

pubs.acs.org/OrgLett

Letter

Gold-Catalyzed Oxidative Cyclization Involving Nucleophilic Attack to the Keto Group of α, α' -Dioxo Gold Carbene and 1,2-Alkynyl Migration: Synthesis of Furan-3-carboxylates

Ali Wang, Mingduo Lu, and Yuanhong Liu*

ABSTRACT: A multicomponent strategy for the synthesis of functionalized furan-3-carboxylates based on gold-catalyzed oxidative cyclization of diynones with alcohols or water has been developed. Mechanistic studies revealed that a rare nucleophilic attack to the carbonyl group of the α , α' -dioxo gold carbene instead of the carbene center and 1,2-alkynyl group migration were involved in this transformation. This method offers several advantages such as mild conditions, high regio- and chemoselectivity, and wide functional group compatibility.

T he furan rings widely occur as key structural subunits in numerous natural products, pharmaceuticals, and flavor and fragrance compounds,¹ and they are also useful and versatile synthetic intermediates for access to heterocyclic and acyclic compounds.² Especially, substances containing a furan-3-carboxylate core display a broad range of pharmacological activities.³ For example, dihydroxypyrrolidine-linked furan is a selective β -galactosidase inhibitor;^{3a} S-linked fucosides show affinity toward E- and P-selectins;^{3b} providencin displayed modest in vitro cytotoxicity against MCF7 breast cancer;^{3c} and (+)-wortmannin is a potent PI3K inhibitor^{3d} (Figure 1). While numerous strategies for the synthesis of furans have been developed, the efficient routes to furan-3-carboxylates are still limited. Frequently used methods for these compounds are direct functionalization of furan-3-carboxylates.⁴ Recently, a variety of transition-metal-catalyzed reactions have emerged as

Figure 1. Typical examples of biologically active furan-3-carboxylates.

convenient protocols, ^{5a-h} such as gold-catalyzed cycloisomerization of ester-bearing enynes^{5a} or propargyl vinyl ethers, ^{5b} gold-catalyzed reactions of 1,3-dicarbonyl sulfonium ylides and alkynes, ^{5c} Pd-catalyzed oxidative cyclizations, ^{5d} Cu- or Cocatalyzed [3 + 2] cycloaddition of α -diazocarbonyls with enamines^{5e} or alkynes, ^{5f,g} silver-mediated oxidative cyclization of 1,3-dicarbonyl compounds with terminal alkynes, ^{5h} etc. ⁵ However, these protocols usually suffer from the drawbacks such as narrow substrate scope, utilization of prefunctionalized acyclic compounds as the substrates, limited structure diversity of the products etc. Therefore, the development of novel and efficient approaches to furan-3-carboxylates with wide substrate scope and diverse substitution patterns from easily available building blocks is highly desirable.

In recent years, gold-catalyzed oxygen transfer reactions using pyridine/quinoline *N*-oxides, sulfoxides, or nitrones as the oxidants have emerged as efficient methodologies for the construction of carbo- or heterocycles.⁶ In most cases, the highly electrophilic α -oxo gold carbene intermediates are

Received: July 17, 2021

formed, which can be captured by nucleophiles to initiate the cascade reactions. A particularly attractive strategy for the generation of α , α' -dioxo gold carbenes is based on the use of ynones or propiolaldehydes as the substrates due to the enhanced electrophilicity and regioselectivity arising from the polarized triple bond (Scheme 1a). In principle, both of the

Scheme 1. Gold-Catalyzed Oxidative Reactions of Ynones

two keto groups and gold-carbene moiety can serve as an electrophilic center and would be attacked by a nucleophile. However, most of the reactions involve nucleophilic attack to gold carbenes (path a) 7 (Scheme 1b), and the selective attack to the keto groups remains a great challenge. During our ongoing project on gold-catalyzed reactions of ynones,^{8,9} we envisioned that the use of diynones may have an important impact on the reaction pathways, which may allow the efficient attack of the nucleophile to the C-3 keto group (path b) due to the high reactivity and less steric hindrance of this site (Scheme 1c). Herein, we disclosed that the expected reactivity could be achieved using diynones as the substrates, enabling efficient access to furan-3-carboxylates or furan-3-carboxylic acids with wide structural diversity through gold-catalyzed oxidative cyclization of conjugated diynones with alcohols or water. Interestingly, a selective 1,2-alkynyl vs 1,2-Nu shift to gold carbene was also observed (Scheme 1c). It is noted that the intermolecular reactions of the gold carbene species with external nucleophiles are quite rare.

