N-Methylthio $\boldsymbol{\beta}$-lactam antibacterials: Effects of the $\mathbf{C}_{3} / \mathbf{C}_{4}$ ring substituents on anti-MRSA activity

Edward Turos, ${ }^{\text {a, }, ~}$ Cristina Coates, ${ }^{\text {a }}$ Jeung-Yeop Shim, ${ }^{\text {a }}$ Yang Wang, ${ }^{\text {a }}$ J. Michelle Leslie, ${ }^{\text {a }}$ Sonja Dickey, ${ }^{\text {b }}$ Daniel V. Lim, ${ }^{\text {b }}$ Eduardo Alonso ${ }^{\text {c }}$ and Javier Gonzalez ${ }^{\mathrm{c}}$
${ }^{a}$ Department of Chemistry, 4202 East Fowler Avenue, SCA 400, University of South Florida, Tampa, FL 33620, USA
${ }^{\mathrm{b}}$ Department of Biology, University of South Florida, Tampa, FL 33620, USA
${ }^{\text {c }}$ Departamento de Quimica Organica, Universidad de Oviedo, 37006 Oviedo, Spain

Received 7 December 2004; revised 31 March 2005; accepted 31 March 2005
Available online 26 September 2005

Abstract

N-Thiolated β-lactams are a new family of antibacterials that inhibit the growth of Staphylococcus bacteria. Unlike other β-lactam drugs, these compounds retain their full antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains and operate through a different mode of action. The structural features, which give these lactams their biological activity, have not yet been completely defined. Earlier efforts in our laboratory established that the N-organothio substituent is essential for antimicrobial activity while other groups at C_{3} and C_{4} on the lactam ring play a more subtle role. In this present study, we investigate these effects by varying the polar and steric nature of the ring substituents at these two centers. From the data presented herein, it appears that there is a need to balance the lipophilic character of the $\mathrm{C}_{3} / \mathrm{C}_{4}$ groups to obtain an optimal anti-MRSA activity. The structure-bioactivity profiles more closely relate to the compound's ability to penetrate the bacterial cell membrane to sites of action within the cytoplasm rather than to any specific non-bonding interactions with a biological target. Based on these results, a model for the compounds' mode of action is presented. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, our laboratories have identified a new family of N-methylthio-substituted β-lactams 1 that possess promising antibacterial properties. Curiously, most of this activity is directed toward Staphylococcus bacteria, including methicillin-resistant strains of Staphylococcus aureus (MRSA). ${ }^{1}$ The initial lead compound in these studies, N-methylthio β-lactam 2, was first discovered in our laboratories during routine biological screening. ${ }^{2}$ Its potent antibacterial nature was totally unexpected since no other β-lactam compound lacking an ionizable or acidic residue on or near the lactam nitrogen has ever been reported to have antibacterial activity. In fact, the structural features of lactam 2 are entirely unprecedented for a β-lactam antibiotic, with only lipophilic substituents occupying positions on the four-membered ring. Our more recent studies have indicated that lactam 2

[^0]and some structurally similar analogues inhibit bacterial growth through a mode of action that is distinctly different from those of penicillin and other bioactive β-lactams. ${ }^{3}$ These β-lactams exhibit bacteriostatic activity in certain bacteria including S. aureus (Gram-positive) and Neisseria gonorrhoeae (Gram-negative), and no detectable cytotoxic effects in normal mammalian fibroblast cells. ${ }^{4}$ Being devoid of a hydrophilic ring functionality, these N-methylthio β-lactams are completely impervious to β-lactamase cleavage, enabling them to operate at full strength as bacteriostatic agents under conditions that render many of the familiar β-lactam drugs ineffective. The structural features, which impart the molecules their antibacterial properties and resistance to β-lactam hydrolysis, have not yet been assessed in detail. We have, however, established that the N-thio substituent is required for an antibacterial activity. ${ }^{5}$ The substituents at C_{3} and C_{4} of the lactam ring also appear to play a secondary role in the biological properties. One of the first issues we addressed in the case of lactam 2 is whether bioactivation by an electrophilic species is required for antibacterial activity. This was considered a possibility because in organic media, electrophilic
reagents, such as molecular iodine, cause lactam 2 to undergo cyclization to isopenem 3 (Scheme 1). ${ }^{2}$ The intermediate in this reaction, bicyclic sulfonium intermediate II, is a powerful alkylating agent that rapidly demethylates in the presence of nucleophiles.

1

2

The likelihood that a similar sequence of events could be triggered in vitro was ruled out, however, upon examining phenylethyl lactam 4, which possessed much of the same activity against MRSA as compound $2 .{ }^{6}$ Thus, π-unsaturation at C_{4} is neither a requirement for, nor a detriment to, the antibacterial nature of N -methylthio lactams. This was revealed further for propargylic and alkenyl derivatives 5-7, and aryl-substituted lactams 8 and 9. ${ }^{5,6}$ All six of the C_{4}-varied analogues had antibacterial activity, with $\mathbf{4}, \mathbf{6}, \mathbf{8}$, and $\mathbf{9}$ having the strongest growth inhibition of MRSA. This led to the realization that other groups at C_{3} or C_{4} of the β-lactam ring could alter biological activity, and more information was needed to understand the effects these substituents might have on the compounds' microbiological properties.

4

7

8

9

The focus of this present study was thus to understand the primary role of the C_{3} and C_{4} ring substituents on the anti-MRSA activity of N-methylthio β-lactams 1 . Our overall aim was to cover a wide range of structural variations among the $\mathrm{C}_{3} / \mathrm{C}_{4}$ substituents, differing in their polarities, lipophilicities, steric requirements, hydrogen-bonding capabilities, and stereochemistry. The starting point for us was to consider whether the C_{3} methoxy substituent is even needed or whether other types of heteroatomic or non-heteroatomic groups can be tolerated. We also investigated the effect of disubstitution and steric crowding at C_{3}, before focusing on the

Scheme 1.
analogues of C_{4}-aryl-substituted lactams $\mathbf{8}$ and $\mathbf{9}$ wherein the functionalities, size, and orientation of the aryl substituent are systematically altered. A model which takes into account the experimental results is postulated at the conclusion, to illustrate how we believe these lactams exert their antibacterial effects.

2. Results and discussion

2.1. Synthesis and evaluation of C_{3}-substituted analogues

Noting that all of the above N-methylthio β-lactams 2 and 4-9 bear a methoxy group at the C_{3} carbon, our first goal was to determine if different types of substituents at this position would affect antibacterial activity. Two derivatives prepared in earlier studies, phthalimidyl compound 10 and benzylthio lactam 11, were found to be much less active against MRSA than C_{3} methoxy lactam 2. ${ }^{7}$ On the other hand, C_{3}-ethyl derivative $\mathbf{1 2}$ is totally devoid of antibacterial activity, contrasting sharply with the strong anti-MRSA properties of structurally similar lactam 6 .

11

12

Prior to initiating more detailed investigations, we decided to examine C_{3}-unsubstituted compounds $\mathbf{1 3}$ $15 .{ }^{8}$

14

15

Derivative $\mathbf{1 3}$ was obtained by the [2+2]-cycloaddition ${ }^{9}$ of 2-chlorostyrene (16) with N-chlorosulfonylisocyanate, followed by N-thiolation with N-methylthiophthalimide ${ }^{10}$ and triethylamine (Scheme 2).

Scheme 2. Reagents and condition: (a) N-methylthiophthalimide, Et_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.

Compounds 14 and 15 were synthesized from commercially available 4 -acetoxyazetidinone (17) as shown in Scheme 3. C-Allylation of $\mathbf{1 7}$ using allyltrimethylsilane and BF_{3}-etherate ${ }^{11}$ gave C_{4}-allyl lactam 18. N-Thiolation of 17 and 18 gave N-methylthio lactams 14 and 15, respectively.

Of these three C_{3}-unsubstituted lactams, compounds $\mathbf{1 3}$ and $\mathbf{1 4}$ had only weak anti-MRSA activity, while allyl derivative 15 was completely inactive. This suggests that a polar C_{3} group, in combination with an appropriate C_{4} substituent, may be required for bioactivity of these lactams.

Thus, we then moved on to begin our studies on $\mathrm{C}_{3}-$ substituted lactams, beginning with C_{3}-halo compounds 19a and 19b, and the azido derivative 19c.

19a

19b

19c
C_{3}-Halogenated and azido β-lactams can normally be prepared by the Staudinger coupling of an imine with an α-halo or α-azidoacetyl chloride. ${ }^{12}$ However, we found it more convenient to access these three lactams directly from C_{3}-hydroxy β-lactam 23 , which is easily synthesized in two steps from acetoxyacetyl chloride (20) and N-(4-methoxyphenyl)imine 21 (Scheme 4). $\mathrm{C}_{3}{ }^{-}$ Chloro β-lactam 24a ($\mathrm{X}=\mathrm{Cl}$) was obtained in one step from hydroxyl lactam 23 through the action of $\mathrm{Ph}_{3} \mathrm{P}$ and a catalytic amount of sodium bicarbonate in refluxing carbon tetrachloride. To obtain the iodo derivative 24b ($\mathrm{X}=\mathrm{I}$), hydroxy lactam 23 was first converted to its mesylate by the reaction of its sodium salt with methanesulfonyl chloride in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then displaced with NaI in DMF at $80^{\circ} \mathrm{C}$. Similarly, azido lactam $\mathbf{2 4 c}\left(X=N_{3}\right)$ was obtained by the reaction of mesylate intermediate with sodium azide in DMF. In each case, trans-disubstituted lactams 24a-c were obtained exclusively, as revealed by a characteristically small proton NMR coupling constant $(J=1.5-2.5 \mathrm{~Hz})$ for the β lactam ring protons. ${ }^{13}$ These N -protected lactams were then transformed into the N-methylthio lactams 19a-c by N -dearylation/ N -thiolation as described above.

2.2. Microbiological testing of $\mathrm{C}_{3} / \mathbf{C}_{4}$-substituted lactams

The β-lactams that were prepared in this study were individually tested for antibacterial activity against

14

15

Scheme 3. Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, allytrimethylsilane, rt; (b) N-methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.

