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Abstract

Despite the recent reductions in the global buralemalaria, this disease remains a devastating
cause of death in tropical and subtropical regi&ssthere is no broadly effective vaccine for
malaria, prevention and treatment still rely onrabéherapy. Unfortunately, emerging resistance
to the gold standard artemisinin combination theameans that new drugs with novel modes of
action are urgently needed. In this conteRtasmodium histone modifying enzymes have
emerged as potential drug targets, prompting udeteelop and optimize compounds directed
against such epigenetic targeAspanel of 51 compounds designed to target diffeegigenetic
enzymes were screened for activity agaRissmodium falciparum parasites. Based on vitro
activity against drug susceptible and drug-restd®afalciparum lines, selectivity index criterion
and favorable pharmacokinetic properties, four commgls, one HDAC inhibitorl) and three
DNMT inhibitors (7, 43 and 45), were selected for preclinical studies in a moos®lel of
malaria.In vivo data showed th&7, 43 and45 exhibited oral efficacy in the mouse model of
Plasmodium berghei infection. These compounds represent promisingirsgapoints for the

development of novel antimalarial drugs.

Keywords: antimalarial agents; histone deacetylase inhigitoDNA methyltransferase

inhibitors; PK studiesP. berghei mouse model.



1. Introduction

Plasmodium falciparum is the most virulent of the malaria parasites thigct humans and is
responsible for most of the malaria-related deatisile the global burden of malaria decreased,
according to the latest WHO estimates releasede there still 212 million cases of malaria in
2015 and 429,000 deaths [1]. Although substantidltangible improvements are being made in
the search of an effective vaccine [2-5], antimaladrugs remain one of the main strategies to
prevent and treat malaria. Of concern in this régarthat resistance and/or delayed parasite
clearance to most available drugs, including arerm-based combination therapies, have
appeared [6,7]. Consequently, it is imperativeiszcaver new antimalarial agents that are able to
prevent or treat malarigia different mechanisms. As most epigenetic enzynag essential
roles in proliferation and differentiation of eukatic cells, Plasmodium histone modifying
enzymes (HMEs) have been proposed as potentialtdrgets [8-14].

In the P. falciparum genome, five histone deacetylase enzymes (HDAO3)histone
acetylation enzymes (HATs), 13 potential histone thylation enzymes (histone
methyltransferases, HMTs, including 10 Ilysine mbthpsferases and three arginine
methyltransferases) and three histone demethylaggnes (KDMs), have been identified
(reviewed in [15]). Half of the lysine methyltrapshses and one HDAC flflDAC3/FfHda2)
have been shown to be refractory to genetic dissnpsuggesting an essential and important role
in Plasmodium biology [16,17]. Investigation of HMEs as promigidrug targets iflasmodium
showed that apicidin, curcumin and various hydrox@@nderivatives were potent inhibitors of
parasite growthn vitro [13,16,18-22] Further work identified the small molecule BIX0¥29
(18), an inhibitor of the H3K9 methyltransferases @l [23], as a potent antiplasmodial

against blood parasités vitro andin vivo [24,25]. The clinically approved HDAC-targeting



cancer drugs vorinostat, romidepsin, belinostat jpawbbinostat [26] have also been shown to
cause hyperacetylation of parasite histones andhibit the growth of multipleP. falciparum
lines in vitro. Epigenetic control also includes DNA methylatidmat has been extensively
studied as a stable epigenetic marker [27]. In malam cells, the role of C5 DNA
methyltransferases (DNMTS) is essential for celved@oment and survival [28-33]. Hence
DNMTs have been investigated as cancer drug targets two inhibitors, azacitidine and
decitabine, have been approved by the Food and Bdministration and the European
Medicines Agency for use against myelodysplastindsyme, acute myeloid leukemia and
chronic myelomonocytic leukemia [34,35]. IP. falciparum, a functional DNMT
(PF3D7_0727300) has been partially characterizeithh weak of expression in early/late
trophozoitePlasmoDB [36]). More recent genome-wide mappingagkd the methylation d®.
falciparum DNA, the hypomethylation of core promoters ancharp methylation at exon-intron
boundaries and nucleosomes [37].

The above observations underscore the importancéistbne and DNA modifying
enzymes toPlasmodium parasite survival and support the concept thasethenzymes could
represent drug targets worthy of further exploratim this study, compounds initially designed
to target different epigenetic enzyme families inkaryotes, such as histone deacetylases
(HDACSs), histone acetyltransferases (HATS), histamethyltransferases (HMTSs), histone
demethylases (KDMs), DNA methyltransferases (DNM&sj§l poly(ADP-ribose) polymerases
(PARPSs), were assessed for growth inhibitory atgtizgainstPlasmodium 3D7 parasitef vitro.
After a first screening of epi-drugs, a focusedcesnoing has been performed with analogues of
the first hit compounds. The best-scoring compourms the two screenings were then assayed
against the multi-drug resistaht falciparum lines W2 and Dd2 to determine their potency, and

against mammalian cells to assess their cytotgxamid selectivity indexes. From these results,
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four compounds were selected to perform pharmaetkifPK) analysis anth vivo studies on