The requisite diynones can be easily prepared by Cadiot– Chodkiewicz cross-coupling of propargyl alcohols with alkynyl bromide¹¹ followed by oxidation. To study the feasibility of the hypothesis, we initially investigated the gold-catalyzed oxidative reaction of 1,5-diphenylpenta-2,4-diyn-1-one **1a** using cinnamyl alcohol **3a** as the nucleophile in the presence of 3,5-dichloropyridine *N*-oxide **2a**. Gratifyingly, furan-3carboxylate **4a** with blue fluorescence could be formed in 23% yield using 5 mol % of PPh₃AuNTf₂ as the catalyst in DCE at 80 °C for 6 h (Scheme 2, entry 1). The use of Johnphos Au(MeCN)SbF₆ (catalyst A) improved the yield of **4a** to 63% (entry 2). However, the use of a gold complex with a more crowded ligand such as ^tBuXphos (catalyst B) led to

Scheme 2. Optimization Studies

O Ph 1a	+ <i>N</i> -oxide 2 (2.0 equ Ph	+ Ph iv) 3a (2.0 er	OH 5 mol OH solv	% Au catalys bl% Ag cataly: ent, temp. 6 h	Ph st Ph	4a
	^{(Bu} \exists \exists \exists d			+ N O 2b	+ N O 2c	+ N O 2d
entry	Au catalyst	Ag catalyst	N-oxide	solvent	temp.	yield (%) ^a
1	PPh ₃ AuNTf ₂	-	2a	DCE	80	23
2	Α	-	2a	DCE	80	63
3	в	-	2a	DCE	80	20
4	AuBr ₃	-	2a	DCE	80	9
5	IPrAuNTf ₂	-	2a	DCE	80	77
6	IPrAuCl	AgNTf ₂	2a	DCE	80	58
7	IPrAuCl	AgOTs	2a	DCE	80	65
8	IPrAuCl	$AgBF_4$	2a	DCE	80	52
9^b	IPrAuNTf ₂	-	2a	DCE	80	73
10	IPrAuNTf ₂	-	2a	DCE	60	82
11	IPrAuNTf ₂	-	2b	DCE	60	9% ^c
12	IPrAuNTf ₂	-	2c	DCE	60	18%
13	IPrAuNTf ₂	-	2d	DCE	60	22% ^c
14	IPrAuNTf ₂	-	2a	MeCN	60	12
15	IPrAuNTf ₂	-	2a	toluene	60	65
16	IPrAuNTf ₂	-	2a	THF	60	4
17	-	-	2a	DCE	60	0
18	-	AgNTf ₂	2a	DCE	60	0
19 ^d	IPrAuNTf ₂	-	2a	DCE	60	44

^{*a*}The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}1.0 equiv of **2a**, and 1.0 equiv of **3a** were used. ^{*c*}Isolated yields. ^{*d*}2 mol% of IPrAuNTf₂ was used, and the reaction was stirred for 20 h.

only 20% yield of 4a (entry 3). AuBr₃ was significantly less efficient (entry 4). Among the screened gold catalysts, the Nheterocyclic carbene gold(I) complex showed higher activity, and 77% of 4a could be achieved using IPrAuNTf₂ as the catalyst (entry 5). When the reaction was carried out with 5 mol % of IPrAuCl and 10 mol % of AgNTf₂, the yield of 4a decreased to 58% (entry 6). Activation of IPrAuCl by other silver salts such as OTs or BF4 was less effective (entries 7 and 8). To our delight, 82% of 4a was obtained through decreasing the reaction temperature to 60 °C (entry 10). Other N-oxides showed lower reactivity (entries 11-13). The solvent screening (MeCN, toluene, and THF) indicated that toluene was also suitable for this reaction (entries 14-16). In the absence of a gold catalyst, no desired product was formed (entry 17). The use of AgNTf₂ also failed to give the desired product (entry 18).