25a-c

19a-c

Scheme 4. Reagents and conditions: (a) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (b) NaOH , $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$; (c) for 24a: $\mathrm{PPh}_{3}, \mathrm{CCl}_{4}, \mathrm{NaHCO}_{3}$ (catalytic), $70^{\circ} \mathrm{C}$; (d) for 24b,c: $\mathrm{NaH}, \mathrm{MsCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt; then $\mathrm{NaX}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$; (e) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}(\mathrm{NO})_{6}, \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (f) N-methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$ (yields vary depending on compound; see Section 4).
methicillin-susceptible and methicillin-resistant S. aure$u s$ strains by the Kirby-Bauer method of well diffusion on agar plates (Fig. 1). Previously, we have demonstrated that the growth inhibition zone sizes for N-methylthio lactams correlate well with their minimum inhibitory concentrations (MICs) obtained from broth dilution experiments, and thus represent a reliable way to gauge bioactivity within a closely related series of analogues. ${ }^{4 a}$ One MSSA (ATCC 25923), nine MRSA strains (ATCC 43300), and eight clinical isolates from a local hospital) were used for these assays, all of which were β-lactamase producing strains. Table 1 gives the zones of growth inhibition

Figure 1. Kirby-Bauer well diffusion assay on an agar plate. The clear regions appearing around the black wells correspond to zones where bacterial growth is inhibited by the diffusing drug. Isolated white spots appearing in this zone, such as that observed for penicillin G (PenG), indicate surviving colonies of resistant bacteria.
for each compound against these microbes. For the purpose of easier visualization, the zone data from these assays are also plotted out graphically, as shown in Figure 2, with the vertical bars indicating the average diameter (from 3 trials) of the growth inhibition zones. The margin of error of these measurements is $\pm 1 \mathrm{~mm}$. It is relevant that for the two reference drugs, penicillin (Pen G) and vancomycin (Van), bioactivity drops precipitously against the MRSA strains, and a closer inspection of the growth inhibition zones for these standards against the MRSA's (see Fig. 1) reveals some speckled regions of bacterial growth indicative of resistant colonies. This is not observed for lactam 9 or any of the other N-methylthio β-lactam analogues included in this study. On the other hand, N-methylthio lactams 9 and 19a-c display equal effectiveness against MSSA and MRSA. Of these latter three compounds, chloro derivative 19a had the strongest activity, with zones of inhibition against the MRSA strains being more than 100% larger than those of penicillin and equal to that of methoxy compound 9. The iodo and azido-substituted lactams 19b and 19c were appreciably weaker in activity than either 9 or 19a. Thus, for these C_{3} varied analogues, the activity follows the trend of $\mathrm{N}_{3}<\mathrm{I}<\mathrm{Cl}=\mathrm{OMe}$.

Next, we examined the C_{3}-amino-substituted analogues 26a-d, which were synthesized in four steps from hydroxy lactam 23, as shown in Scheme 5. Moffatt oxidation of 23 with $\mathrm{P}_{2} \mathrm{O}_{5}$ in DMSO gave ketolactam 27, which underwent reductive amination using an alkyl- or dialkylamine and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ in a mixture of acetic acid and dichloroethane, to afford amino adducts 28a-d in good yield. ${ }^{14}$ The trans stereochemistry was established by ${ }^{1} \mathrm{H}$ NMR. These PMP-protected compounds were then converted to N-methylthio products 26a-d under
the usual N -dearylation/ N -methylthiolation conditions. In the case of 26a and 26b, the N-thiolation step occurred cleanly on the lactam nitrogen without affecting the 2° amine at C_{3}.

26a

26c

26b

26d

These C_{3} amino-substituted analogues turned out to be significantly less potent against MRSA than methoxy compound 9 or the C_{3}-halo or azido lactams 19a-c. In fact, only the N-benzyl-substituted compound 26b displayed any activity at all against MRSAs, with average zone sizes of $\sim 11 \mathrm{~mm}$ diameter. Thus, amino substituents at C_{3} of these N-methylthio lactams appear to significantly diminish anti-MRSA activity.

Our next series of analogues consists of a selection of different C_{3}-oxygenated derivatives of lactams $\mathbf{8}$ and $\mathbf{9}$, including alkoxy and phenoxy derivatives, acyl ester, and sulfonates, to determine if C_{3}-alkoxy, acyloxy, or sulfonyloxy groups differ in activity. Compounds in this grouping bear a broad range of electronically and sterically distinct functionalities that could affect lipophilicity and bioactivity. Ethers 30a-d, ester 30e, and hydroxyl lactam $\mathbf{3 0 f}$ were examined first.

30a

30c

30e

30d

$30 f$

Compounds 30a-c were synthesized in 3 steps from hydroxy β-lactam 23 by base-induced O-alkylation with the desired alkyl halide, affording N-aryl lactams 31a,c

Table 1. Growth inhibition zones obtained from well diffusion experiments on agar plates

Compound	R	R_{1}	X	$\begin{aligned} & \text { ATCC } \\ & 43300 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 652 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 653 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 654 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 655 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 656 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 657 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 658 \end{aligned}$	$\begin{aligned} & \text { USF } \\ & 659 \end{aligned}$
9	OMe	H	$2-\mathrm{Cl}$	28	30	29	28	27	27	25	27	23
19a	N_{3}	H	$2-\mathrm{Cl}$	23	21	22	22	20	19	21	23	22
19b	I	H	$2-\mathrm{Cl}$	24	20	23	25	23	23	24	25	23
19c	Cl	H	$2-\mathrm{Cl}$	29	30	29	30	30	29	31	30	30
26 a	$\mathrm{NHCH}\left(\mathrm{CH}_{2}\right)_{4}$	H	$2-\mathrm{Cl}$	0	0	0	0	0	0	0	0	0
26b	$\mathrm{NHCH}_{2} \mathrm{Ph}$	H	$2-\mathrm{Cl}$	11	10	12	10	10	10	11	10	10
26c	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	H	$2-\mathrm{Cl}$	0	0	0	0	0	0	0	0	0
26d	$\mathrm{N}^{i} \mathrm{Bu}_{2}$	H	$2-\mathrm{Cl}$	0	0	0	0	0	0	0	0	0
30a	OAllyl	H	$2-\mathrm{Cl}$	22	25	24	20	23	23	20	20	24
30b	Opropyl	H	$2-\mathrm{Cl}$	23	24	24	23	22	21	20	20	24
30c	$\mathrm{OCH}_{2} \mathrm{OMe}$	H	$2-\mathrm{Cl}$	15	18	18	19	17	18	18	18	16
30d	OPh	H	$2-\mathrm{Cl}$	16	18	15	15	14	16	13	15	16
30e	$\mathrm{OC}(\mathrm{O}) \mathrm{Me}$	H	$2-\mathrm{Cl}$	18	23	24	21	23	22	20	21	15
30 f	OH	H	$2-\mathrm{Cl}$	18	18	17	17	19	18	16	19	18
33a	$\mathrm{OSO}_{2} \mathrm{Me}$	H	H	15	15	15	18	14	15	15	15	14
33b	$\mathrm{OSO}_{2} \mathrm{Ph}$	H	H	16	17	17	17	15	16	16	15	15
33c	$\mathrm{OSO}_{2} \mathrm{Tol}$	H	H	21	24	20	23	20	20	19	20	21
37a	OAllyl	CH_{3}	$2-\mathrm{Cl}$	27	28	26	24	26	26	26	24	26
37b	Opropyl	CH_{3}	$2-\mathrm{Cl}$	26	28	26	24	26	26	25	25	25
37c	$\mathrm{OCH}_{2} \mathrm{OMe}$	CH_{3}	$2-\mathrm{Cl}$	19	18	17	17	18	17	18	16	18
37d	OAc	CH_{3}	$2-\mathrm{Cl}$	28	26	28	25	26	28	28	26	23
37e	OAc	Allyl	$2-\mathrm{Cl}$	24	25	26	22	23	25	26	24	21
37f	OAc	Propyl	$2-\mathrm{Cl}$	27	28	27	26	26	28	29	26	24
37g	OAc	Ph	$2-\mathrm{Cl}$	21	20	20	18	20	21	21	20	20
42a	$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4-}$		H	21	22	19	20	21	20	18	17	21
42d	$-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}-$		H	18	17	18	15	16	17	15	16	14
43a	OMe	H	$3-\mathrm{Cl}$	26	25	28	22	23	23	22	19	18
43b	OMe	H	$4-\mathrm{Cl}$	25	26	26	26	25	25	23	24	18
43c	OMe	H	2-F	26	27	28	25	23	26	26	25	21
43d	OMe	H	3-F	20	21	24	18	18	19	21	18	17
43e	OMe	H	4-F	26	25	27	22	21	25	25	23	20
43f	OMe	H	2-I	29	34	29	27	28	29	28	28	23
43g	OMe	H	3-I	24	23	23	21	24	22	25	23	22
43h	OMe	H	4-I	23	27	24	24	24	25	24	20	17
43i	OMe	H	2,4-Cl	22	22	21	21	24	19	20	21	17
43j	OMe	H	2,6-Cl	19	20	21	19	20	21	21	19	16
43k	OMe	H	2,3,5-Cl	23	24	23	23	22	19	22	20	18
431	OMe	H	$2-\mathrm{OCH}_{3}$	27	29	32	27	27	28	27	26	23
43m	OMe	H	$2-\mathrm{CH}_{3}$	23	23	27	23	23	25	23	22	20
43n	OMe	H	$2-\mathrm{NO}_{2}$	20	18	23	20	22	22	20	21	18
430	OMe	H	$3-\mathrm{NO}_{2}$	18	17	22	16	14	18	18	17	11
43p	OMe	H	$4-\mathrm{CO}_{2} \mathrm{CH}_{3}$	12	13	12	11	14	13	12	12	10
43q	OMe	H	$4-\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CH}_{2}$	13	13	12	13	12	13	14	13	10
43r	OMe	H	$4-\mathrm{OH}$	17	14	19	18	18	19	19	18	0
43s	OMe	H	4-Ph	10	10	11	10	10	11	12	9	8
43t	OMe	H	3,4- $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	14	13	12	13	13	14	13	11	10
47a	$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$		$4-\mathrm{NO}_{2}$	16	17	16	15	17	16	14	12	14

The values indicate the average diameters in mm (of three trials) for the zone of growth inhibition observed after 24 h of incubation at $37{ }^{\circ} \mathrm{C}$. Twenty micrograms of each test compound in DMSO solution was used. All of the microbes listed are β-lactamase producing, methicillin-resistant strains of Staphylococcus aureus (MRSA). Those labeled as USF652-659 were obtained from a clinical testing laboratory at Lakeland Regional Medical Center, Lakeland, FL. Error values are within $\pm 1 \mathrm{~mm}$.
(Scheme 6). Phenoxy lactam 31d ($\mathrm{R}=\mathrm{Ph}$) was synthesized directly from phenoxyacetyl chloride and imine 21 under the typical Staudinger coupling conditions, as outlined in Scheme $4 .{ }^{15}$

Likewise, acyl ester 31e was prepared from hydroxyl lactam 23 by base-promoted acylation. These four N-aryl lactams were taken onto their N-methylthio lactams 30a, \mathbf{c}, d, and \mathbf{e} accordingly. 30b was obtained from

Figure 2. Comparison of antimicrobial activities of lactams 9 and 19ac with penicillin G (PenG) and vancomycin (Van) against Staphylococcus aureus bacteria. The y-axis is the zone of inhibition in millimeters. The vertical bars indicate the average diameter (from 3 trials) of the growth inhibition zones. The blue bars are for methicillinsusceptible S. aureus (MSSA), while the red bars are for methicillinresistant S. aureus (MRSA). Thus, the red bars denote the average of 27 trials (9 microbes in triplicate) for each test compound.