P. berghei-infected mice.

2. Results

21. Chemistry

Among the epi-drugs used for the first screeningb{& 1) only6, a N-hydroxy-3-pyridin-2-
ylacrylamide designed as a HDAC inhibitor, was alo¢ady described. For the synthesi$,a2-
bromopyridin-5-amine was converted into the coroesiing amide intermediatd2 through
reaction with 1-naphthylacetyl chloride in dry dmtomethane in the presence of triethylamine.
Afterwards, 52 was dissolved in dryN,N-dimethylformamide and treated with tetra-
butylammonium iodide, sodium acetate trihydrateylacrylate and, under nitrogen atmosphere,
triphenylphosphine and palladium acetate (Scheme The resulting mixture was heated in a
sealed tube at 140 °C providing the butyl acryl&® which was converted into the
corresponding carboxylic acid54 through basic hydrolysis (lithium hydroxide in
tetrahydrofuran/water) and finally into the hydroae 6 by i) activation with ethyl
chloroformate and triethylamine in dry tetrahydmaiu at O °C, ii) nucleophilic displacement
with O-(2-methoxy-2-propyl)hydroxylamine in dry tetrahgfliran at O °C, and iii) cleavage with
Amberlyst 15 ion-exchange resin in methanol (Sch&éfe

Three analogues df(30-32) and two analogues 6f (34, 35) were synthesized and tested in
the focused screening (Table 2), to improve theitinzalarial activity. The synthetic route
followed for the preparation of compoun88-32 is depicted in Scheme 1B. The known 2-
mercapto-6-substituted-pyrimidin-43-ones 55 [38] and 56 [39] were treated with the

appropriate commercially available etlylbromoalkanoate in presence of anhydrous potassium



carbonate to afford the ethyl est&%59, which were then hydrolyzed to the related carlioxy
acids60-62 by the means of potassium hydroxide in ethanobam temperature (rt), and then
converted into the hydroxamat&§-32 (Scheme 1B) following the procedure used for the
synthesis 06.

The syntheses d84 and 35 were accomplished starting from methyl 5-aminolete
acylated with the appropriate acyl chlorides toegifie intermediate amidés3 and 64. After
hydrolysis 0f63 and64 under basic condition to the corresponding carboacids65 and66,

the compounds were converted into the hydroxangtesd35 by the usual way (Scheme 1C).

A
H H
H?“@ a O N b O N
N/ Br O 0] \(Nj\Br O O \(MX
52 o

¢ ( 53 X=0Bu
g 54 X=0H
B (¢] o] 0] ( 6 X=NHOH o
NH NH f NH d
\ — 1 U —— | —— [ M
~ ~
R N)\SH RN s thcookt R N/)\S’HHCOOH R N/)\S/@ﬁnCONHOH
55,56 57-59 60-62 30-32
55 R = 4'-biphenyl 57,60,30 R =4"-biphenyl;n=5
56 R = 2-naphthyl 58,61,31 R = 2-naphthyl;n =4

c HoN “ H 59,62,32 R = 2-naphthyl;n =5
Ris Ny
\(jYOCHs N \(j}(
N (@] N/ X
© o

c (63’64 X=0Me  g36534 R, = benzyl

d(65’66 X=0OH 64,66,35 R4 = 1-naphthylmethyl
34,35 X =NHOH

Scheme 1.Synthesis of the HDACI6, 30-32, 34, 35 Reagents and conditions: (a) 1-
naphthylacetyl chloride, dry DCM, triethylamine, & h; (b) triphenylphosphine, palladium
acetate, tetra-butylammonium iodide, sodium acetate trihydratgtybacrylate, dry DMF, 140
°C, sealed tube, overnight; (c) lithium hydroxidethanol, rt, overnight; (d) 1) ethyl
chloroformate, triethylamine, dry THF, 0 °C to 10 min; 2) NHOC(CH;),OCH;s, dry THF, O

°C to rt, 15 min to 3 h; 3) Amberlist 15, methanadl, 1-2 h; (e) appropriate ethyb-
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bromoalkanoate, anhydrous potassium carbonateDhity, rt, 1 h; (f) 2N potassium hydroxide,

ethanol, rt, 18 h; (g) appropriate acyl chloride; BCM, triethylamine, rt, 2 h.

Since the quinazolin28 [40] was identified in the first screen as a hitnpmund against
P. falciparum 3D7, some analogue8&48) were synthesized and tested as potential DNMT
inhibitors and antimalarials (see Table 4 for dues). Scheme 2 shows the general synthetic
pathway followed for the preparation of the finaérigatives 36-45 The known 2,4-
dichloroquinazoline$7 [41], 68 and69 [42] were subjected to a displacement reactiohai4
position with the appropriate commercial aminesyegating the 2-chloro-4-aminosubstituted
quinazoline intermediate0 and 71 [43], 72-74 75 [44], 76 and 77 [45]. The 2-
chloroquinazoline’0, dissolved in a mixture of dry THF and dry methameas treated with 4N
hydrochloric acid in dioxane providing the 2-chlaYe(piperidin-4-yl)quinazolin-4-amine
hydrochloride78, which underwent an alkylation reaction with comama 4-methoxyphenethyl
bromide in the presence of potassium carbonatesadidim iodide in dry DMF at rt to give the
intermediater9. Further C2-chloro displacement @8 with 4-fluorobenzylamine in a sealed tube
at 110 °C afforded the final compouB@ (Scheme 2A). C2-Chloro displacement performed on
the 2-chloro-6,7-dimethoxyquinazoliffd with 4-fluorobenzylamine imso-propyl alcohol at 130
°C under microwave irradiation afford8d. Compound7 was then converted in&0 via BOC-
deprotection performed with 4N hydrochloric acid dioxane and transformed int88 by
alkylation with 4-methoxyphenethyl bromide in thegence of potassium carbonate and sodium
iodide in dry DMF at rt (Scheme 2A). The final cooomds39-44 were obtained by reacting the
4-amino-2-chloroquinazoliné®-77 with N-phenylpiperazine in a sealed tube at 110 °C (Sehem
2A). The 7-hydroxyquinazolind5 was prepared through debenzylation reactiom®fwith

trifluoroacetic acid under reflux conditions (SchegA).