With the optimized reaction conditions in hand, we next examined the substrate scope. A broad range of diynones with different \mathbb{R}^1 or \mathbb{R}^2 groups were compatible for this reaction. First, we checked the effects of the \mathbb{R}^1 group at the alkyne terminus on this reaction. For aryl alkynes, whenever it bears electron-donating groups (*p*-^tBu, *p*-OMe) or electron-withdrawing groups (*p*-F, *p*-Br, and *p*-CO₂Me), all worked very well to afford **4b**-**4f** in 67-81% yields (Scheme 3). Notably, sterically encumbered *o*-Me-aryl alkyne transformed into product **4g** in excellent yield within 10 h. 2-Naphthylsubstituted diynone proceeded efficiently (**4h**). The reaction with thienyl-substituted diynone was also suitable (**4i**). Alkenyl-substituted substrate afforded **4j** in moderate yield. A

Scheme 3. Substrate Scope of Diynones

variety of alkyl-substituted diynones cyclized smoothly. For example, normal alkyl, phenylethyl, tert-butyl, and cyclopropyl groups were all compatible to give 4k-4n in 45-80% yields. Next, we examined the effects of the R² group on the keto moiety. The electronic properties of the R^2 group were explored. Aryl ketones with p-Me, p-Cl, p-Ph, m-Br, and o-F groups on the aryl rings all could be used as effective substrates for this reaction (40-4s). It is noted that when *m*-Br- or *o*-Fsubstituted ketones were used as the substrates higher yields of 4r-4s (80-94%) were obtained, possibly due to the enhanced reactivity of diynones by these electron-withdrawing groups. 2-Naphthyl-substituted ketone reacted smoothly (4t). However, with a 9-phenanthrenyl substituent, the desired 4u was formed in only 46% yield. This is possibly due to the steric effect of the 9-phenanthrenyl group, and the substrate bearing the 2-furanyl group led to 2,2'-difuran 4v in 65% yield. The reaction was also applicable to alkenyl- or dienyl-substituted substrates, which provided 4w-4x in 62% and 40% yields, respectively. The alkyl ketone could also be used, leading to 4y in 45% yield. The structure of 4i was confirmed by X-ray crystallographic analysis.

We next turned our attention to explore the scope of alcohols using 1a as the reaction partner (Scheme 4). We found that in the case of common alcohols the use of 5 mol % of IPrAuCl and 10 mol % of $AgSbF_6$ as the catalyst in the

Scheme 4. Substrate Scope of Alcohols

condition A: 2.0 equiv 2a, 5.0 equiv ROH, 5 mol% IPrAuCI, 10 mol% AgSbF₆, DCE, 80 °C.

presence of 5 equiv of alcohols afforded the best results. Under these reaction conditions, a large variety of alcohols could be used as effective nucleophiles for this reaction. For example, primary alcohols such as methanol, cyclopropylmethanol, or 2ethoxyethan-1-ol reacted with 1a smoothly to afford 5a-5c in good to high yields. Secondary alcohols were found to also be perfect substrates. For example, isopropanol, cyclododecanol, and 2-adamantanol transformed to 5d-5f successfully. In addition, a natural product of cholesterol was proved to be a suitable substrate (5g). The reaction proceeded well with tertiary alcohol such as 2-methylpropan-2-ol (5h). Benzyl alcohol delivered the desired product 5i in 76% yield. The use of phenol or 4-iodophenol as a nucleophile delivered 5j-5k in 52-71% yield. Alkyl allylic alcohols such as crotonyl alcohol and geraniol could be efficiently incorporated into the products (5l-5m). In addition, water could also be used as the nucleophile, and 2,5-diphenylfuran-3-carboxylic acid 6 was formed in 56% yield. Phenylhydroxamic acid reacted smoothly with 1a to give 7 in 65% yield. These results demonstrate the synthetic utility of this methodology.

To understand the reaction mechanism, various control experiments were carried out. It was known that ynones could undergo 1,3-oxygen transposition under gold catalysis.¹² Treatment of **1c** or **1l** with 5 mol % of IPrAuNTf₂ resulted in no formation of the transposed products via mono or double 1,3-oxygen transposition. Thus, it is likely that 1,3-oxygen transposition is not involved in our reaction (Scheme 5, eq 1). To learn if the α, α' -dioxo gold carbene intermediate is

Scheme 5. Control Experiments

involved or not in this reaction, we synthesized 2-diazo-1,3dione 8. The reaction of 8 with allylic alcohol 3a under the standard conditions afforded the same product 4a in 23% yield, indicating that possibly the reaction proceeds via an $\alpha_{,\alpha'}$ -dioxo gold carbene (Scheme 5, eq 2). When ynone 9 was used instead of diynone 1a, the product 10 was formed via nucleophilic attack of MeOH to gold carbene followed by 1,2aryl migration (Scheme 5, eq 3). The results suggest that in the reactions of diynones with alcohols a 1,2-alkynyl migration might also be involved. To understand the deauration process, the cyclization of 1a with 5.0 equiv of CD₃OD was performed. Furan 4a-d with significant deuterium incorporation at the C-4 position was observed (Scheme 5, eq 4). These results strongly support the formation of a C-4-aurated furan intermediate. An ¹⁸O-labeling experiment with ¹⁸O-labeled substrate ¹⁸O-1a was also performed. It converted to the corresponding furan ¹⁸O-4a in 75% yield, in which the ¹⁸O label is located at oxygen of the furan ring, indicating that this oxygen atom comes from the diynone (Scheme 5, eq 5).