32a ($\mathrm{R}=$ allyl) by hydrogenation of the allyl group, prior to N-thiolation. Hydroxy lactam 30f was obtained from 32e ($\mathrm{R}=$ acetyl) by base hydrolysis of the acetate $(\mathrm{KOH}, \mathrm{MeOH})$ prior to N -thiolation.

As Figure 3 depicts, lactams 30a-f all showed enhanced activity against MRSA as compared to penicillin, but an activity lower than that of C_{3}-methoxy lactam 9 . The relative efficacies of the C_{3}-oxygenated lactams in this series do vary somewhat, with $9>\mathbf{3 0 a}=\mathbf{3 0 b}=\mathbf{3 0 e}>$
$\mathbf{3 0 c}=\mathbf{3 0 f}>\mathbf{3 0 d}$. Adjusted for their differences in molecular weight, the bioactivities of the lactams 30a-f show the same trend, suggesting that these slight variations in bioactivity may be due to slightly different lipophilicity and permeability properties of the individual compounds.
C_{3}-Sulfonates 33a-c were also examined in continuation of this series, and their anti-MRSA activities compared to those of C_{3}-methoxy lactam 8 .

These three new derivatives were prepared via the reaction of the sodium salt of $\mathbf{3 4}$ with the appropriate chlorosulfonate, as shown in Scheme 7.

For these three C_{3} sulfonates, activity increases with molecular weight: methyl < phenyl < p-tolyl (Fig. 4). This trend is also observed in broth MIC values, which range from 64 to $128 \mu \mathrm{~g} / \mathrm{mL}$ for the MSSA (ATCC 25923) and MRSA (ATCC 43300) strains. For mesyl compound 33a, the MICs are all around $128 \mu \mathrm{~g} / \mathrm{mL}$, while for phenylsulfonyl lactam 33b, the MICs are between 64 and $128 \mu \mathrm{~g} / \mathrm{mL}$, and for the tosyl derivative 33 c , the values decrease to around $64 \mu \mathrm{~g} / \mathrm{mL}$.

To evaluate the effects of steric crowding at the C_{3} center, several differentially configured tertiary ethers $\mathbf{3 7 a} \mathbf{a} \mathbf{c}$ and esters $\mathbf{3 7 d} \mathbf{d}$ of 3,3 -disubstituted analogues of $\mathbf{9}$ were studied next.

These compounds were made from keto β-lactam 27 by introduction of the alkyl or aryl group via Grignard reaction using the method of Buynak (Scheme 8). ${ }^{16}$ In each case, nucleophilic attack occurred exclusively

37a

37b

37c

37d

37e

37f

37g

Scheme 5. Reagents and conditions: (a) $\mathrm{P}_{2} \mathrm{O}_{5}$, DMSO, rt; (b) $\mathrm{RR}^{\prime} \mathrm{NH}, \mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{rt}$; (c) $(\mathrm{NH} 4)_{2} \mathrm{Ce}(\mathrm{NO})_{6}, \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}$; (d) N -methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$ (yields vary depending on compound; see Section 4).

Scheme 6. Reagents and conditions: (a) for 31a,c,d: $\mathrm{NaH}, \mathrm{R}-\mathrm{X}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; for 31e,f: AcCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$, $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, then for 32b: $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt; (c) N-methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{6}, 7-{ }^{\circ} \mathrm{C}$; for 30f, $\mathrm{KOH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$, then N methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{6}, 70^{\circ} \mathrm{C}$ (yields vary depending on the compound; see Section 4).
from the less hindered α-face to afford β-lactams $\mathbf{3 8 d} \mathbf{-}$ g. Relative stereochemistry was established by ROESY NMR. Tertiary alcohol $\mathbf{3 8 d}(\mathrm{R}=\mathrm{Me})$ was then O -alkylated, as described above, and carried on to N-methylthio β-lactams $\mathbf{3 7 a - c}$. Tertiary alcohols 38d, e, and \mathbf{g} were O -acylated and converted to N-methylthio β-lactams 37d, e, and \mathbf{g}, respectively. β-Lactam $\mathbf{3 7 f}$ ($\mathrm{R}=$ propyl) was obtained from 41e $(\mathrm{R}=$ allyl) by hydrogenation of the allyl group prior to N -thiolation.

The zone data for these seven 3,3-disubstituted compounds indicate that steric crowding on the ring generally diminishes bioactivity, compared to 3 -monosubstituted lactam 9 (Fig. 5). In the series of tertiary ethers $\mathbf{3 7 a - c}$, in which only the ether alkyl moiety is varied, the propyl and allyl ethers 37 a, b are more active

Figure 3. Comparison of antimicrobial activities of lactam 9, and C_{3} alkoxy and C_{3}-acyloxy lactams $\mathbf{3 0 a}-\mathbf{f}$ with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).
than the more polar methoxymethyl derivative $\mathbf{3 7 c}$. For the second series of compounds, $\mathbf{3 7 d} \mathbf{d}$, the ether is replaced with an acetoxy ester, while the alkyl side chain is varied. In this case, the saturated alkyl side chain (methyl and propyl) analogues, 37d,f, are at least 33% more active than the lactams $\mathbf{3 7 e}, \mathbf{g}$ bearing allyl or phenyl C_{3}-residues. For these four ester compounds, the MIC values were determined to be between 16 and $64 \mu \mathrm{~g} / \mathrm{mL}$, with the order being $37 \mathrm{f} \geqslant 37 \mathrm{~d}>37 \mathrm{~g} \geqslant 37 \mathrm{e}$. Thus, zone measurements and MIC values indicate the same activity trends.

Finally, to conclude the study of C_{3}-derivatives, we examined spirocyclic lactams 42a and 42b, in which the C_{3} ether is contained within a conformationally restricted ring. ${ }^{17}$ Compound 42a had slightly more activity than its isomer 42b, but was 25% less

33a-c

35a-c

36a-c

Scheme 7. Reagents and conditions: (a) NaH , R-X, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (c) N -methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}, \quad \mathrm{C}_{6} \mathrm{H}_{6}, \quad 70^{\circ} \mathrm{C}$ (yields vary depending on compound; see Section 4).

Figure 4. Comparison of antimicrobial activities of lactam 8 and C_{3} sulfonate lactams 33a-c with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).
active than the 3° open-ring analogues $\mathbf{3 7 a}$ and $\mathbf{3 7 b}$ (Fig. 6).

To summarize these findings thus far, it appears that $\mathrm{C}_{3}-$ alkoxy and acyloxy substituents provide for the best anti-MRSA activity.

We then turned our attention to the effects of the C_{4} ring substituents on bioactivity. For this study, we chose to look specifically at C_{4} aryl-substituted lactams 43 , based upon the observation that the phenyl lactam $\mathbf{8}(\mathrm{X}=\mathrm{H}$ in 43) and chlorophenyl lactam $9(\mathrm{X}=$ ortho -Cl in 43$)$ had

Scheme 8. Reagents and conditions: (a) RMgBr , $\mathrm{THF}, \mathrm{NH}_{4} \mathrm{Cl}$, $-78^{\circ} \mathrm{C}$; (b) for $39-\mathbf{c}, \mathrm{NaH}, \mathrm{R}^{\prime}-\mathrm{X}, \mathrm{TBAl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt ; for $\mathbf{4 0 d}, \mathbf{e}, \mathbf{g}$, $\mathrm{NaH}, \mathrm{AcCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$; (c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}(\mathrm{NO})_{6} . \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; then fpr 41f; 41c, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc, rt; (d) N -methylthiophthalimide, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{C}_{6} \mathrm{H}_{6}, 70^{\circ} \mathrm{C}$ (yields vary depending on compound; see Section 4).
similar antibacterial activity to the C_{4}-acetylenic lead compound 2. ${ }^{4}$ We have also observed previously that lipophilic substituents at certain locations on the aryl ring of $43\left(\mathrm{X}=\mathrm{CH}_{3}\right)$ seemed to enhance in vitro activities, while more polar groups $(\mathrm{X}=\mathrm{CN})$ diminished the activity. ${ }^{5}$

43

43a

$\mathbf{g}^{\text {ref } 5}$

43f

$43 i$

43b

2

43 $c^{\text {ref } 4 a}$

$43 \mathrm{e}^{\text {ref } 4 a}$

43g

43j

43h

Figure 5. Comparison of antimicrobial activities of lactam 9 and $\mathrm{C}_{3}-$ tertiary ether and ester lactams $\mathbf{3 7 a} \mathbf{- g}$ with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).

Figure 6. Comparison of antimicrobial activities of lactam 8, 37a-b, and C_{3}-spirocyclic lactams $\mathbf{4 2 a - b}$ with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).

Thus, our next objective was to investigate further the influence of the C_{4} aryl ring substituent and the position of the X moiety on the aryl ring on anti-MRSA activity.

For this, a focused library of different C_{4} aryl-substituted β-lactams, 43a-t, was prepared, as illustrated in Scheme 9. To complement this set, previously reported compounds $\mathbf{4 3 c}-\mathbf{e}, \mathbf{m}, \mathbf{q}$, and \mathbf{r} were also included.

431

$43 m^{\text {ref } 5}$

43n

Staudinger coupling of N -(4-methoxyphenyl)imines 44 with methoxyacetyl chloride in the presence of three equivalents of triethylamine exclusively afforded the cis-disubstituted β-lactams 45, as corroborated by ${ }^{1} \mathrm{H}$ NMR. These adducts were converted to N-methylthio lactams 43, as previously described.

Figure 7 shows that the location of the variable ring substituent had a discernable effect on activity, with the ortho substituents displaying the most potent activities, followed by the groups at the para then meta positions $(9>43 \mathrm{e}>43 \mathrm{~d})$. This agrees with our previous studies of aryl-fluorinated N-methylthio β-lactams, which found that those analogues having at least one fluorine ortho to the lactam ring displayed the highest potencies, and within the monofluoro series, $\mathbf{4 3 a}>43 \mathrm{c}>43 \mathrm{~b} .^{4 \mathrm{a}}$

Second, activity among the different halo derivatives is largely independent of which halogen is present on the

Scheme 9. Reagents and conditions: (a) p-anisidine, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{COCl}, i \mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{PhMe}, 0^{\circ}$ to rt; (c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$, 0°; (d) N-methylthiophthalimide, ${ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{C}_{6} \mathrm{H}_{6}, 70^{\circ} \mathrm{C}$ (yields vary depending on compound; see Section 4).