Final compoundgl6-48 were prepared as reported in Scheme 2B. The 2yfjhpearazine-6,7-
substituted-quinazolinoné®?, 83 and84 [46] were synthesized via cyclization reactionwen
the appropriate commercial ethyl/methyl anthraggdatnd théN-phenylpiperazine-1-carbonitrile
81 [45,46], in the presence of dry sodium hydrideytene at 140 °C under nitrogen atmosphere.
The reaction betwee®2-84 and 1,2,4-triazole in the presence of phosphomyshloride and
triethylamine produced the triazolyl-quinazolin85-87 [46] which reacted with 4-amino-1-

benzylpiperidine in dry dioxane at 110 °C to previtie final compound$6-48
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7340 R=Ry=H R, ={N’CH2°H2'P" 76,43 R = OMe; Ry = OBn; R, = {N-Bn
7441 R=R,=H; R, = N-CHCHCH-Ph 77,44 R = OMe; Ry = OBn; R, = —NHCH,CH,NH-1-Naphth
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Scheme 2Synthesis of the new quinazoline derivati3s48 Reagents and conditions: (ajt-
butyl 4-aminopiperidine-1-carboxylate, triethylamjndry THF, 0 °C to rt, 4-72 h; (b) 4N
hydrochloric acid in dioxane, dry THF/dry methandil, 0 °C to rt, 7-25 h; (c) 4-
methoxyphenetyl bromide, dry potassium carbonatgius iodide, dry DMF, rt, 19-27 h; (d) 4-
fluorobenzylaminejso-amyl alcohol, 110 °C, sealed tube, 8 h; (e) 4-thb@nzylamine,so-
propyl alcohol, microwave, 130 °C, 5 h; (f) appriage amine, triethylamine, dry THF, 0 °C to rt,
4-6.5 h; (g)N-phenylpiperazineiso-amyl alcohol, 110 °C, sealed tube, 4 h; (h) trifascetic
acid, 0 °C to 115 °C, 35 min; (i) dry sodium hydridxylene, N, 140° C, 3-4 h; (j) (1)
phosphorus oxychloride, triethylamine, 1,2,4-trlazalry acetonitrile, 0° C (40 min) then rt (30
min); (2) addition of a solution of quinazolinone dry acetonitrile (or dry chloroform), JNrt,
overnight then reflux, 2-5 h; (k) 4-amino-1-benzghkridine, N,N-diiso-propylethylamine, dry

dioxane,110° C, 20-24 h.

General procedures for the syntheses of the HD&@I0-32, 34, 35 and of the DNMT3a
inhibitors 36-48, as well as their chemical, physical and spedftat and **C-NMR) data are
reported in Supplementary material. Chemical, piaysand spectral'fi-NMR) data of the

intermediate unknowri.g. previously not characterized) compou®@s54 57-66 72-74 78-8Q
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82, 83, 85, and86 are reported in Table S1 in Supplementary matefildmental analyses for

compounds, 30-32, 34, 35, 36-48are reported in Table S2 in Supplementary material

2.2. Biochemistry

The N-hydroxy-3-(5-(2-(naphthalen-1-yl)acetamido)pyridiryl)acrylamide 6 as well as the
analogues ofl, 30-32, and the analogues 6f 34 and35, were tested against human HDAC1,
HDAC4 and HDACG6 (representative of class |, cldas &nd class llb HDACs, respectively) to
determine their potency and selectivity. Trichaat# (TSA) and TMP269 [47] were used as
reference drugs.

Data in Table S3 (Supplementary material) showed #ti the new synthesized HDACI
displayed submicromolar inhibition against HDACldamanomolar inhibition against HDACSG,
while they were much less potent (if at all) agahtHBACA.

The new quinazoline derivativé$-48, analogues of the DNMT3a-selecti28 [40], were
tested against active human recombinant DNMT1, DIS&Bnd G9a to determine their half
maximal effective concentrations (Ef£ Data presented in Table S4 (Supplementary naderi
showed that the tested compourd$s43 45-47 were more potent (Eg between 1.6 and 8.7
KM) against DNMT3a than against the other testedhyiteansferases, with the different
chemical substitutions at the C2, C4, C6, and driagwline positions having only modulatory
effects on the potency of derivatives. Compouddind48 were less potent against DNMT3a

(% inhibition at 10 pM <50%), thus they were nattéel against DNMT1 and G9a.