Based on the above results, a plausible reaction mechanism is given in Scheme 6. Initially, alkyne activation by gold occurs to afford a π -alkyne gold complex, which is attacked by *N*oxide regioselectively to give an alkenyl gold intermediate 11. 11 fragmentizes into the α, α' -dioxo gold carbene species 12 via N-O bond cleavage. Subsequent nucleophilic attack of the alcohol to the highly electrophilic carbonyl group adjacent to the alkyne moiety generates intermediate 13. This is followed by 1,2-alkynyl migration (pinacol type) to give intermediate 14, which might be in equilibrium with 15 due to the proton shuttle between two carbonyls. Deauration of 15 affords enol intermediate 16. Then Z/E isomerization followed by nucleophilic attack of the oxygen to alkyne and protodeauration lead to the furan products and regenerates the gold catalyst.

Scheme 6. Plausible Reaction Mechanism

In summary, we have developed a new and multicomponent strategy for the synthesis of functionalized furan-3-carboxylates based on gold-catalyzed oxidative cyclization of diynones with alcohols or water. Mechanistic studies revealed that a rare nucleophilic attack to the carbonyl group of the α,α' -dioxo gold carbene and 1,2-alkynyl group migration were involved as the key steps for this transformation. This method offers several advantages such as mild reaction conditions, high regioselectivity, wide functional group compatibility, and easily accessible starting materials. Further applications of this chemistry with a wide range of nucleophiles are in progress.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c02389.

Experimental details and spectroscopic characterization of all new compounds, (PDF)

Accession Codes

CCDC 2091384–2091385 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Yuanhong Liu – State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; orcid.org/ 0000-0003-1153-5695; Email: yhliu@sioc.ac.cn

Authors

- Ali Wang State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Mingduo Lu State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis,

Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c02389

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Key Research and Development Program (2016YFA0202900), the Science and Technology Commission of Shanghai Municipality (18XD1405000), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000) for financial support.

REFERENCES

(1) (a) Elbandy, M.; Shinde, P. B.; Dang, H. T.; Hong, J.; Bae, K. S.; Jung, J. H. J. Furan Metabolites from the Sponge-Derived Yeast *Pichia membranifaciens. J. Nat. Prod.* **2008**, *71*, 869–872. (b) Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono; Berg, A.; Grafe, U. New Macrolides and Furan Carboxylic Acid Derivative from the Sponge-Derived Fungus Cladosporium herbarum. *J. Nat. Prod.* **2001**, *64*, 527–530. (c) Riley, A. P.; Groer, C. E.; Young, D.; Ewald, A. W.; Kivell, B. M.; Prisinzano, T. E. Synthesis and κ -Opioid Receptor Activity of Furan-Substituted Salvinorin A Analogues. *J. Med. Chem.* **2014**, *57*, 10464– 10475.

(2) Heaney, H.; Ahn, J. S. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, pp 297–436.

(3) (a) Moreno-Vargas, A. J.; Demange, R.; Fuentes, J.; Robina, I.; Vogel, P. Synthesis of [(2*S*,3*S*,4*R*)-3,4-Dihydroxypyrrolidin-2-yl]-5-methylfuran-4-carboxylic Acid Derivatives: New Leads as Selective-Galactosidase Inhibitors. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2335–2339. (b) Moreno-Vargas, A. J.; Molina, L.; Carmona, A. T.; Ferrali, A.; Lambelet, M.; Spertini, O.; Robina, I. Synthesis and Biological Evaluation of S-Neofucopeptides as E- and P-Selectin Inhibitors. *Eur. J. Org. Chem.* **2008**, *2008*, 2973–2982. (c) Marrero, J.; Rodríguez, A. D.; Baran, P.; Raptis, R. G. Isolation and Structure of Providencin:A Highly Oxygenated DiterpenePossessing a UniqueBicyclo[12.2.0]-hexadecane Ring Systemfrom the Sea Plume Pseudopterogorgiakallos. *Org. Lett.* **2003**, *5*, 2551–2554. (d) Guo, Y.; Quan, T.; Lu, Y.; Luo, T. Enantioselective Total Synthesis of (+)-Wortmannin. *J. Am. Chem. Soc.* **2017**, *139*, 6815–6818.

