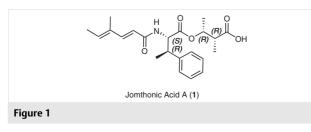

Syn lett

First Total Synthesis of Jomthonic Acid A¹

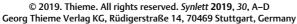
Mohan Dumpala Batthula Srinivas Palakodetv Radha Krishna*©

D-211, Discovery Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India prkgenius@iict.res.in



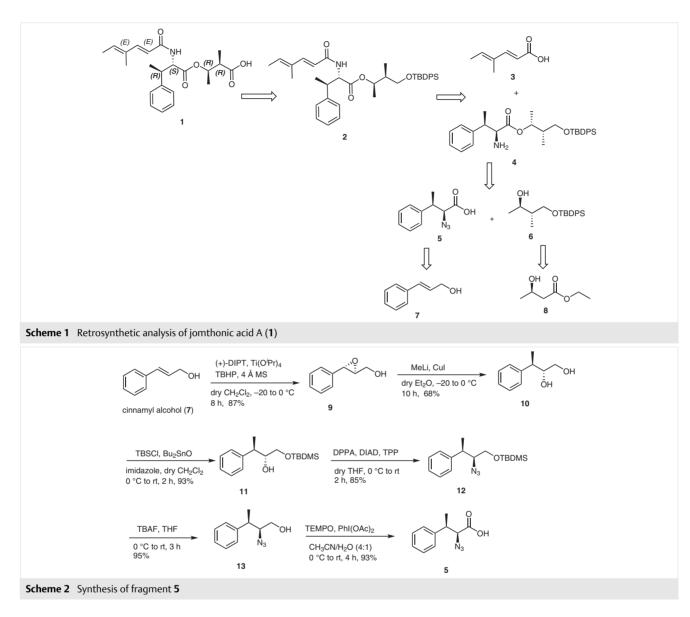
Received: 14.10.2019 Accepted after revision: 07.11.2019 Published online: 29.11.2019 DOI: 10.1055/s-0039-1691503; Art ID: st-2019-d0549-I

Abstract A stereoselective total synthesis of jomthonic acid A is described. The key features of the synthetic strategy are a Sharpless asymmetric epoxidation, a Gilmann reagent-induced methylation, a Mitsunobu reaction, a Yamaguchi esterification, and an *O*-(benzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium tetrafluoroborate (TBTU)-mediated amide coupling. Jomthonic acid A is an architecturally rare amino acid containing a β -methylphenylalanine residue and a 4-methyl-(2*E*,4*E*)-hexa-2,4-dienoate moiety. It shows antidiabetic and antiatherogenic activities when tested against mouse ST-13 preadiopocytes.

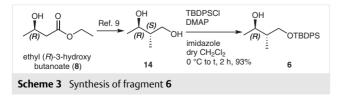

Key words Gilmann reaction, Mitsunobu reaction, Yamaguchi esterification, amide coupling, total synthesis, jomthonic acid A

Actinomycetes are a major source of structurally diverse secondary metabolites that exhibit antagonism to Grampositive bacteria. Igarashi and co-workers recently reported the isolation and characterization of the modified amino acid derivative jomthonic acid A (1; Figure 1) from the culture broth of a soil-derived actinomycete of the genus *Streptomyces* sp. BB47.² Compound 1 contains four stereocenters and several unusual structural features, such as the 4-methyl-(2*E*,4*E*)-hexa-2,4-dienoate and β-methylphenylalanine fragments. Jomthonic acid A exhibits antidiabetic and antiatherogenic activities against mouse ST-13 preadiopocytes and it also inhibits the differentiation of preadipocytes into mature adipocytes at 2–50 μ M.

In continuation of our interest in the total synthesis of bioactive natural products,³ we have developed a convergent synthesis of jomthonic acid A (1). Our retrosynthetic analysis of 1 (Scheme 1) suggested that it might be derived from the amido ester 2 through deprotection followed by oxidation. Compound 2 might be prepared from 4-methylhexa-2,4-dienoic acid (3) and amino ester 4 through amide coupling.⁴ Compound 4 might be assembled from azide 5 and alcohol 6 under Yamaguchi conditions.⁵ Compound 5 might, in turn, be obtained from *trans*-cinnamyl alcohol (7) by epoxidation, regioselective ring opening of the epoxide with the Gilmann reagent, and Mitsunobu reaction followed by oxidation. Likewise, alcohol 6 might be obtained by Frater–Seebach alkylation of ethyl (3*R*)-3-hydroxybuta-noate.⁶