2.3. Phenotypic screening of epigenetic modulators against asexual intraerythrocytic stage of P.

falciparum3D7 parasites
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The antiplasmodial activities of the first 29 corapds targeting different classes of
epigenetic targets were screened for activity agalrug-sensitiv®. falciparum 3D7 parasites at
the single concentration of 10 uM. As shown in €abl 22 compounds inhibited parasite growth
by at least 50% and seven compounds inhibited pargsowth by less than 25%. The 22
compounds giving >50% inhibition were then testedlose response assays to determine their
ICs50 values (50% or half maximal inhibitory concenwal). The most potent compounds 4JC
<50 nM) were two hydroxamate-based HDAC inhibitdrg)Cso = 4.0 nM) and6 (ICso = 10.2
nM), both with selectivity for class I/llb human KCs, and the G9a/GPL inhibitd8 (1Csp =
20.8 nM), for which similar activity has been praysly reported [24]. Submicromolar inhibition
of Plasmodium growth was also displayed @ [48] (UNC0638, 1Gy=67.9 nM), a G9a/GLP
inhibitor related tdl8, and by the recently reported DNMT3a inhibig&[40] (ICso= 325.5 nM)

(Table 1).

Table 1

Invitro antiplasmodial activity of compounds agaiRstalciparum 3D7-infected erythrocytes.

) % inhibition b
Epi-target? Compound IC 50 (NM)
at 10 uM
[e]
O N/)N\HS/\/\/CONHOH
HDAC ® 97.0 40+0.3
11[49]
class I/llb HDACI
[o]
WNH
©/NH2
97.1 >1 M

2 [50]

context-selective class |
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HDACI

N Oj\N NH,
3[51]
HDAC1-3 inhibitor

50.9

i \_ NHOH

cl XN o
0 CH,

4[52] 89.6

HDAC4-6,8 inhibitor

H o]
%OTN =
o] O O = NHOH
o]

(53]
HDACSG6-selective inhibitor

Lk
SRR GUN
O SN conmon

class I/llb HDACI

ﬁ\N o)
7[54]
pan-HDACI

5 100

96.8

98.0

CONHOH

OH
SN Z
L
2.8

8 [55]
HDACS inhibitor

>1 uM

>1 uM

422.4+19.4

10.2+2.6

244.0 +52.2

NOF

o)

Sirtuin @ 80.5

9 [56, 57]
Sirt1/2i

>1 uM
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H CH3
N
YO

N

=

il.iln OH
10[58, 59]
Sirt1/2i
Br
T
2R N
N-o Br
11[60]
Sirt2-selective inhibitor

N
o8
12[61]
Sirt6 activator

/N\ 1
N...O
7

CF3

13[61]
Sirt6 activator

38

0] 0]

C,Hs0 [ OCaHs

\
1462, 63]

Sirtl activator

72.3

18.7

70.7

99.5

97.2

>1 uM

ND

>1 uM

671.2+155

>1 uM

ON

HAT

COOH
15[64, 65]
p300 inhibitor

12.8

ND
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o o

\/\/\/\/\/C\ZWOCZHS

16 [66, 67]
p300 inhibitor/PCAF activator

17[68]
p300/CBP inhibitor

92.7

60.1

>1 uM

>1 uM

0
HN
HiCO

HaCO N/)\Nﬁ
NI
18[23-25]

G9a/GLP inhibitor

HMT

19[48]
G9a/GLP inhibitor

HN HN
&
20[69]
EZH2 inhibitor

NH5

N BN

N

</f

TSR R

XC(TWW
(6]

H H

OH OH

21[70]
DOTL1L inhibitor

100

100

14.7

9.7

20.8+4.9

67.9+0.1

ND

ND
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(0]
HO N OH

22[71, 72]

PRMT4/EZH2/HAT inhibitor

(multi-target)

HO O S O OH
23[71, 72]
PRMT1 inhibitor

100

99.5

> 1uM

951.9+86.1

/@/A/NHQHCI
o}

SR

KDM

24 73]
LSD1 inhibitor

X
sasd
N
Fo,
NH,HCI

25[73]
LSD1 inhibitor

Oy, OH

X

Pz

N
OH

26 [74]
Jmj-C inhibitor

27[75]
pan (LSD1+Jmj-C) KDM
inhibitor

97.5

64.6

25.4

100

>1 uM

>1 uM

ND

>1 uM
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SN
| N/)\N/\
DNMT bN\@ 100 325.5+22.1
28[40]
DNMT3a inhibitor
0o =
NH (\N/El\lj
N/)\S/\/NJ
PARP 2 ND
29[76]

PARP1 inhibitor

¥Epi-target, epigenetic modulator target as idediffor human cells/targetdCs, values were
not determined when the percentage of inhibitiorl@tuM was lower than 509%ND, Not

Determined.