Figure 7. Comparison of antimicrobial activities of lactam 9 and C_{4} monohaloaryl lactams 43a-h with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).
aryl ring (compare the pair of ortho-halo compounds 9 to 43a and 43f, and meta-halo lactams 43b to 43d and $\mathbf{4 3 g}$ in Fig. 7), and the number of halogens on the aryl ring (see lactams 43i-k in Fig. 8).

Additionally, other monosubstituted aryl analogues 43i-t were studied to compare the effects of different electron-donating or electron-withdrawing groups on in vitro activity (Fig. 9). What we observe is that replacement of the ortho-chloro substituent of lactam 9 for other ortho groups, such as methoxy, methyl, or nitro, diminishes activity somewhat, although zone sizes generally remain larger than for the meta or para-substituted derivatives 430-t. Curiously, reversal of the ester functionality at the para position (see lactams 430 and 43r) does lead to significant reduction of anti-MRSA activity, while conversion of the acryloyl ester 430 to the corresponding phenol 43p does not alter activity. Fluorenyl lactam 43s and biphenyl lactam 43t, likewise,

Figure 8. Comparison of antimicrobial activities of lactam 9 and $\mathrm{C}_{4}-$ dihaloaryl and trihaloaryl lactams 43i-k with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).

Figure 9. Comparison of antimicrobial activities of lactam 9 and $\mathrm{C}_{4}-$ monosubstituted aryl lactams 431-t with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).
show a greatly reduced bioactivity compared to the $\mathrm{C}_{4}-$ phenyl or chlorophenyl analogues $\mathbf{8}$ and $\mathbf{9}$, respectively.

Spiro compounds $\mathbf{4 7 a}-\mathbf{c}^{17}$ displayed variable deviations in activity versus C_{4} phenyl derivative 42a. In effect, what these studies indicate is that various types of unsaturated and saturated side chains can occupy the C_{4} center without dramatically affecting bioactivity, but ortho-substituted aryl ring compounds generally offer better antimicrobial properties (see Fig. 10).

It is also interesting to consider vis-à-vis the cis and trans stereoisomers of C_{3}-acetoxy N-methylthio β-lactams 48a and 48b, which we were able to prepare independently by isolating the trans β-lactam adduct from the cis/trans mixture of N-PMP lactams by recrystallization in methanol, and carrying both on to the N -thiolated compounds. These two diastereomers show similar bioactivity with zone sizes in the mid -20 mm range, although the trans isomer was found to be about 10% more active than the cis lactam.

Likewise, we had the opportunity to examine the effect of absolute stereochemistry on bioactivity through an independent asymmetric synthesis of enantiomeric lactams, (-)-50a and (+)-50a (Scheme 10). For this, we employed Lipase PS-30 to selectively deacylate the

Figure 10. Comparison of antimicrobial activities of C_{3}-spirocyclic lactams 42a and 47a-c with penicillin G (PenG). The vertical bars indicate the average diameter in mm of the growth inhibition zones produced against nine different MRSA strains (in triplicate).
C_{3}-acetoxy group of the $3 \mathrm{~S}, 4 \mathrm{R}$-enantiomer from the mixture of racemic C_{3}-acetoxy lactams, (\pm)-31e. ${ }^{18}$ The resulting enantiomerically pure compounds, (-)-alcohol 49 and recovered $(+)$-acetate 31e, were then converted independently to the N-methylthio lactams (-)-50a and (+)-50a, respectively.

Both antipodes of $\mathbf{5 0 a}$ displayed equal antimicrobial activity against the MRSA isolates, giving identical zones of growth inhibition on agar plates, as well as equivalent minimum inhibitory concentration (MIC) values in broth dilution experiments. Thus, from these examinations, neither relative nor absolute stereochemistry of the N-thiolated lactams seems to be a factor in anti-MRSA activity.

3. Conclusions

The data in this study reveal some interesting characteristics about the structural requirements of the C_{3} and C_{4} ring substituents of N-methylthio β-lactams. First, lipophilicity within these groups does appear to be required for anti-MRSA activity, although C_{3}-alkoxy or acyloxy side chains afford the best bioactivity. Differences in the in vitro behavior for all the different analogues may be more closely related to their differences in diffusability through the bacterial membrane, rather than to any specific binding interaction with a biological target. This lends considerable support to the suggestion that the mode of action is as proposed in Scheme 11.

We postulate that the lactams react covalently with their biological target by transfer of the sulfur side chain upon passing through the bacterial cell membrane. Compounds which are too polar to get through the membrane would be expected to have a lower bacteriostatic activity, while those with too much lipophilicity may be sequestered in the membrane or internal organelles, lowering the effective concentration in the cytoplasm. The finding that neither relative nor absolute chirality of the N-methylthio lactam affects antimicrobial properties suggests that the lactam may not experience significant non-bonding interactions with its biological target prior to transferring the sulfenyl side chain. This suggests the model shown in Scheme 1 in which the nucleophile attacks the molecule, without precoordination, directly on the sulfur center.

Further work is ongoing to identify the biological target(s) of the lactams in bacterial cells and to determine, in more detail, the effects these compounds have on the primary cellular processes in bacteria.

Scheme 10.

Scheme 11.

4. Experimental

All reagents were purchased from Sigma-Aldrich Chemical Company and used without further purification. Solvents were obtained from Fisher Scientific Company. Thin-layer chromatography (TLC) was carried out using EM Reagent plates with a fluorescence indicator ($\mathrm{SiO}_{2}-60, \mathrm{~F}-254$). Products were purified by flash chromatography using J.T. Baker flash chromatography silica gel $(40 \mu \mathrm{~m})$. NMR spectra were recorded in CDCl_{3} unless otherwise noted. ${ }^{13} \mathrm{C}$ NMR spectra were proton broad-band decoupled.

4.1. Synthesis of 2-chlorophenyl- N-(4-methoxyphenyl)imine (21a)

To a solution of p-anisidine $(7.27 \mathrm{~g}, 59.0 \mathrm{mmol})$ in $50 \mathrm{~mL} \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added o-chlorobenzaldehyde $(6.64 \mathrm{~g}, 47.2 \mathrm{mmol})$, and a catalytic amount of camphorsulfonic acid. The resultant mixture was stirred until TLC indicated the disappearance of starting materials. The solvent was removed under reduced pressure, and the crude material was purified by recrystallization from ice-cold MeOH to yield $11.41 \mathrm{~g}(79 \%)$ of imine 21a as a yellow solid. mp $62-63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.95(1 \mathrm{H}, \mathrm{s}), 8.27-8.23(1 \mathrm{H}, \mathrm{m}), 7.45-7.36$ $(3 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.5,154.6,144.5,135.7,133.3,131.7,129.8,128.3$, 127.0, 122.4, 114.3, 55.4.

4.2. N-(4-Methoxyphenyl)phenyl-imine (21b)

White solid in 85% yield. mp $58-60{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.42(1 \mathrm{H}, \mathrm{s}), 7.85-7.82(2 \mathrm{H}, \mathrm{m})$, $7.40(3 \mathrm{H}, \mathrm{t}, J=3.2 \mathrm{~Hz}), 7.20-7.15(2 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}$, dd, $J=2.0,7.8 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(63 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 156.5,155.2,144.2,132.2 .7,130.3,128.7$, 122.9, 122.4, 114.8, 114.3, 55.9.

4.3. Synthesis of (\pm)-($\mathbf{3 R , 4 S}$)-3-acetoxy-4-(2-chlorophenyl)-N-(4-methoxyphenyl)azetidin-2-one (22a)

Imine21a ($17.3 \mathrm{~g}, 70.4 \mathrm{mmol}$) was dissolved in 200 mL of freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to approximately $5^{\circ} \mathrm{C}$ in an ice bath. Triethylamine (3 equiv, $21.4 \mathrm{~g}, 211.4 \mathrm{mmol}$) was added, followed by acetoxyacetyl chloride (20) (1.2 equiv, 11.5 g , 84.4 mmol) dissolved in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred until no further change in TLC was observed for 1 h . The solvent was removed under reduced pressure and the crude material was purified
by washing with ice-cold MeOH . The product 22a was isolated $10.6 \mathrm{~g}(44 \%)$, as a white solid, mp 130 $132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(1 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), \quad 7.32-7.23 \quad(5 \mathrm{H}, \quad \mathrm{m}), \quad 6.83(2 \mathrm{H}, \quad \mathrm{d}$, $J=8.9 \mathrm{~Hz}), \quad 6.16(1 \mathrm{H}, \mathrm{d}, \quad J=5.0 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.6,161.3,156.6,133.8,130.1$, 129.9 , 129.7, 128.6, 126.7, 118.5, 114.4, 75.4, 58.1, 55.3, 19.8.

4.4. (土)-(3R,4S)-3-Acetoxy- N-(4-methoxyphenyl)-4-phenyl-azetidin-2-one (22b)

White solid in 56% yield $\mathrm{mp} 138-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.20(7 \mathrm{H}, \mathrm{m}), 6.73(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.6,158.1,142.6,133.8,130.1$, $129.9,129.7,128.6,126.7,118.5,114.9,114.4,75.4$, 58.1, 55.3, 19.8.

4.5. Synthesis of (\pm)-(3R,4S)-4-(2-chlorophenyl)-3-hydroxy-N-(4-methoxyphenyl)azetidin-2-one (23)

To a solution of $22(1.23 \mathrm{~g}, 3.56 \mathrm{mmol})$ in 30 mL acetone was added a solution of KOH in 10 mL MeOH at $0^{\circ} \mathrm{C}$. The hydrolysis was complete after the addition of $\mathrm{KOH} / \mathrm{MeOH}$, as indicated by TLC. The reaction was quenched by adding an equal volume of water upon which the product precipitated out of solution. The product was filtered and dried to give a white solid, $1.07 \mathrm{~g}(99 \%)$ of $23, \mathrm{mp} 183-184{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(250 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta \quad 7.48 \quad(1 \mathrm{H}, \quad \mathrm{d}$, $J=7.5 \mathrm{~Hz}), \quad 7.33-7.22 \quad(5 \mathrm{H}, \quad \mathrm{m}), \quad 6.84(2 \mathrm{H}, \quad \mathrm{d}$, $J=8.9 \mathrm{~Hz}), \quad 5.63(1 \mathrm{H}, \mathrm{d}, \quad J=5.1 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 4.88\left(1 \mathrm{H}\right.$, br s), $3.78(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): δ 166.6, 156.1, 133.1, 132.9, $130.9,129.7,129.6,128.9,127.3,118.6,114.9,77.2$, 60.0, 55.6 .

