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Abstract: The asymmetric total synthesis of attenol A (1) and B
(2), which possess challenging structures and an interesting biolog-
ical activity, was accomplished in a convergent and highly stereo-
selective manner (de, ee ≥ 96%) with good overall yield. The short
total synthesis is based on asymmetric alkylations of SAMP-hydra-
zones as well as a Sharpless asymmetric dihydroxylation as key
steps.
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Both attenol A (1) and attenol B (2, Scheme 1) are marine
natural products, which were isolated in 1999 from the
Chinese bivalve Pinna attenuata by Uemura and co-
workers.1 They are isomeric triols differing from each
other only by which hydroxyl groups are involved in the
ketal formation. This results in a 1,6-dioxa-spiro[4.5]de-
cane and a 6,8-dioxabicyclo[3.2.1]octane unit as the main
structural feature of attenol A and B, respectively. In pre-
liminary biological studies both compounds exhibited
moderate cytotoxicity against P388 cells (1: IC50 = 24 mg
mL–1; 2: IC50 = 12 mg mL–1).1 Due to their interesting bio-
logical activity and their natural scarcity, these marine
natural products have attracted considerable interest as
synthetic targets. Uemura, Suenaga et al.2a,b successfully
carried out the first total synthesis of attenol A and B fol-
lowed by Eustache, Van de Weghe et al.2c (attenol A). We
now wish to report the results of our approach leading
to a very efficient, asymmetric total synthesis of attenol
A and B, which augurs well for the future synthesis of
stereoisomers and derivatives of these compounds for
further biological studies.

As depicted in Scheme 1, our synthesis focused on the
generation of dithiane 3,3 which - after thioketal cleavage
and acid-catalyzed ketalization – would lead to both at-
tenol A and B.4 The anti-2,2-dimethyl-1,3-dioxan-5-one 4
and the a,b-unsaturated ester 5 were thought to be appro-
priate precursors for electrophiles required in the con-
struction of 3. It would be effective to synthesize 4 and 5
by means of asymmetric alkylation using the SAMP-hy-
drazone methodology (6 and 7, respectively), as all three
stereocenters would be generated by using a single com-
mercially available chiral auxiliary.5

As outlined in Scheme 1 and Scheme 2, our synthesis of
the anti-2,2-dimethyl-1,3-dioxane fragment of 3 started

from 2,2-dimethyl-1,3-dioxan-5-one SAMP-hydrazone
(6).6 Successive alkylation of 6 with (2-bromoethoxy)-
tert-butyldimethylsilane7 and 5-bromopent-1-ene gener-
ated the bisalkylated SAMP-hydrazone 8 with de ≥ 96%.
Oxalic acid hydrazone cleavage gave 4 in 75% yield over
three steps and de, ee ≥ 96%.8,9

Scheme 1 Retrosynthetic analysis of attenol A and B.

Following the observations of Barton and McCombie10

and in addition to the knowledge acquired in our group,11

it was assumed that the most efficient way to remove the
keto group of anti-2,2-dimethyl-1,3-dioxan-5-one (4)
would be via a sequence of reduction and radical deoxy-
genation. Therefore xanthate 9 was synthesized (96%
yield over two steps, de = 23%).12
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The radical reduction using Bu3SnH and a catalytic
amount of AIBN in refluxing toluene and subsequent
cleavage of the TBS ether yielded alcohol 10 (91% yield
over two steps).13 Iodination of this alcohol gave iodide 11
(94%), the first of the two electrophiles which had to be
coupled by the Corey–Seebach reaction.