2.4. Antiplasmodial activity of analogues derived from active compounds

In order to optimize the potency of active compajnd@2 further analogues of previous hit
compounds were tested. The four analogudstafd different C6-uracil substitutions [2-naphthyl
(31, 32) or 3-chlorophenyl 33) instead of the 4-biphenyl group], and/or diffdréengths of
spacers between the sulphur atom and the hydroeajimneg (30, 39 instead of four methylene
groups]. The two analogues 6f had their N-hydroxyacrylamide group replaced withNa
hydroxycarboxamide group. Compou3d also had its 1-naphthyl moiety substituted with a
phenyl ring. All1 and6 analogues showed selectivity for human class HIACs analogously
to their prototypes (Table S3). In addition, 13 DINMhibitors analogues d18 were prepared
and tested, with changes at quinazoline @8uorobenzylamine or phenylpiperazine), Q4 (
arylalkylsubstituted 4-aminopiperazine N-tert-butoxycarbonyl  4-aminopiperazine, 2-(1-

naphthylamino)ethylamine), C6 (H, methoxy group)d/ar C7 (H, methoxy, benzyloxy group)
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position. Finally, a27 gave 100% inhibition at 10 uM in the primary scré€able 1), three pan-
KDM inhibitors (analogues a7) were also included. These 22 analogues weresfirgtened at
10 pM againsP. falciparum 3D7 and, with the exception 48, all displayed 96-100% inhibition
of parasite growth. Compour®, a pan-KDM inhibitor, was excluded from furtheradysis. For
the remaining 21 analoguessivalues were then determined as previously destijbable 2).
Among the HDACIi examined, the analogued g€ompounds80-33 exhibited 1G, values <100
nM while the analogues 06 (compounds34, 35 were much less potent C>1 pM).
Nevertheless, none of the compound among the tewopgrshowed 1§ values lower than the
corresponding prototypes (Table 2). Among the te&IBIMT inhibitors, all 13 analogues @B
showed lower I values than the prototype, wig-38, 43 and45 having a ~10-32-fold lower
ICs0 than28 (Table 2, Fig. 1). In the case of the analogudb®pan-KDM inhibitor27, all tested
analogues displayed increasedgdalues (>1uM). Based on data of both screeningsselected
the two HDACI1 and6, the G9a inhibitord8 and19, and the DNMT inhibitor$87, 38, 43, 45

for further investigation.

Table 2
Invitro antiplasmodial activity of hitdPf3D7 1C5o <1 uM) and analogues agaiistfalciparum

3D7-infected erythrocytes.

%

Compound inhibition ICs0 (NM)*®
at 10 pM
. ‘ NH
HDACI (analogues o1 P g CONHOH
( ) . ) O O 96.1 6.0+2.1
class I/1lb HDACI
1[49]
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o

O ‘N/)N\HSJAYNHOH
® ° 97.4 50.9+£5.0

30

o

‘ /NH NHOH
*S“‘ﬁg 97.9 252450

31

o

‘ /NH NHOH
*S“?g 97.4 79.410.7

32

[e]

‘ /)’\T NHOH
Qﬁ =y 98.0 88.6 +2.2

33

class I/llb HDACI

HDACI (analogues 06) Hfj\/ﬁ 97.9 21.1+2.4
6

H
@W“/‘
o]
\N NHOH
e}

97.8 >1 uM

34

O oH \/‘ NHOH

oy 079 s1um
35

DNMT3a inhibitors S
N G 100 3255+22.1
(analogues o28) T

o 100

36 33.6 +8.7
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100

100

100

100

100

100

100

18.7+0.9

18.0+54

138.2+22.1

98.9 +13.7

75.1+6.2

37.8+6.3

34.0+19.0
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99.6

100

100

100

100

56.2+0.3

10.1+5.1

52.5+6.7

83.0+16.3

66.9+6.9

pan-KDM inhibitors

(analogues 027) OH
27 [75]

H NH,HCI
" 0 H
o NMN
H

X

Pz

N
OH

49[75]

98.9

45.3

775.8 + 293

NDP
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97.8 >1 uM
50[75]

96.7 >1 uM

51[75]

%Cso values were not determined when the percentagehilition at 10 uM was lower than

50%.°ND, not determined.

A B
Analogues of 1 Analogues of 28
100 400
350
80
300
E 60 §250
o =
3 3
QO 40 Q 150 -
I 100 _
20 R
50 -
0 | 0
1 31 30 32 33 45 38 37 43 36 42 46 44 48 41 47 40 39 28

Fig. 1. Hit compounds and analogues selected for furtiveestigation. Each histogram shows
one candidate and its analogues (X axis). The pdiercompound of each series is shown in

black, the analogues are in grey. Results are slaswnearr SD for 2 independent assays.

2.5. Antiplasmodial activity against multi-drug resistant P. falciparunlines W2 and Dd2

Next, compounds were assessed for growth inhibiexevity against the multidrug-
resistantP. falciparum lines W2 and Dd2 (resistant to chloroquine, quenipyrimethamine and

sulfadoxine) [78,79] and the activities were congglato those obtained against the drug-sensitive
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3D7 line. Under the experimental conditions of phesent study, chloroquine hads¢@alues of
21.5 nM (= 1.6) and 290.0 nM (x 6) for 3D7 and W&spectively, consistent with previous
reports [80-82]. Of the eight compounds spanningAl@DG9a, and DNMT inhibitor classes,
activity against W2 was found to be similar to thgainst 3D7, with 16 values <50 nM for all
tested compounds (Table 3). Interestin@§was more potent against the multidrug-resistant W2
than against the wild-type 3D7 line. Similarsg@alues to 3D7 were obtained for all compounds
when tested against Dd2 using tAe]fhypoxanthine uptake assay method (Table 3). Trmye
these data show that these eight compounds hakelead (1Go <100 nM) profiles [83] with
respect to their potency, and demonstrate a lackrags-resistance to multi-drug resistént

falciparum lines.

