G.; Majoral, J. P. Angew. Chem., Int. Ed. Engl. 1984, 23, 459. (b) Baceiredo, A.; Bertrand, G.; Majoral, J. P. Sicard, G.; Jaud, J.; Galy, J. J. Am. Chem. Soc. 1984, 106, 6088. (c) Baceiredo, A.; Bertrand, G.; Majoral, J. P.; El Anba, F.; Manuel, G. J. Am. Chem. Soc. 1985, 107 3945.