As shown in Scheme 3, the synthesis of the second elec-
trophile 18 started from 4-(4-methoxybenzyloxy)-bu-
tyraldehyde (12).14 Condensation with SAMP, resulting in
the corresponding hydrazone 7 (95%), followed by alky-
lation with MeI yielded 13 in 86% yield and de = 96%.15

Ozonolytic cleavage of the hydrazone and Wittig olefina-
tion led to 5 with a small loss of optical purity (71%,
ee = 92%).15 Subsequent Sharpless asymmetric dihydrox-
ylation proceeded smoothly (96%) to give a mixture of
two diastereomers whose de corresponded to the ee of
the unsaturated ester 5.16 After acetonide formation with
p-toluenesulfonic acid in 2,2-dimethoxypropane (94%)
the minor diastereomer could be separated by HPLC
yielding 15 with de, ee ≥ 98%.17,18 The alcohol obtained
after reduction of the ester moiety with lithium aluminum
hydride (95%) was activated as its triflate derivative
16. Displacement with lithiated tert-butylbut-3-ynyl-
oxydimethylsilane19 gave 17 (89% yield over two steps).
Lindlar reduction, followed by the cleavage of the p-
methoxybenzyl ether with 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone and iodination of the generated alcohol
afforded 18 (77% yield over three steps).

With both electrophiles 11 and 18 in hand, the synthesis
of both attenols was accomplished as shown in Scheme 4.
The alkylation of dithiane 19 with 11 proceeded cleanly in
96% yield. The second alkylation using 18 yielded 3
(84%). Copper mediated hydrolysis of this dithiane and p-
toluenesulfonic acid catalyzed ketal formation finally
gave a mixture of the title compounds 1 (57%) and 2 (9%,
each over two steps).20

In summary, we have demonstrated a very efficient and
highly stereoselective synthesis of attenol A and B em-
ploying asymmetric alkylations of SAMP-hydrazones as
well as a Sharpless asymmetric dihydroxylation as key
steps in order to install all the stereocenters apart from C-
11, which was formed in the acid catalyzed cyclization
step. The synthesis proceeded in 15 steps from 12 (longest
linear sequence) and 19% overall yield and is not only the
shortest but also the most efficient synthesis so  far.

Scheme 2 Reagents and conditions: (a) t-BuLi, THF, –78 °C, then
(2-bromoethoxy)-tert-butyldimethylsilane, –100 °C → 25 °C; (b) t-
BuLi, THF, –78 °C, then 5-bromopent-1-ene, –100 °C → 25 °C;
(c) sat. oxalic acid, Et2O, 25 °C, 75% over three steps; (d) NaBH4,
MeOH, 0 °C; (e) NaH, THF, CS2, MeI, 0 °C → 25 °C, 96% over two
steps; (f) Bu3SnH, AIBN (cat.), toluene, reflux; (g) TBAF, THF,
25 °C, 91% over two steps; (h) PPh3, imidazole, I2, Et2O/CH3CN,
0 °C, 94%.
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Scheme 3 Reagents and conditions: (a) SAMP, Et2O, 0 °C to 25 °C,
95%; (b) LDA, THF, 0 °C, then MeI, –120 °C to 25 °C, 86%; (c) O3,
CH2Cl2, –78 °C; (d) Ph3PCHCO2Et, CH2Cl2, 25 °C, 71% over two
steps; (e) AD-mix b, MeSO2NH2, t-BuOH:H2O = 1:1, 0 °C, 96%;
(f) 2,2-DMP, PTSA (cat.), 25 °C, 94%; (g) LAH, Et2O, 0 °C, 95%;
(h) Tf2O, 2,6-di-tert-butyl-4-methylpyridine, CH2Cl2, –40 °C to
–30 °C; (i) tert-butylbut-3-ynyloxydimethylsilane, t-BuLi, THF,
DMPU, –78 °C, then 16, –78 °C to 25 °C, 89% over two steps; (j) H2,
Lindlar catalyst, MeOH, 25 °C, 94%; (k) DDQ, CH2Cl2, 25 °C, 99%;
(l) PPh3, imidazole, I2, Et2O/CH3CN, 0 °C, 83%.
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Scheme 4 Reagents and conditions: (a) 19, t-BuLi, THF, DMPU,
–78 °C, then 11, 96%; (b) 20, t-BuLi, THF, HMPA, –78 °C, then 18,
–78 °C to 25 °C, 84%; (c) CuO, CuCl2, aq acetone; (d) PTSA, MeOH,
25 °C, 66% over two steps.
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