Table 3
Comparativan vitro activity (ICsg) of selected compounds against drug-sensRivial ciparum

line 3D7 versus multidrug-resistaiat falciparum lines Dd2 and W2.

P. falciparum I1Cso (NM)

Epi-target® Compound
3D7 (n=3) Dd2 (n=3) W2 (n=2)
HDAC 1 42+04 40+1.1 6.6+0.1
HDAC 6 13.3+5.6 13.5+6.9 15.3+0.8
G9a 18 23.7+6.1 9.7+1.6 16.7 £ 8.7
G9a 19 68.7+14 16.8+6.3 38.5%+4.0
DNMT3a 37 18.9+0.9 18.5+3.8 43.6 £10.4
DNMT3a 38 18.0+54 6.1+3.7 25.8+5.3
DNMT3a 43 34.0 +£18.6 81.3+44.3 39.9+9.9
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DNMT3a 45 10.1+5.1 42.6 +12.0 18.6+8.4

®Epi-target, epigenetic modulator target as idezdifior human cells/targets.

2.6 Plasmodiumspecific selectivity versus primary activated cells (splenic murine cells) and a

eukaryotic cell line (HFF)

To determine the selectivity Index (SI) of the eigelected compounds (Table 3),
cytotoxicity was assessed on murine splenic princatis as well as human foreskin fibroblasts
(HFF) and IG values were compared to those obtainedPfdal ciparum growth inhibition. As
shown in Table 4, all compounds showed S| >100rsgdhe parasites versus HFFs, except for
19 which displayed the lowest selectivity (SI = 3Zhe Sl against primary murine cells was
between 44 and >500, with the exception of the HDACSI = 9) and the G9a inhibitois and

19 (Sl = 23 and 21, respectively).

Table 4

Compound selectivity for parasite versus mammaielts.

Mammalian cells
Pf3D7
Epi-target® Compound Splenic cells HFF

IC 50 (NM) IC 50 (NM) si° IC 50 (NM) S

HDAC 1 42+04 785+ 78 186 3,295 + 247 783

HDAC 6 13.3+5.6 120 + 42 9 >10,000 >750
G9a 18 23.7+£6.172 555 + 177 23 4,997 + 355 211
G9a 19 68.7+1.4 1,440 £ 141 21 2,286 + 659 33
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DNMT3a 37 18.9+0.9 >10,000 >500 7,170 + 84 377

DNMT3a 38 18.0+54 800 + 141 44 3,215 + 389 178
DNMT3a 43 34.0+18.6 >10,000 >295 5,629 + 27 166
DNMT3a 45 10.1+£5.1 2,585 *+ 346 255 7,210 £ 14 712

®Epi-target, epigenetic modulator target as ideedifior human cells/target®S|, selectivity
index: mammalian cell 1§/P. falciparum ICso. “ICsovalues could not be precisely determined

(>10,000 nM) when the highest concentration usesl wed toxic for mammalian cells.

2.7. Pharmacokinetic analysis

Four compounds were further selected for PK studies HDAC inhibitor1 and the
DNMT inhibitors 37, 43 and 45 A (2-hydroxypropyl)B-cyclodextrin (HBCD)-based
formulation, suitable for both intravenous (iv) guel os (p.o.; oral) administration, was used for
PK studies. For each compound, two mice were adteirdd with a single dose (50 mg/kg 1or
43 and45, and 10 mg/kg foB7), either iv orp.o. by gavage. Plasma samples were analysed and
concentrations are summarized in Table 5. Compduadministered at a 50 mg/kg dose was
well tolerated. The 15 min iv samples showed highO( uM) 1 plasma concentration, but
decreasing rapidly with time. Theo. and iv plasma samples at 1 h post administratmwed
that the concentration df was between 0.5 and 2.2 uM and after 3 h betw8esnd 300 nM.
The 50 mg/kg dose @3 was well tolerated when administened. The same dose administered
iv was fatal for the mice. The two mice administevath 43 p.o. showed plasma concentrations
below 1 uM at all-time points. The 50 mg/kg dosetbfwas well tolerated when administered
p.o. However, the same dose administered iv led terseacute toxicity and death so that plasma

samples could not be collected. The two mice adstered with45 p.o. showed plasma
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concentrations of 1-5 pM at 30 and 60 min after iatstration. After 180 min, the plasma

concentration was 0.28-0.5 puM. The poor solubilify 37 only allowed a relatively low

concentration formulation (1 mg/mL) to be preparBue 10 mg/kg dose &7 was well tolerated

when administereg@.o. The two mice treated witB7 iv showed plasma concentrations of 1-5

UM at the 15 and 60 min, and ~ 0.5 uM after 180. hire two mice treated witB7 p.o. showed

very low plasma concentrations at all-time points.