4.6. (\pm)-(3R,4S)-3-Hydroxy-4-phenyl- N-(4-methoxyphenyl)-azetidin-2-one (34)

White solid in 99% yield, mp $183-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.32-$ $7.22(5 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, ~ D M S O-d_{6}$): δ 166.6, $156.1,133.1$, $132.9,130.9,129.7,129.6,128.9,127.3,118.6,114.9$, 114.2, 77.2, 60.0, 55.6.

4.7. Synthesis of (\pm)-(3S,4S)-3-chloro-4-(2-chlorophenyl)N -(4-methoxyphenyl)azetidin-2-one (24a)

To a solution of β-lactam 23 ($318 \mathrm{mg}, 1 \mathrm{mmol}$) in 15 mL CCl_{4} added triphenylphosphine ($524 \mathrm{mg}, 2 \mathrm{mmol}$) and a catalytic amount (1 mg) of NaHCO_{3} and the mixture was refluxed for 20 h . The solvent was removed under reduced pressure and the crude material was purified by column chromatography using ($3: 7 \mathrm{EtOAc} /$ hexanes) to give $302 \mathrm{mg}(91 \%)$ of 24a as a solid. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40(1 \mathrm{H}, \mathrm{d}, ~ J=7.5 \mathrm{~Hz}), 7.10$ $7.30(5 \mathrm{H}, \mathrm{m}), 6.80(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{d}$,
$J=1.5 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,156.7,137.1,133.8$, $133.5,132.5,130.3,128.7,128.5,128.4,127.5,126.9$, $118.8,114.5,62.5,55.4$.

4.8. Synthesis of (\pm)-(3S,4S)-4-(2-chlorophenyl)-3-iodoN -(4-methoxy-phenyl)azetidin-2-one (24b)

To a solution of β-lactam 23 ($795 \mathrm{mg}, 2.5 \mathrm{mmol}$) in 20 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NaH}(60 \%$ suspension in mineral oil, $125 \mathrm{mg}, 5 \mathrm{mmol}$) and the mixture was stirred for 15 min . Methanesulfonyl chloride $(342 \mathrm{mg}$, 3 mmol) was then added dropwise to the solution, and the resulting solution was stirred at rt for 30 min . The solution was washed with brine ($3 \times$ 25 mL), the organic layer was dried with anhydrous MgSO_{4}, filtered, and evaporated, and the residue was washed with cold MeOH to give 830 mg as a white solid in 82% yield. To the solution of above compound $(405 \mathrm{mg}, 1 \mathrm{mmol})$ dry DMF was added $\mathrm{NaI}(447 \mathrm{mg}$, 3 mmol) and the resulting solution was heated to $80^{\circ} \mathrm{C}$ for 24 h . After cooling to rt , the solution was concentrated under vacuum. The crude compound was dissolved in EtOAc and washed with water ($3 \times$ 20 mL), and the organic layer was dried with MgSO_{4}, filtered, and evaporated to give $\mathbf{2 4 b}$ in 81% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, 7.25-7.50 ($5 \mathrm{H}, \mathrm{m}$), 6.83-6.89 ($2 \mathrm{H}, \mathrm{m}$), $5.57(1 \mathrm{H}, \mathrm{d}$, $J=2.5 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, \quad J=2.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 162.1, 156.7, 133.5, $130.6,130.2,130.0,129.7,129.7,129.6,126.8,126.5$, $118.8,118.4,118.2,114.0,62.0,21.0$.
4.9. (\pm)-(3S,4S)-3-Azido-N-(4-methoxyphenyl)azetidin-2one (24c)

Brown solid, 81% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.24-7.10 ($4 \mathrm{H}, \mathrm{m}$), 6.80-6.74 ($2 \mathrm{H}, \mathrm{m}$), $5.24(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 164.2,156.2,142.5,133.5$, 132.2, 128.9, 128.7, 128.2, 127.9, 126.8,121.9, 121.5, 114.2, 113.8, 60.8, 52.2.
4.10. Synthesis of (\pm)-(4S)-4-(2-chlorophenyl)- N-(4-meth-oxyphenyl)-3-oxoazetidin-2-one (27)

Phosphorous pentoxide ($0.82 \mathrm{~g}, 2.88 \mathrm{mmol}, 0.7$ equiv) was added to 15 mL of dry DMSO. The resultant mixture was stirred for 5 min , followed by the addition of $23(1.25 \mathrm{~g}, 4.12 \mathrm{mmol}, 1.0$ equiv). The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and showed complete conversion after stirring for 1 h . The reaction mixture was poured into a cold solution of sat. NaHCO_{3} $(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine $(100 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed under reduced pressure to yield a yellow solid, $1.16 \mathrm{~g}(93 \%)$ of $27 ; \mathrm{mp} \quad 127-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \quad$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49-7.41(3 \mathrm{H}, \mathrm{m}), 7.35-7.17$ $(3 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{s}), 3.78$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.5,159.8$, $157.9,133.3,130.5,130.4,129.5,129.2,127.6,119.5$, 114.7, 71.9, 55.4.
4.11. Synthesis of $(\pm)-(3 S, 4 S)-4-(2$-chlorophenyl)-3-cyclo-pentylamino- N -(4-methoxyphenyl)azetidin-2-one (28a)

Cyclopentylamine ($35.6 \mathrm{mg}, 0.33 \mathrm{mmol}$) and compound $27(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ were mixed in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ $(1.32 \mathrm{~mL})$ and then treated with sodium triacetoxyborohydride ($98.6 \mathrm{mg}, 0.465 \mathrm{mmol}$) and $\mathrm{AcOH}(19.8 \mathrm{mg}$, 0.33 mmol). The mixture was stirred at rt under a N_{2} atmosphere for 1 h until the reactants were consumed completely. The reaction mixture was quenched by adding 1 N NaOH , and the product was extracted with ether. The ether extract was washed with brine and dried with MgSO_{4}. The solvent was evaporated to give 28a in 88% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.19$ $(4 \mathrm{H}, \mathrm{m}), 6.90(2 \mathrm{H}, \mathrm{d}, \quad J=8.8 \mathrm{~Hz}), 6.69(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}), 4.97(2 \mathrm{H}, \mathrm{s}), 3.78(1 \mathrm{H}, \mathrm{br}$ s $), 3.69(3 \mathrm{H}, \mathrm{s})$, $1.71(4 \mathrm{H}, \mathrm{m}), 1.33(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 165.8,157.9,140.2,133.2,130.5,130.4$, $129.5,129.2,127.6,127.4,119.5,114.7,55.4,50.0$, 48.4, 42.8, 33.3, 33.2, 27.9, 27.8.

An analogous procedure was used to prepare compounds 28b-d.

4.12. (\pm)-(3S,4S)-3-Benzylamino-4-(2-chlorophenyl)- N -(4-methoxyphenyl)azetidin-2-one (28b)

95% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.12$ $(9 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \quad \mathrm{d}, \quad J=8.8 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}), 4.96(2 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.69$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 164.0, 161.7, 159.4, 137.8, 134.3, 134.1, 133.9, 133.8, 130.4, 129.4, $129.0,128.4,128.2,127.9,127.4,127.1,119.0,114.6$, 55.7, 53.4, 51.7, 43.5 .

4.13. $(\pm)-(3 S, 4 S)-4-(2-C h l o r o p h e n y l)-3-d i e t h y l a m i n o-N-$ (4-methoxyphenyl)azetidin-2-one (28c)

90% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.10(4 \mathrm{H}$, $\mathrm{m}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.65(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.00$ $(2 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.18(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.09(2 \mathrm{H}, \mathrm{q}$, $J=7.1 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{t}, \quad J=7.0 \mathrm{~Hz}), 0.60(3 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,164.2$, $160.7,134.2,132.2,131.1,129.7,129.4,127.5,114.5$, 55.8, 49.3, 42.3, 37.8, 14.0, 12.2.

4.14. (\pm)-(3S,4S)-3-(2-Chlorophenyl)-3-diisobutylaminoN -(4-methoxyphenyl)azetidin-2-one (28d)

98% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.20(4 \mathrm{H}$, $\mathrm{m}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.65(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 4.98$ $(2 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 2.90(4 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.90(1 \mathrm{H}, \mathrm{m})$, $1.45(1 \mathrm{H}, \mathrm{m}), 0.76(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.35(6 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 163.1, 156.2, 136.9, 135.2, 134.2, 134.1, 130.2, 129.4 127.5, $122.3,122.2,114.2,114.0,71.9,60.0,56.2,55.0,41.6$, 28.3, 26.8, 20.6, 20.5, 20.3, 20.2.

4.15. Synthesis of (\pm)-(3R,4S)-3-Allyloxy-4-(2-chlorophenyl)N -(4-methoxyphenyl)azetidin-2-one (31a)

To a solution of β-lactam $23(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ in 25 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added NaH (60% suspension in
mineral oil, $0.26 \mathrm{~g}, 6.6 \mathrm{mmol}$) and the mixture was stirred for 15 min . Allyl bromide $(0.79 \mathrm{~g}, 6.6 \mathrm{mmol})$ was then added, along with 5 mg TBAI (tetrabutylammonium iodide). The mixture was refluxed for 24 h or until the TLC indicated the disappearance of the starting material. The reaction was quenched with a 5% solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted ($3 \times 25 \mathrm{~mL}$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material was purified by column chromatography on silica gel (1:9 EtOAc/hexanes) to give $0.92 \mathrm{~g}(85 \%)$ of 31a as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(1 \mathrm{H}$, d, $J=1.4 \mathrm{~Hz}), \quad 7.40-7.20(5 \mathrm{H}, \mathrm{m}), 6.80(2 \mathrm{H}, \quad$ d, $J=9.0 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 5.09(2 \mathrm{H}, \mathrm{d}$, $J=5.9 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 3.92(2 \mathrm{H}, \mathrm{d}$, $J=5.5 \mathrm{~Hz}$), $3.73(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.8,156.3,133.2,133.0,131.2,130.3,129.4,129.0$, 126.9, 118.6, 118.1, 114.3, 82.5, 71.9, 58.9, 55.4.