(4) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Regioselective Palladium-Catalyzed Arylation of 3-Carboalkoxy Furan and Thiophene. *Org. Lett.* **2003**, *5*, 301–304.

(5) (a) Li, E.; Yao, W.; Xie, X.; Wang, C.; Shao, Y.; Li, Y. Goldcatalyzed efficient synthesis of 2,4-disubstituted furans from aryloxyenynes. Org. Biomol. Chem. 2012, 10, 2960-2965. (b) Suhre, M. H.; Reif, M.; Kirsch, S. F. Gold(I)-Catalyzed Synthesis of Highly Substituted Furans. Org. Lett. 2005, 7, 3925-3927. (c) Huang, X.; Peng, B.; Luparia, M.; Gomes, L. F. R.; Veiros, L. F.; Maulide, N. Gold-Catalyzed Synthesis of Furans and Furanones from Sulfur Ylides. Angew. Chem., Int. Ed. 2012, 51, 8886-8890. (d) Ruengsangtongkul, S.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J.; Ruchirawat, S. Rate Enhancement in CAN-Promoted Pd(PPh₃)₂Cl₂-Catalyzed Oxidative Cyclization: Synthesis of 2-Ketofuran-4-carboxylate Esters. Org. Lett. 2019, 21, 2514-2517. (e) Jiang, Y.; Khong, V. Z. Y.; Lourdusamy, E.; Park, C. Synthesis of 2-aminofurans and 2unsubstituted furans via carbenoid-mediated [3 + 2] cycloaddition. Chem. Commun. 2012, 48, 3133-3135. (f) Zhao, L.; Guan, Z.; Han, Y.; Xie, Y.; He, S.; Liang, Y. Copper-Catalyzed [4 + 1] Cycloadditions of α , β - Acetylenic Ketones with Diazoacetates to Form Trisubstituted Furans. J. Org. Chem. 2007, 72, 10276-10278. (g) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.; Zhang, X. P.

Regioselective Synthesis of Multisubstituted Furans via Metalloradical Cyclization of Alkynes with α -Diazocarbonyls: Construction of Functionalized α -Oligofurans. J. Am. Chem. Soc. **2012**, 134, 19981–19984. (h) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. Silver-Mediated Oxidative C-H/C-H Functionalization: A Strategy To Construct Polysubstituted Furans. J. Am. Chem. Soc. **2012**, 134, 5766–5769. For AlCl₃-catalyzed reaction of aliphatic aldehydes and 1,3-dicarbonyl compounds in the presence of NBS, see: (i) Huang, W.; Liu, C.; Gu, Y. Auto-Tandem Catalysis-Induced Synthesis of Trisubstituted Furans through Domino Acid-Acid-Catalyzed Reaction of Aliphatic Aldehydes and 1,3-Dicarbonyl Compounds by using *N*-Bromosuccinimide as Oxidant. Adv. Synth. Catal. **2017**, 359, 1811–1818.

pubs.acs.org/OrgLett

(6) For a review see: Zhang, L. A Non-Diazo Approach to α - Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation. *Acc. Chem. Res.* **2014**, 47, 877–888.

(7) (a) Qian, D.; Hu, H.; Liu, F.; Tang, B.; Ye, W.; Wang, Y.; Zhang, J. Gold(I)-Catalyzed Highly Diastereo- and Enantioselective Alkyne Oxidation/ Cyclopropanation of 1,6-Enynes. Angew. Chem., Int. Ed. 2014, 53, 13751-13755. (b) Wang, Y.; Zheng, Z.; Zhang, L. Intramolecular Insertions into Unactivated C(sp3)-H Bonds by Oxidatively Generated β -Diketone- α -Gold Carbenes: Synthesis of Cyclopentanones. J. Am. Chem. Soc. 2015, 137, 5316-5319. (c) Ji, K.; Yang, F.; Gao, S.; Tang, J.; Gao, J. Gold-Catalyzed Oxidation/C-H Functionalization of Ynones: Efficientand Rapid Access to Functionalized Polycyclic Salicyl Ketones. Chem. - Eur. J. 2016, 22, 10225-10229. (d) Xu, Y.; Wang, Q.; Wu, Y.; Zeng, Z.; Rudolph, M.; Hashmi, A. S. K. Adv. Synth. Catal. 2019, 361, 2309-2314. For other papers see: (e) Li, J.; Xing, H.; Yang, F.; Chen, Z.; Ji, K. Gold(III)-Catalyzed Regioselective Oxidation/Cycloisomerization of Diynes: An Approach to Fused Furan Derivatives. Org. Lett. 2018, 20, 4622-4626. (f) Hamada, N.; Yamaguchi, A.; Inuki, S.; Oishi, S.; Ohno, H. Gold(I)-Catalyzed Oxidative Cascade Cyclization of 1,4-Diyn-3-ones for the Construction of Tropone-Fused Furan Scaffffolds. Org. Lett. 2018, 20, 4401-4405.