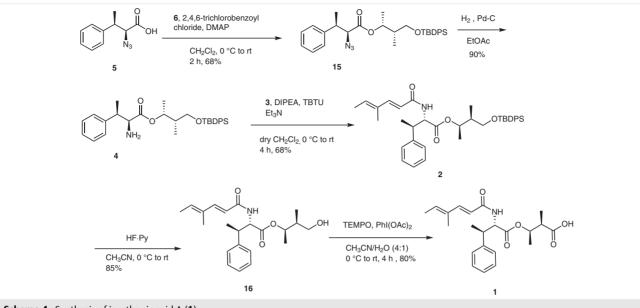

Our synthetic approach began with commercially available trans-cinnamyl alcohol (7; Scheme 2). This was converted into the chiral epoxy alcohol 9 in 87% yield by Sharpless asymmetric epoxidation. Regioselective ring opening of epoxide 9 with the Gilmann reagent gave diol 10 in 68% yield.⁷ Next, selective protection of the primary hydroxy group of 1,2-diol 10 by TBDMSCl/imidazole/Bu₂SnO in CH_2Cl_2 at 0 °C for two hours gave silyl ether **11** in 93% yield. Subsequently, 11 was converted into the corresponding azide 12 in 85% yield under Mitsunobu conditions by using diphenyl phosphorazidate (DPPA) and DIAD in anhydrous THF at 0 °C to room temperature.^{8,9} Subsequent deprotection of silvl ether 12 with TBAF in THF afforded alcohol 13 (95% yield).¹⁰ The purity of compound **13** was determined by LC/MS analysis, and the diastereomeric excess was found to be 98% (see Supporting Information). Compound 13, on further oxidation with TEMPO and PhI(OAc)₂ in CH₂Cl₂-H₂O (4:1) gave acid 5 in 93% yield.¹¹

Synlett


M. Dumpala et al.

Letter

В


In parallel, compound **6**, required for the Yamaguchi esterification, was prepared from commercially available ethyl (3R)-3-hydroxybutanoate (**8**; Scheme 3). Frater–Seebach alkylation of **8** gave 1,3-diol **14**.^{6,12} Selective protection of the primary hydroxy group of this 1,3-diol with TBDP-SCl/imidazole/Bu₂SnO in CH₂Cl₂ at 0 °C to room temperature gave silyl ether **6** in 93% yield.

Having both coupling partners in hand, we performed a Yamaguchi esterification of acid **5** with silyl ether **6** to give the azide derivative **15** in 68% yield (Scheme 4).^{5,13} Reduction of azide **15** with H₂ (1 atm) over Pd/C gave amine **4** in 90% yield. Compound **2** was obtained in 68% yield by *O*-(benzotriazol-1-yl)-*N*,*N*,*V*',*N*'-tetramethyluronium tetrafluoroborate (TBTU)-mediated coupling of amine **4** with acid **3**, prepared from tiglic aldehyde by a reported procedure.^{4,14} Subsequently, the silyl group was removed by treatment with HF·Py in CH₃CN at 0 °C to room temperature to afford the alcohol **16** in 85% yield.¹⁵ Finally oxidation of **16** with TEMPO and PhI(OAc)₂ in CH₂Cl₂–H₂O (4:1) gave the target compound **1**. Spectroscopic data for this product were consistent with the reported values.²

Synlett

M. Dumpala et al.

С

Scheme 4 Synthesis of jomthonic acid A (1)

In conclusion, the first stereoselective total synthesis of jomthonic acid A was achieved by a convergent approach with an 8.0% overall yield by employing a Sharpless asymmetric epoxidation, a Gilmann reaction, a Mitsunobu azidation, hydrogenation, a Yamaguchi esterification, and amide coupling as the key steps.

Acknowledgment

M.D. and B.S are grateful to the UGC, New Delhi for the financial support in the form of fellowships.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691503.

References and Notes

- (1) Communication No. IICT/Pubs./2019/237.
- (2) (a) Igarashi, Y.; Yu, L.; Ikeda, M.; Oikawa, T.; Kitani, S.; Nihira, T.; Bayanmunkh, B.; Panbangred, W. J. Nat. Prod. 2012, 75, 986.
 (b) García-Salcedo, R.; Álvarez-Álvarez, R.; Olano, C.; Cañedo, L.; Braña, A. F.; Méndez, C.; De la Calle, F.; Salas, J. A. Mar. Drugs 2018, 16, 259. (c) Yu, L.; Oikawa, T.; Kitani, S.; Nihira, T.; Bayanmunkh, B.; Panbangred, W.; Igarashi, Y. J. Antibiot. 2014, 67, 345.
- (3) Bérdy, J. J. Antibiot. 2012, 65, 385.
- (4) Markworth, C. J.; Marron, B. E.; Swain, N. A. WO 2010035166, 2010.
- (5) Dhimitruka, I.; SantaLucia, J. Org. Lett. 2006, 8, 47.
- (6) Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269.