4.16. ($\mathbf{4}$)-(3R,4S)-4-(2-Chlorophenyl)-3-methoxymethoxyN -(4-methoxyphenyl)azetidin-2-one (31c)

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), $7.26(5 \mathrm{H}, \mathrm{m}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.64(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}) 4.56(2 \mathrm{H}, \mathrm{s}), 3.74$ $(3 \mathrm{H}, \mathrm{s}), 3.19(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $163.9,156.4,133.3,131.5,130.4,129.5,126.9,118.6$, 114.4, 96.6, 80.4, 58.9, 55.7, 55.4.

4.17. Synthesis of 3-acetoxy- N-(4-methoxyphenyl)-4-phenyl-azetidin-2-one (31e)

To a stirred solution of benzaldehyde N-(4-methoxyphenyl)imine ($5.31 \mathrm{~g}, 25.2 \mathrm{mmol}$) and triethylamine ($7.64 \mathrm{~g}, 75.5 \mathrm{mmol}$) was added a solution of acetoxyacetyl chloride ($\mathbf{2 0}$) ($5.15 \mathrm{~g}, 37.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 10 min . The resultant mixture was stirred at rt until TLC indicated the disappearance of starting material. The solvent was removed under reduced pressure, and the crude material was purified by washing with ice-cold MeOH to give $6.89 \mathrm{~g}(89 \%)$ of 31e in as white solid, mp $153-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.30$ $(5 \mathrm{H}, \mathrm{t}), 7.28(2 \mathrm{H}, \mathrm{d}, \quad J=8.9 \mathrm{~Hz}), 6.79(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), 5.92(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.1,161.2,156.5,132.2,130.2$, 128.7, 128.4, 127.8, 118.7, 61.3, 55.3, 19.7.

4.18. Synthesis of (\pm)-($3 R, 4 S$)- N-(4-methoxyphenyl)-3-methylsulfonyl-4-phenylazetidin-2-one (35a)

Compound 34 ($269 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $60 \mathrm{mg}(1.50 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ in mineral oil, unwashed) was added. After stirring for 30 min at room temperature to the resultant solution methanesulfonyl chloride ($115 \mathrm{mg}, 1.00 \mathrm{mmol}$) was then added dropwise. The resultant solution was then stirred at rt for 30 min . The solution was washed with brine ($3 \times$ 15 mL). The organic layer was dried with anhydrous MgSO_{4}, filtered, and evaporated, and the residue was washed with cold MeOH to give $267 \mathrm{mg}(77 \%)$ of $\mathbf{3 5 a}$ as a white solid in; mp $158-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.39-$
$7.26(7 \mathrm{H}, \mathrm{m}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.02$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2,157.3$, $132.5,131.8,130.2,129.8,129.3,129.1,128.5,128.1$, $119.4,114.9,102.1,79.8,61.9,55.9,39.2$.

An analogous procedure was used to prepare sulfonates 35b and 35c.
 4-phenylazetidin-2-one (35b)

White solid, mp $162-165^{\circ} \mathrm{C}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.05(2 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 7.75-$ $7.60(5 \mathrm{H}, \mathrm{m}), 7.50-7.18(5 \mathrm{H}, \mathrm{m}), 6.79(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7,157.6,136.2,134.5,133.2,132.1,129.6,129.2$, $128.5,128.2,127.8$ (2C), 127.1 (2C), 119.3 (2C), 114.8 (2C), 79.6, 62.1, 55.8.
4.20. $(\pm)-(3 R, 4 S)-N$-(4-Methoxyphenyl)-4-phenyl-3-(4-tol-
uenesulfonyl)azetidin-2-one ($\mathbf{3 5 c}$)

White solid, mp $148-151^{\circ} \mathrm{C}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.36$ $7.28(8 \mathrm{H}, \mathrm{m}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{d}$, $J=4.9 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 2.43$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,157.6$, $147.2,138.8,133.4,131.9,130.2$ (2C), 129.3, 128.5, 128.2, 127.8 (2C), 127.4 (2C), 119.1 (2C), 114.9 (2C), 79.6, 58.1, 55.8, 22.1.

4.21. Synthesis of (\pm)-(3R,4S)-4-(2-chlorophenyl)-3-hy-droxy- N-(4-methoxyphenyl)-3-methylazetidin-2-one (38d)

To a solution of $27(0.496 \mathrm{~g}, 1.65 \mathrm{mmol})$ in 9 mL of anhydrous THF was added methylmagnesium bromide $\left(0.549 \mathrm{~mL}, 1.05 \mathrm{mmol}, 1.0\right.$ equiv) at $-40^{\circ} \mathrm{C}$. The resultant solution was stirred for 1 h . The reaction mixture was quenched by adding an equal volume of 5% ammonium chloride at $-40^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and extracted with EtOAc ($3 \times$ 50 mL). The combined organic layers were dried with MgSO_{4}, and the solvent was removed under reduced pressure to yield a yellow solid, $0.383 \mathrm{~g}(73 \%)$ of $\mathbf{3 8 d}$. No further purification was necessary. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.29-$ $7.19(5 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{s})$, $3.76(3 \mathrm{H}, \mathrm{s}), 1.83(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,156.4,133.5,132.0,130.4,129.7,129.3,128.1$, 126.9, 118.7, 114.4, 83.9, 66.1, 55.4, 21.9.

An analogous procedure was used to prepare compounds 38e,g.

4.22. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-hydroxy-N-(4-methoxyphenyl)-3-(2-propenyl)azetidin-2-one (38e)

Orange oil, 84% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.47(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.33-7.23(5 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}$, d, $J=8.9 \mathrm{~Hz}), 5.99-5.93(1 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{s}), 5.39-$ $5.24(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.90(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.9, 156.4, 133.4, $131.8,130.9,130.4,129.8,129.4,128.4,127.0,120.8$, 118.7, 114.4, 85.6, 63.2, 55.4, 40.1.
4.23. (土)-(3R,4S)-4-(2-Chlorophenyl)-3-hydroxy-N-(4-methoxyphenyl)-3-phenylazetidin-2-one (38g)

Yellow solid, 79% yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.67(2 \mathrm{H}, \mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}), 7.50-7.29(10 \mathrm{H}, \mathrm{m}), 6.85$ $(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,156.6,138.2,133.8,131.4$, $129.9,129.8,128.6,126.9,125.5,118.9,114.4,87.3$, 67.2, 55.4.

4.24. Synthesis of (\pm)-(3R,4S)-3-allyloxy-4-(2-chlorophe-nyl)- N-(4-methoxyphenyl)-3-methylazetidin-2-one (39a)

To a solution of β-lactam $38 d$ ($0.10 \mathrm{~g}, 0.32 \mathrm{mmol}$) in 5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NaH}(60 \%$ suspension in mineral oil, $0.018 \mathrm{~g}, 0.48 \mathrm{mmol}$) and the mixture was stirred for 15 min . Allyl bromide $(0.076 \mathrm{~g}, 0.62 \mathrm{mmol})$ was then added, along with 5 mg TBAI (tetrabutylammonium iodide). The mixture was refluxed for 24 h or until the TLC indicated the disappearance of the starting material. The reaction was quenched with a 5% solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 5 mL). The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material was purified by column chromatography on silica gel ($1: 9 \mathrm{EtOAc} /$ hexanes) to give $0.07 \mathrm{~g}(87 \%)$ of 39a as a yellow semisolid. ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.29-7.13(5 \mathrm{H}$, m), $6.80(2 \mathrm{H}, \mathrm{d}, ~ J=8.8 \mathrm{~Hz}), 5.46-5.35(1 \mathrm{H}, \mathrm{m}), 5.32$ $(1 \mathrm{H}, \mathrm{s}), 4.86-4.79(2 \mathrm{H}, \mathrm{m}), 3.90-3.85(2 \mathrm{H}, \mathrm{m}), 3.73$ $(3 \mathrm{H}, \mathrm{s}), 1.81(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.0,156.3,133.6,133.3,132.1,130.6,129.4,129.1$, 128.7, 126.6, 118.6, 116.0, 114.3, 88.5, 66.9, 65.4, 55.3, 19.4.
4.25. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-methoxymeth-oxy- N-(4-methoxyphenyl)-3-methylazetidin-2-one (39c)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, $7.30-7.17(5 \mathrm{H}, \mathrm{m}), 6.85-6.79(2 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{s}), 4.59$ $(2 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.08(3 \mathrm{H}, \mathrm{s}), 1.84(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2,156.3,133.1,131.3,130.5$, 129.4, 126.7, 118.4, 114.2, 96.6, 81.4, 58.7, 55.6, 55.4, 19.2.
4.26. Synthesis of (\pm)-($3 R, 4 S$)-3-acetoxy-4-(2-chlorophe-nyl)- N -(4-methoxyphenyl)-3-methylazetidin-2-one (40d)

To a solution of $\mathbf{3 8 d}(0.287 \mathrm{~g}, 0.903 \mathrm{mmol}, 2.0$ equiv) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NaH}(0.072 \mathrm{~g}, 3.01 \mathrm{mmol})$. The resultant suspension was stirred until the bubbling stopped, and then acetyl chloride $(0.077 \mathrm{~mL}$, $1.08 \mathrm{mmol}, 1.2$ equiv) was added via syringe. The reaction was followed by TLC and showed that the reaction was complete immediately after adding the acetyl chloride. The reaction was quenched by adding a 1% solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, and the solvent was removed under
reduced pressure to yield a yellow oil, 0.275 g (85%) of 40d. No further purification was necessary. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.29-7.12(5 \mathrm{H}, \mathrm{m}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 5.47(1 \mathrm{H}$, s), $3.75(3 \mathrm{H}, \mathrm{s}), 1.94(3 \mathrm{H}, \mathrm{s}), 1.60(\mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,164.4,156.4,134.0,130.8$, $130.4,129.4,129.3,129.2,126.4,118.5,114.3,86.5$, 64.8, 55.3, 20.2, 19.8.

An analogous procedure was used to prepare compounds 40e,g.
4.27. $(\pm)-(3 R, 4 S)$-3-Acetoxy-4-(2-chlorophenyl)- N-(4-methoxyphenyl)-3-(2-propenyl)azetidin-2-one (40e)

Orange oil, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.42(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.23(4 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 7.17$ $(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 5.93(1 \mathrm{H}$, $\mathrm{m}), 5.56(1 \mathrm{H}, \mathrm{s}), 5.29(2 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.09(2 \mathrm{H}$, $\mathrm{d}, J=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3$, $163.5,156.5,134.0,130.8,130.3,129.9,129.5,126.4$, 121.1, 118.6, 114.4, 88.4, 61.8, 55.4, 37.5, 20.2.
4.28. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)- N-(4-methoxyphenyl)-3-phenylazetidin-2-one (40 g)

Yellow oil, 85% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.81(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.46-7.29(9 \mathrm{H}, \mathrm{m}), 6.83(1 \mathrm{H}$, $\mathrm{d}, J=8.9 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.8,162.6,156.6$, $134.7,130.8,129.8,129.7,129.2,128.9,128.5,126.9$, 126.4, 118.8, 114.4, 89.7, 63.5, 55.4, 20.3.