(8) (a) Chen, Y.; Xu, W.; Xie, X.; Pei, M.; Lu, M.; Wang, Y.; Liu, Y. Gold-Catalyzed Spirocyclization of Furan-ynones and Unexpected Skeleton Rearrangement of the Resulting Spirohydrofurans. *Org. Lett.* **2021**, *23*, 1090–1095. For nucleophilic attack to the carbonyl group of α -keto, α' -imino gold carbene, see: (b) Wang, A.; Hu, X.; Xie, X.; Liu, Y. Cascade Skeletal Rearrangement of Gold Carbene Intermediates: Synthesis of Medium-Sized Pyrimidine-Fused Benzolactones. *Adv. Synth. Catal.* **2021**, *363*, 3769–3774.

(9) For our recent papers involving gold-catalyzed oxidative cyclizations, see: Gold/Lewis acid-catalyzed oxidative cyclization involving activation of nitriles. (a) Wang, A.; Xie, X.; Zhang, C.; Liu, Y. *Chem. Commun.* **2020**, *56*, 15581–15584. (b) Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y. Gold-Catalyzed Oxidative Cyclizations of {o-(Alkynyl)phenylpropargyl} Silyl Ether Derivatives Involving 1,2-Enynyl Migration: Synthesis of Functionalized 1*H*-Isochromenes and 2*H*-Pyrans. *Org. Lett.* **2018**, *20*, 5461–5465. (c) Zhao, J.; Liu, J.; Xie, X.; Li, S.; Liu, Y. Gold-Catalyzed Synthesis of Tropone and Its Analogues via Oxidative Ring Expansion of Alkynyl Quinols. *Org. Lett.* **2015**, *17*, 5926–5929.

(10) (a) He, W.; Li, C.; Zhang, L. An Efficient [2 + 2+1] Synthesis of 2,5-Disubstituted Oxazoles via Gold-Catalyzed Intermolecular Alkyne Oxidation. J. Am. Chem. Soc. **2011**, 133, 8482–8485. (b) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. Tempering the Reactivities of Postulated α -Oxo Gold Carbenes Using Bidentate Ligands: Implication of Tricoordinated Gold Intermediates and the Development of an Expedient Bimolecular Assembly of 2,4-Disubstituted Oxazoles. J. Am. Chem. Soc. **2012**, 134, 17412–17415. (c) Ji, K.; Zhao, Y.; Zhang, L. Optimizing P,N-Bidentate Ligands for Oxidative Gold Catalysis: Efficient Intermolecular Trapping α -Oxo Gold Carbenes byCarboxylic Acids. Angew. Chem., Int. Ed. **2013**, 52, 6508–6512. (d) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. Gold-Catalyzed 1,2 - Difunctionalizations of Aminoalkynes Using Only N- and O-Containing Oxidants. J. Am. Chem. Soc. **2011**, 133, 15372–15375. (e) Zeng, X.; Liu, S.; Shi, Z.;

Liu, G.; Xu, B. Synthesis of a-Fluoroketones by Insertion of HF into a Gold Carbene. *Angew. Chem., Int. Ed.* **2016**, *55*, 10032–10036.

(11) Chen, J.; Fan, G.; Liu, Y. Stereoselective synthesis of enynones via base-catalyzed isomeriza-tion of 1,5-disubstituted-2,4-pentadiynyl silyl ethers or their alcohol derivatives. *Org. Biomol. Chem.* **2010**, *8*, 4806–4810.

(12) Shiroodi, R. K.; Soltani, M.; Gevorgyan, V. Gold-Catalyzed 1,3-Transposition of Ynones. J. Am. Chem. Soc. 2014, 136, 9882–9885.