Table 5

Pharmacokinetic parameters of the four selectedooomds administered intravenously or orally

to mice
Administration route
\Y per os
Compound/Dose
Time Concentration (uM) Time Concentration (uM)
(min) Mouse 1 Mouse 2  (min) Mouse 3 Mouse 4
15 15.2 10.7 30 2.43 0.67
1
60 2.16 1.67 60 0.90 0.48
50 mg/kg
180 0.044 0.043 180 0.30 0.070
15 3.41 5.11 30 0.13 0.12
37
60 1.11 0.93 60 0.28 0.10
10 mg/kg
180 0.22 0.46 180 0.03 0.03
15 30 0.38 0.94
43
60 Toxic 60 0.48 0.70
50 mg/kg
180 180 0.39 0.28
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15 30 4.57 3.43
45
60 Toxic 60 3.52 1.04
50 mg/kg
180 180 0.67 0.29

2.8. Invivo antimalarial activity in P. bergheinfected mice

For thein vivo experiments, the doses of the compounds wereeatkbn the basis of their high
potency, low toxicity and solubility for oral adnmstration that provide plasma concentrations
comparable to the Kgs obtainedin vitro. The oral efficacy of the four selected compounwds
examined using the Peters 4-day suppressive #kstGBoups of six BALB/c mice were infected
intraperitoneally (ip) with 1DP. berghei ANKA parasites and treated as depicted in Fig. @A.
day 4 post infection (pi), the peripheral bloodgsstemia of all mice in the treated groups was
compared to mice in vehicle control groups. Nondhaf mice administered with p.o. at 50
mg/kg, showed a significant reduction in parasieeas compared to control mice (Fig. 2B, EXxp.
1, p=0.229). As PK studies revealed that conceatraiofl are higher in the plasma after 15 and
60 min when administered {(#10.7 and>1.7 uM, respectively) compared pm. (>0.7 and>0.5
UM, respectively, Table 5) the efficacy bivas also assessed using a combination of oraivand
administration. However, this combined administnatroute (twice a day, oreo. and one iv),
was not effective on blood stage infection (Fig; ERp. 2).

Oral efficacy of37 was evaluated at 20 mg/kg because quality costuglies revealed that
37 presented some chemical instability and poor slitplat higher concentrations. At day 4 pi,
parasites were undetectable in Bitreated mice in two independent experiments wisetea
vehicle control group showed a parasitemia of ~8%h-84% in experiment 1 and 2, respectively

(Fig. 2C). However, parasites were detected ineéceanimals from day 6-7 pi (Supplementary
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material, Fig. S1A, Exp 1), suggesting that while 4-day treatment was able to delay the onset
of patent parasitemia, it was not sufficient toeconice. This is supported by data showing that an
additional treatment at day 5 pi extended the ggive effect (Fig. S1A, Exp 2).

When43 was administered at 50 mg/gRg. twice a day for four days, it was too toxic (four
mice died, the two remaining mice showed no paast day 4 pi but one more mouse died at
day 10 pi (data not shown)). WhéB was tested at 25 mg/lgo. twice a day for four days, no
adverse symptoms were observed and peripheral Ipaasitemia was not detectable in 4%
treated mice in two independent experiments condpreghe vehicle-treated mice (parasitemia
of ~6% and ~4% on day 4 pi in experiment 1 and espectively; Fig. 2D). Moreover,
parasitemia remained sub-patent until 14 days eixjperiment 1 and was ~2% in experiment 2
(Fig. S1C). Whert3 was evaluated at 10 mg/kg., mice treated twice a day for four days had
detectable parasites on day 4 pi, however parasitemas significantly lower (p<0.002)
compared to the control group (Fig. S1D).

With respect tal5, its oral administration at 50 mg/kg twice a day four days reduced
blood parasites at day 4 pi in two independent exnts (Fig. 2E). Indeed, infections were
sub-patent in mice treated widhb until day 8 pi and parasitemia remained lower th@®% until
the end of each experiment (vehicle control micched a parasitemia of ~58% and 31% in

experiment 1 and 2, respectively; Fig. S1B).
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Days DO D1 D2 D3 D4
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50 mg/kg, per os perosandi.v. 20 mg/kg, per os
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H - ] a,___ é:__— z g .
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control 1 control 1 con'tml 37 :on'trol 37
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25 mg/kg, per os 50 mg/kg, per os
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... . .
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.
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Fig. 2.1nvivo efficacy ofl, 37, 43 and45 in a murine malaria model. (A) Schematic overvigw
the experimental protocol (see Experimental in $&mppntary material). Parasitemia at day 4 pi
for the control-treated groups and for mice treateti compound: (B)L (50 mg/kg); (C)37 (20
mg/kg); (D) 43 (25 mg/kg); (E)45 (50 mg/kg). The data in panels B, C, D and E aeams+

SEM. Each data point represents one mouse.

3. Discussion and conclusion

In an effort to improve the development ifasmodium specific inhibitors of epigenetic
processes, we investigated the dtismodium activity of 51 potential inhibitors of histone and
DNA modifying enzymes. Our data demonstrate thghteof these compounds exhibit potent
activity against drug-sensitive and multidrug resis P. falciparum parasites and have low
toxicity towards mammalian control cells. Imporignthese compounds are anticipated to have

activity against a range of different eukaryoticgepetic enzymes.
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Among HDAC inhibitors,1 and6, the only two tested HDACI selective towards obssk
and IIb HDACs, emerged as the most potent compquwitis ICso values of 4.2 and 13.3 nM
against drug sensitive. falciparum 3D7 parasites and of 6.6 and 15.3 nM against tl& W
multidrug resistant line, respectively (Tables 1d &). Their analogue80-35, tested in the
following focused screening, showed a clear reduactof potency (Table 2). Since the
biochemical activity and selectivity &0-35 against the tested HDAC isoforms (Table S3 in
Supplementary material) were quite similar as tws¢éhofl and6, this drop of potency in 3D7
cells could be due to different cell permeabilingdéor pharmacokinetic properties.