4.29. Synthesis of (\pm)-(3S,4S)-3-ahloro-4-(2-chlorophe-

 nyl)-azetidin-2-one (25a)To a solution of lactam $24 \mathrm{a}(0.335 \mathrm{~g}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.2 \mathrm{~mL})$ at rt was added dropwise a solution of ceric ammonium nitrate $(1.64 \mathrm{~g}, 3.00 \mathrm{mmol})$ in 1.5 mL water. The reaction was stirred for 5 min and then diluted with EtOAc $(20 \mathrm{~mL})$. The resultant solution was washed sequentially with water (20 mL), $5 \% \mathrm{NaH}$ $\mathrm{CO}_{3}(2 \times 20 \mathrm{~mL}), 5 \% \mathrm{NaHSO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4}, filtered, and evaporated, and the residue was chromatographed on silica gel (1:2 EtOAc/hexanes) to give $0.172 \mathrm{~g}(75 \%)$ of $\mathbf{2 5 a}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10-7.50(\mathrm{~m}, 4 \mathrm{H}), 5.10(1 \mathrm{H}, \mathrm{d}$, $J=1.5 \mathrm{~Hz}), \quad 4.49(1 \mathrm{H}, \quad \mathrm{d}, \quad J=2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.7,134.7,132.9,129.9,129.8$, 127.3, 126.2, 63.4, 59.7.

An analogous procedure was used to prepare compounds 25b-c, 29a-d, 32a-c, 36a-c, and 41a-g.
4.30. (\pm)-(3S,4S)-4-(2-Chlorophenyl)-3-iodoazetidin-2one (25b)

Yellow oil in 72% yield; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.50(1 \mathrm{H}, \mathrm{m}), 7.10-7.30(4 \mathrm{H}, \mathrm{m}), 6.50(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.62(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,135.9,132.9,129.8$, 127.3, 126.8, 125.9, 59.6, 21.8.
4.31. (\pm)-(3S,4S)-3-Azido-4-(2-chlorophenyl)azetidin-2one (25 c)

Yellow oil, ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.19$ $(4 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.33$ $(1 \mathrm{H}, \mathrm{d}, \quad J=1.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.1, 142.3, 132.2, 128.4, 128.2, 128.0, 126.7, 64.2, 44.3.
4.32. (\pm)-(3S,4S)-4-(2-Chlorophenyl)-3-propylaminoazeti-din-2-one (29a)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.31-7.12$ $(4 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, $3.83\left(1 \mathrm{H}, \mathrm{br}\right.$ s), $1.84(4 \mathrm{H}, \mathrm{m}), 1.43(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.5,140.4,133.2,130.4,129.5$, 129.2, 127.6, 55.4, 42.7, 42.5, 33.3, 33.2, 27.9, 27.6.
4.33. (\pm)-(3S,4S)-3-Benzylamino-4-(2-chlorophenyl)azeti-din-2-one (29b)
86% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(1 \mathrm{H}, \mathrm{br}$ s), $7.33-7.16(9 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 4.42(1 \mathrm{H}$, $\mathrm{d}, J=6.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.6$, $160.0,137.0,134.7,130.4,130.3,130.1,130.0,129.7$, 129.6, 129.2, 128.3, 127.6, 55.7, 51.8, 43.6.
4.34. (\pm)-(3S,4S)-4-(2-Chlorophenyl)-3-diethylaminoaz-etidin-2-one (29c)
80% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(1 \mathrm{H}, \mathrm{br}$ s), $7.28-7.19(4 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.49(1 \mathrm{H}$, $\mathrm{d}, J=5.2 \mathrm{~Hz}), 3.18(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 3.09(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), \quad 1.15(6 \mathrm{H}, \quad \mathrm{t}, \quad J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.9,134.2,132.2,131.1,129.7$, $129.4,127.5,55.8,49.3,42.3,37.8,14.0,12.2$.
4.35. $(\pm)-(3 S, 4 S)-4-(2-C h l o r o p h e n y l)-3-d i i s o b u t y l a m i n o-~$ azetidin-2-one (29d)
78% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.20$ $(4 \mathrm{H}, \mathrm{m}), 6.96(2 \mathrm{H}, \mathrm{d}, \quad J=8.8 \mathrm{~Hz}), 6.65(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}), 4.98(2 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 2.90(4 \mathrm{H}, \mathrm{t}$, $J=6.6 \mathrm{~Hz}), 1.90(1 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{m}), 0.76(6 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), \quad 0.35(6 \mathrm{H}, \quad \mathrm{d}, \quad J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.1,136.9,135.2,134.1,130.2$, 129.4 127.5, 71.9, 56.2, 55.0, 41.6, 28.3, 26.8, 20.6, 20.5, 20.3, 20.2.

4.36. (\pm)-(3R,4S)-3-Allyloxy-4-(2-chlorophenyl)-azetidin-2-one (32a)

Brown semi-solid 69% yield; ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.50-7.26(4 \mathrm{H}, \mathrm{m}), 6.25(1 \mathrm{H}$, br s), $5.70-$ $5.55(1 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}) 5.11-4.99(2 \mathrm{H}$, $\mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 3.93-3.89(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.7, 133.8, 133.2, 129.1, 128.4, 126.9, 117.8, 84.6, 71.8, 56.0.
4.37. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-propoxyazetidin-2-one (32b)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz})$, $7.46-7.27(3 \mathrm{H}, \mathrm{m}), 6.30(1 \mathrm{H}$, br s), $5.26(1 \mathrm{H}, \mathrm{d}$,
$J=4.5 \mathrm{~Hz}) 4.91(1 \mathrm{H}, \mathrm{d}, ~ J=4.5 \mathrm{~Hz}), 3.47-3.38(1 \mathrm{H}$, m), 3.25-3.19 (1H, m), 1.33-1.24 (2H, m), $0.54(3 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.6, $133.9,133.0,129.2,129.0,128.4,126.8,85.8,73.1$, 56.1, 22.6, 10.0.
4.38. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-methoxymeth-oxy-azetidin-2-one (32c)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.26(4 \mathrm{H}, \mathrm{m}), 6.26$ $(1 \mathrm{H}$, br s), $5.29(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), 4.55(2 \mathrm{H}, \mathrm{s}), 3.21(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.3,133.3,129.9,128.7,128.5$, 127.7, 126.8, 96.1, 84.2, 57.3, 50.2.
4.39. (\pm)-(3R,4S)-3-Methylsulfonyl-4-phenylazetidin-2one (36a)

Yellow oil in 90% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.36-7.19 (5H, m), $6.58(1 \mathrm{H}$, br s), $5.71(1 \mathrm{H}, \mathrm{d}$, $J=4.9 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 2.68(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.7,134.2,129.6,129.1$, 128.7, 128.5, 127.8, 81.7, 58.2, 39.2.

4.40. (\pm)-(3R,4S)-3-Benzenesulfonyl-4-phenylazetidin-2-one (36b)

Yellow oil, 88% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.05(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.78-7.63(6 \mathrm{H}, \mathrm{m}), 7.48-7.20$ $(3 \mathrm{H}, \mathrm{m}), 6.42(1 \mathrm{H}$, br s), $5.83(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.41$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $164.2,136.0,134.5,134.3,129.6,129.2,128.9,128.5$, $128.2,128.1,127.3,127.1,116.5,81.5,58.4$.

4.41. (\pm)-(3R,4S)-4-Phenyl-3-(4-toluenesulfonyl)azetidin-2-one (36c)

Yellow oil, 85% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.45-7.18(9 \mathrm{H}, \mathrm{m}), 6.41(1 \mathrm{H}$, br s), $5.69(1 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 2.41(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.3,136.1,134.6,134.4$, $130.0,129.3,129.0,128.5,128.3,128.2,126.6$ (2C), 125.1 (2C), 81.6, 58.5.
4.42. (\pm)-(3R,4S)-3-Allyloxy-4-(2-chlorophenyl)-3-methylazetidin-2-one (41a)
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.26(4 \mathrm{H}, \mathrm{m})$, $6.25(1 \mathrm{H}$, br s), $5.39-5.35(1 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{s})$, 4.86-4.78 (2H, m), 3.82-3.79 (2H, m), $1.80(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \quad 170.5,134.5,133.7$, 133.1, 129.2, 128.8, 127.8, 126.6, 116.0, 90.8, 66.8, 62.6, 20.1 .
4.43. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-methyl-3-propyl-oxyazetidin-2-one (41b)
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46-7.27(4 \mathrm{H}, \mathrm{m})$, $6.65(1 \mathrm{H}$, br s), $4.93(1 \mathrm{H}$, s $), 3.25-3.15(2 \mathrm{H}, \mathrm{m})$, $1.74(3 \mathrm{H}, \mathrm{s}), 1.18-1.04(2 \mathrm{H}, \mathrm{m}), 0.47(3 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2$, $133.2,130.3,129.0,127.1,126.5,126.2,89.8,63.2$, $22.5,19.2,10.2$.
4.44. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-methoxymeth-oxy-3-methylazetidin-2-one (41c)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.22(4 \mathrm{H}, \mathrm{m}), 6.71$ $(1 \mathrm{H}, \mathrm{br}$ s $), 4.93(1 \mathrm{H}, \mathrm{s}), 4.52(2 \mathrm{H}, \mathrm{s}), 3.05(3 \mathrm{H}, \mathrm{s}), 1.80$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,134.7$, 133.1, 129.2, 128.9, 127.8, 126.7, 93.0, 89.8, 62.6, 55.6, 20.3.

4.45. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)-3-meth-yl-azetidin-2-one (41d)

Brown oil, 94% yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.49-7.18 (4H, m), $5.00(1 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{s}), 1.54$ $(3 \mathrm{H}, ~ \mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4$, $168.4,133.2,133.1,129.0,128.8,126.4,88.1,62.2$, 29.6, 20.1.
4.46. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)-3-(2-pro-pen-yl)azetidin-2-one (41e)

Brown oil, 35% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.51-7.37(1 \mathrm{H}, \mathrm{m}), 7.36-7.23(3 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 5.99-5.92 ($1 \mathrm{H}, \mathrm{m}$), $5.37-5.25(2 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}, \mathrm{d}$, $J=1.5 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.58(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,163.4,156.4,133.9$, $130.8,129.9,129.4,126.4,120.9,118.5,114.3,88.3$, 55.3, 37.5, 20.1.
4.47. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)-3-propy-lazetidin-2-one (41f)

Brown oil, 91% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.48-7.18 (4H, m), $6.65(1 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{s}), 2.35-2.11$ $(2 \mathrm{H}, \mathrm{m}), 1.72-1.50(2 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s})$, $0.98(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1,168.6,133.2,133.1,129.1,128.9,126.4,115.9$, $90.0,60.6,36.1,20.0,16.6,14.1$.