- (7) (a) Radha Krishna, P.; Arun Kumar, P. V.; Mallula, V. S.; Ramakrishna, K. V. S. *Tetrahedron* **2013**, 69, 2319. (b) Simmons, B.; Walji, A. M.; MacMillan, D. W. C. *Angew. Chem. Int. Ed.* **2009**, 48, 4349.
- (8) (a) Shioiri, T. Diphenyl Phosphorazide (DPPA): More Than Three Decades Later, TCI Mail No. 134. Tokyo Tokyo Chemical Industry Co. Ltd 2007, https://www.tcichemicals.com/en/kr/supportdownload/tcimail/backnumber/article/134drE.pdf (accessed Nov 19, 2019) (b) Thompson, A. S.; Grabowski, E. J. J. WO 1995001970, 1995. (c) Pastó, M.; Moyano, A.; Pericàs, M. A.; Riera, A. J. Org. Chem. 1997, 62, 8425.

(9) {[(25,3R)-2-Azido-3-phenylbutyl]oxy}(*tert*-butyl)dimethylsilane (12)

To a solution of compound **11** (1.7 g, 6.0 mmol) in THF (20 mL) at 0 °C were added DIAD (2.39 mL, 12.1 mmol) and TPP (3.1 g, 12.1 mmol), and the mixture was stirred for 5 min. DPPA (2.61 g, 9.5 mmol) was added at 0 °C, and the mixture was allowed to warm to rt, stirred for 3 h, then warmed to 35 °C for 24 h. The mixture was then concentrated and purified by flash column chromatography [silica gel, EtOAc-hexane (8:92)] to give a pale-yellow oil; yield: 1.48 g (80%).

¹H NMR (400 MHz, CDCl₃): δ = 7.33–7.26 (m, 2 H), 7.24–7.16 (m, 3 H), 3.60 (dd, *J* = 10.4, 3.1 Hz, 1 H), 3.4–3.40 (m, 1 H), 3.39–3.33 (m, 1 H), 2.91 (dq, *J* = 14.1, 7.0 Hz, 1 H). 1.35 (d, *J* = 7.0 Hz, 3 H), 0.88 (s, 9 H), -0.02 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ = 143.5, 128.6, 127.55, 126.5, 69.2, 64.9, 40.3, 25.8, 18.4, 18.2, -5.6. EI-ESI: *m/z* = 323 [M + NH₄]⁺.

(10) (2S,3R)-2-Azido-3-phenylbutan-1-ol (13)

A 1.0 M solution of TBAF in THF (1.54 g, 8.85 mL, 5.9 mmol) was added to a solution of compound **12** (1.2 g, 3.9 mmol) in anhyd THF (10 mL) at 0 °C, and the mixture was stirred at rt for 2 h. When the reaction was complete, the mixture was diluted with H₂O (5 mL), and the mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (2 x 10 mL) and dried (Na₂SO₄). Filtration, and evaporation of the solvent under reduced pressure, followed by column chromatography [silica gel, EtOAc–hexane (20:80)] gave a colorless liquid; yield: 0.676 g (90%); $[\alpha]_D^{25}$ –9.1 (c 0.7, CHCl₃).

M. Dumpala et al.

¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.30 (m, 2 H), 7.27–7.19 (m, 3 H), 3.60–3.50 (m, 2 H), 3.46–3.37 (m, 1 H), 2.94–2.83 (m, 1 H), 1.40 (d, *J* = 6.9 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 142.8, 128.7, 127.3, 127.0, 70.3, 64.0, 41.4, 18.4. EI-ESI: *m/z* = 209 [M + NH₄]*.