Given the potential role df in inhibiting HDAC activity, the effect of this cgpound on
histone H4 acetylation iR. falciparum was tested. Compourt treatment (3 x 16;) caused
increased H4 acetylation (up to 2-fold comparepamsites treated with vehicle (0.05% DMSO)
only, data not shown), supporting the action ok tbompound through an inhibition &
falciparum HDAC activity, although these data cannot deteaminthis is a direct or indirect
effect. Sincel displayed low toxicity against murine and humati lbees (SI = 186 and 763,
respectively) as well as promising PK data, we a@raththe activity ofl in a rodent model of
malaria infection. Mice treated withdid not show any reduction of peripheral bloodagéemia
at day 4 pi or beyond, either after oral admintgtraor a combination of oral/iv injections. In
mice treated with the antimalarial control drugacbbuine (10 mg/kgp.o.) no blood stage
parasites were detected (not shown). The lacknofivo activity could not be linked to
differences in targeted HDAC enzymes as they atbosaserved betweeR. falciparum andP.
berghei (60 up to 95% peptide sequence identity). Theifaibf1 to cure mice at doses up to 50
mg/kg twice a day may be due to a too short exgostiparasites to the compound even after a
4-day treatment or a lack of exposure due to bopdihl to plasma proteins as its free fraction

was not evaluated. Another possibility may be thdierghei is less sensitive to the inhibitors as
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a result of functional HDAC redundancy and/or dt#y control of target expression. However,
in the context of hydroxamate HDAC inhibitors, & moteworthy that other studies have also
reported high potenciem vitro, but poor antimalarial activities im vivo murine models
[19,22,85,86].

In our primary screen, among the HMT inhibitorstées only the two G9a inhibitor8
and19 displayed high levels of parasite growth inhibitiwith 1Cso values of 20.8 and 67.9 nM,
respectively, as expected (Table 1). Nevertheld®s;, showed general low selectivity for the
parasite versus mammalian cells (Table 4). The huDBMT3a-selective inhibito28 [40]
showed an I value of 325.5 nM against drug-sensitRefalciparum parasites (Table 1). The
tested28 analogues revealed lowersralues thar28, the most effective beingp-38, 43 and45
(ICsp values ranging between 33.6 and 10.1 nM, Tabl&t#k increased potency could be linked
to the insertion of a methoxy group at the C6 parsiof the quinazoline ring3{, 38, 43, 45 and
a further methoxy37, 39, benzyloxy 43) or hydroxy 45) group at C7. In addition, whilé3
and45 maintained thé-phenylpiperazine group at quinazoline C2 andNHzenzylpiperidyl-4-
amino moiety at quinazoline C4 positid36-38 displayed a 4-fluorobenzylamino substituent at
C2 and a N-4-methoxyphenylethylpiperidinyl-4-amino 3¢ 38 or a tert-
butoxycarbonylpiperidinyl-4-amind{) group at C4. Importanth37, 43 and45 were also potent
against the multidrug-resistant W2 line Ief falciparum (Table 3) and were parasite-selective
inhibitors (Table 4).

To further explore the capability of these DNMT iipitors to impact EDNMT, we
examined their activity using parasite extracts ammbmmercially available fluorimetric assay.
However, as a result of very low signals in unedasamples these experiments were unable to
discriminate between DNMT activities present inraated extracts versus treated parasites (data

not shown). Nevertheless, the high potency andctelty of these compounds led us to
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investigate their efficacyn vivo. After four or five oral doses, the parasitemiantute treated
with 37 (20 mg/kg) was still below the limit of detection day 6 pi with a significant reduction
apparent up to day 11 pi. As the PKmd. administeredd3 and45 indicated that parasiticidal
plasma concentrations of these compounds can bevachin mice,in vivo anti-plasmodial
experiments were performed. Both compounds weneddo be equally effective by oral route in
mice infected withP. berghei. No blood-stage parasites were detected at dayid qny of the
mice treated with these compounds (Fig. 2D and PEhe case 043, a dose of 25 mg/kg, twice
a day for four days, was sufficient to reduce peeagrowth at day 4 pi to below our detection
limits. For 45, oral efficacy was observed according to the seggve Peters 4-day test at 50
mg/kg twice a day for four days without any toxfteets. The lack ofn vivo toxicity of 45 may
be associated, at least in part, to the deletioth@fbenzyl group present 48. Regarding the
absence of blood parasites up to 15 days piJlikesy that this compound is highly active and/or
potential metabolites could be produced that reraaiive againsP. berghei.

In conclusion, our studies on the DNMT inhibit@&8 43 and45 indicate potent activities
against blood stage parasites, including multi-dregjstant parasites, and showed that these
compounds, given by oral route, are highly activamnimal models of malaria, contributing to

the indispensable research of new antimalarialtageith new lead-like molecules.
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Highlights
» Eighteen new compounds showed potent activity against P. falciparum
* Pharmacokinetic studies allowed selecting of four compounds for inin vivo studies

* Three DNMT3ainhibitors showed oral efficacy in the murine malaria model