- (11) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. *Tetrahedron Lett.* **1998**, 39, 5323.
- (12) (a) Micoine, K.; Fürstner, A. J. Am. Chem. Soc. 2010, 132, 14064.
 (b) AnkiReddy, S.; AnkiReddy, P.; Sabitha, G. Synthesis 2015, 47, 2860.
 (c) Gallenkamp, D.; Fürstner, A. J. Am. Chem. Soc. 2011, 133, 9232.
- (13) (1R,2S)-3-{[tert-Butyl(diphenyl)silyl]oxy}-1,2-dimethylpropyl (2S,3R)-2-Azido-3-phenylbutanoate (15) To a stirred solution of azida 5 (0.200 g, 0.0 mmol) alcoh

To a stirred solution of azide **5** (0.200 g, 0.9 mmol), alcohol **6** (0.333 g, 0.9 mmol), and Et₃N (0.4 mL, 2.9 mmol) in THF (5 mL) was added 2,4,6-trichlorobenzoyl chloride (0.2 mL, 1.1 mmol) at rt, and the mixture was stirred for 2 h. DMAP (0.238 g, 1.6 mmol) was added at rt, and the mixture was stirred for 6 h. When the reaction was complete, the mixture was quenched with sat. aq NaHCO₃ and washed with brine. The organic layer was dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography [silica gel, EtOAc-hexane (20:80)] to give a colorless oil; yield: 0.349 g, (68%); $[\alpha]_0^{25}+22.0$ (*c* 0.5, CHCl₃).

¹H NMR (500 MHz, $CDCl_3$): δ = 7.67–7.62 (m, 4 H), 7.45–7.35 (m, 6 H), 7.25–7.17 (m, 5 H), 5.02–4.95 (m, 1 H), 3.80 (dd, *J* = 7.2, 14.9 Hz, 1 H), 3.56–3.40 (m, 2 H), 3.28–3.20 (m, 1 H), 1.93–1.74 (m, 1 H), 1.34 (d, *J* = 7.0 Hz, 3 H), 1.05 (d, *J* = 5.1 Hz, 3 H), 1.04 (s, 9 H), 0.87 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, $CDCl_3$):

δ = 169.1, 141.4, 135.5, 129.6, 128.5, 127.7, 127.6, 127.2, 73.6, 67.6, 65.1, 41.7, 39.9, 26.8, 19.2, 17.0, 15.7, 12.3. HRMS (ESI): *m/z* [M + NH₄]⁺ calcd for C₃₁H₄₃N₄O₃Si: 547.3104; found: 547.3104.

- (14) Matsumoto, A.; Sada, K.; Tashiro, K.; Miyata, M.; Tsubouchi, T.; Tanaka, T.; Odani, T.; Nagahama, S.; Tanaka, T.; Inoue, K.; Saragai, S.; Nakamoto, S. Angew. Chem. Int. Ed. 2002, 41, 2502.
- (15) (1*R*,2*S*)-3-Hydroxy-1,2-dimethylpropyl (βR)- β -Methyl-*N*-[(2*E*,4*E*)-4-methylhexa-2,4-dienoyl]-L-phenylalaninate (16) HF-pyridine (0.09 mL) was added dropwise to a stirred solution of 2 (0.070 g, 0.1 mmol) in anhyd CH₃CN (2 mL) at 0 °C, and the mixture was stirred for 12 h. The reaction was then quenched by adding sat. aq NaHCO₃ (1 mL) and the mixture was extracted with EtOAc (3 × 5 mL). The organic extracts were washed with brine (5 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography [silica gel, EtOAc-hexane (25:75)] to give a pale-yellow liquid; yield: 0.030 g (85%); [α]_D²⁵ +20.33 (*c* 0.3, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 7.33–7.23 (m, 5 H), 7.23 (d, *J* = 7.0 Hz, 1 H), 5.95 (q, *J* = 7.0 Hz, 1 H), 6.15–6.10 (m, 1 H), 5.77 (d, *J* = 15.2 Hz, 1 H), 4.82–4.70 (m, 2 H), 3.54 (dd, *J* = 7.0, 11.4 Hz, 1 H), 3.40 (dd, *J* = 6.7, 11.4 Hz, 1 H), 3.26–3.20 (m, 1 H), 3.13 (dq, *J* = 7.4, 7.7 Hz, 1 H), 1.86–1.80 (m, 1 H), 1.80 (d, *J* = 7.0 Hz, 3 H), 1.76 (s, 3 H), 1.40 (d, *J* = 7.1 Hz, 3 H), 0.87 (d, *J* = 7.0 Hz, 3 H), 0.78 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 172.0, 166.7, 146.9, 141.2, 135.6, 133.3, 128.4, 127.9, 127.2, 116.6, 73.6, 64.2, 58.2, 43.0, 40.4, 18.1, 16.8, 14.4, 13.2, 11.8. HRMS (ESI): *m/z* [M + H]⁺ calcd for C₂₂H₃₂NO₄: 374.2331; found: 374.2328.