4.48. $(\pm)-(3 R, 4 S)$-3-Acetoxy-4-(2-chlorophenyl)-3-phenyl-azetidin-2-one (41g)

Brown oil, 95% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.75(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.36-7.23(3 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}$, br s), $5.99-5.92(1 \mathrm{H}, \mathrm{m}), 5.37-5.25(2 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}$, $\mathrm{d}, J=1.5 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.58(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.0,167.7,134.8$, $133.9,133.1,129.4,129.2,128.9,128.8,128.5,126.4$, 126.0, 91.6, 61.9, 20.3.
4.49. Synthesis of (\pm)-(3S,4S)-3-chloro-4-(2-chlorophe-nyl)- N -methylthioazetidin-2-one (19a)

To a solution of $\mathbf{2 5 a}(0.027 \mathrm{~g}, 0.13 \mathrm{mmol})$ in benzene were added N-methylthiophthalimide $\quad(0.025 \mathrm{~g}$, 0.133 mmol) and 1 drop of triethylamine. The mixture was refluxed overnight and washed with $1 \% \mathrm{KOH}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude material was purified by column chromatography (1:4 $\mathrm{EtOAc} / \mathrm{hexanes}$) to yield $0.021 \mathrm{~g}(71 \%)$ of 19 a as a brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.40$ $(4 \mathrm{H}, \mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{d}, \quad J=1.5 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}$,
$J=2.0 \mathrm{~Hz}), 2.50(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,131.2,130.4,128.5,127.2,66.2,62.5,20.6$.

An analogous procedure was used to prepare compounds 19b-c, 26a-d, 30a-c, 33a-c, 37a-g, 43a-b, 43fj, 431, 43n, and 43q-t.
4.50. (\pm)-($3 S, 4 S$)-4-(2-Chlorophenyl)-3-iodo- N-methylthi-oazetidin-2-one (19b)

Brown oil, 86% yield ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(1 \mathrm{H}, \mathrm{d}, \quad J=3.5 \mathrm{~Hz}), 7.39-7.36(2 \mathrm{H}, \mathrm{m}), \quad 7.10-7.20$ $(1 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{d}$, $J=2.5 \mathrm{~Hz}), 2.58(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.6,134.2,133.8,130.2,127.5,127.1,126.7,66.4$, 21.4, 20.3.

4.51. (土)-(3S,4S)-3-Azido-3-(2-chlorophenyl)- N-meth-ylthioazetidin-2-one (19c)

Yellow solid, 83% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.35-7.19(4 \mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 2.37(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $168.2,142.5,133.5,128.9,128.7,128.2,128.0,60.8,52.2$, 20.8.
4.52. (\pm)-(3S,4S)-N-Methylthio-3-propylaminoazetidin-2one (26a)
68% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.16$ $(4 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.41$ $(3 \mathrm{H}, \mathrm{s}), 1.85(4 \mathrm{H}, \mathrm{m}), 1.47(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{2}$ ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.5,140.2,133.2,130.4,129.5$, 127.6, 127.4, 48.8, 47.7, 42.7, 33.3, 33.2, 27.8, 27.7, 20.2.
4.53. (\pm)-(3S,4S)-3-Benzylamino- N-methylthioazetidin-2one (26b)
64% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.05$ $(6 \mathrm{H}, \mathrm{m}), 6.61(3 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 2.41(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 187.5,160.0,137.0,134.7,130.4,130.3$, $130.1,130.0,129.7,129.6,129.2,128.3,127.6,55.7$, 51.8, 43.6, 19.4.

4.54. (\pm)-(3S,4S)-3-Diethylamino- N-methylthioazetidin-

 2-one (26c)54% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(1 \mathrm{H}, \mathrm{br}$ s), $7.28-7.19(4 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.49(1 \mathrm{H}$, $\mathrm{d}, J=5.2 \mathrm{~Hz}), 3.18(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 3.09(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 2.41(3 \mathrm{H}, \mathrm{s}), 1.15(6 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.2,134.5,129.2,128.9$, $128.7,128.2,127.8,60.8,54.2,48.6,26.2,25.8,20.8$, 11.4, 11.3.
4.55. (\pm)-(3S,4S)-3-Diisobutylamino- N-methylthioazeti-din-2-one (26d)
48% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.13$ $(4 \mathrm{H}, \mathrm{m}), 4.48(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 3.59(2 \mathrm{H}, \mathrm{d}$, $J=7.5 \mathrm{~Hz}), 3.13(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 1.99(1 \mathrm{H}, \mathrm{m}) 1.96$ $(1 \mathrm{H}, \mathrm{m}), 0.81(12 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 173.1,140.2,136.9,130.2,129.4$ 127.5, 127.2, 49.9, $48.2,41.6,41.3,39.2,27.3,26.8,23.5,23.4,20.2$.
4.56. (\pm)-(3R,4S)-3-Allyloxy-4-(2-chlorophenyl)- N-meth-ylthioazetidin-2-one (30a)
25% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(1 \mathrm{H}, \mathrm{d}$, $J=5.8 \mathrm{~Hz}), 7.38-7.27(3 \mathrm{H}, \mathrm{m}), 5.62-5.51(1 \mathrm{H}, \mathrm{m}), 5.34$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.06(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.99$ $(1 \mathrm{H}, \mathrm{d}, ~ J=4.8 \mathrm{~Hz}), 3.93-3.78(2 \mathrm{H}, \mathrm{m}), 2.45(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.4,133.7,132.8$, $131.6,129.5,129.4,129.1,126.7,118.0,84.4,71.6$, 62.8, 21.7.
4.57. (\pm)-(3R,4S)-4-(2-Chlorophenyl)- N-methylthio-3-prop-oxyazetidin-2-one (30b)
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz})$, $7.27-7.24(3 \mathrm{H}, \mathrm{m}), 5.32(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 3.38-3.32(1 \mathrm{H}, \mathrm{m}), 3.09-3.04(1 \mathrm{H}, \mathrm{m}), 2.42$ $(3 \mathrm{H}, \mathrm{s}), 1.27-1.19(2 \mathrm{H}, \mathrm{m}), 0.49(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,134.6,133.8,131.6$, 129.4, 129.1, 126.6, 85.6, 72.9, 63.0, 22.4, 21.8, 10.0.
4.58. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-methoxymethoxy-N-methylthioazetidin-2-one (30c)
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz})$, $7.38-7.26(3 H, m), 5.37(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 3.14(3 \mathrm{H}, \mathrm{s}), 2.47$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,134.6$, $131.8,129.5,129.4,128.8,126.8,96.3,82.2,62.8,55.7$, 21.7.
4.59. (\pm)-(3R,4S)-3-Methylsulfonyl- N-methylthio-4-phenyl-azetidin-2-one (33a)

Yellow solid in 72% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.26(5 \mathrm{H}, \mathrm{m}), 5.91(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}), 5.54(1 \mathrm{H}$, d, $J=5.3 \mathrm{~Hz}), 2.96(3 \mathrm{H}, \mathrm{s}), 2.53(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz): $\delta 165.7,133.2,129.4,129.0,128.7,127.4$, 126.0, 79.9, 60.9, 38.0, 20.9.

4.60. (\pm)-($\mathbf{3 R}, 4 S$)-3-Benzenesulfonyl- N-methylthio-4-phenylazetidin-2-one (33b)

Yellow oil, 55% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.64-7.57(3 \mathrm{H}, \mathrm{m}), 7.45-7.39(2 \mathrm{H}, \mathrm{m}), 7.30-7.21(5 \mathrm{H}$, m), $5.85(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz})$, $2.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2$, $134.5,133.5,133.2,129.2,128.9,128.7,128.2,128.0$, $127.8,127.6,126.7,125.8,80.0,60.8,20.8$.

4.61. (\pm)-(3R,4S)-N-(Methylthio)-4-phenyl-3-(4-toluene-sulfonyl)azetidin-2-one (33c)

Yellow solid, $\mathrm{mp} 85-87^{\circ} \mathrm{C}, 74 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.26(5 \mathrm{H}, \mathrm{m}), 7.19-7.15$ $(4 \mathrm{H}, \mathrm{m}), \quad 5.74(1 \mathrm{H}, \quad \mathrm{d}, J=5.0 \mathrm{~Hz}), \quad 4.88(1 \mathrm{H}, \mathrm{d}$, $J=5.0 \mathrm{~Hz}), \quad 2.40(3 \mathrm{H}, \mathrm{s}), 2.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,145.3,132.4,132.0,129.8$, 129.2, 129.0, 128.5, 127.8 (2C), 126.8 (2C), 80.6, 66.0, 22.1, 21.7.
4.62. (\pm)-(3R,4S)-3-Allyloxy-4-(2-chlorophenyl)-3-methyl-N-methylthioazetidin-2-one (37a)
26% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.26$ $(4 \mathrm{H}, \mathrm{m}), 5.41-5.34(1 \mathrm{H}, \mathrm{m}), 5.05(1 \mathrm{H}, \mathrm{s}), 4.84-4.77$ $(2 \mathrm{H}, \mathrm{m}), 3.83-3.75(2 \mathrm{H}, \mathrm{m}), 2.48(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.7,133.8,129.7$, $129.5,128.9,126.9,116.4,85.6,69.5,67.1,21.5,19.1$.
4.63. (土)-(3R,4S)-4-(2-Chlorophenyl)-3-methyl- N-methyl-thio-3-propoxyazetidin-2-one (37b)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.28(4 \mathrm{H}, \mathrm{m}), 4.51$ $(1 \mathrm{H}, \mathrm{s}), 3.33-3.29(1 \mathrm{H}, \mathrm{m}), 3.04-3.01(1 \mathrm{H}, \mathrm{m}), 2.40(3 \mathrm{H}$, s), $1.61(3 \mathrm{H}, \mathrm{s}), 1.23-1.14(2 \mathrm{H}, \mathrm{m}), 0.59(3 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8$, $133.4,130.4,129.2,127.3,126.9,126.4,88.5,64.1$, $23.0,19.5,16.1,10.2$.
4.64. (\pm)-(3R,4S)-4-(2-Chlorophenyl)-3-methoxymethoxy-3-methyl- N-methylthioazetidin-2-one (37c)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7-.18(4 \mathrm{H}, \mathrm{m}), 4.98$ $(1 \mathrm{H}, \mathrm{s}), 4.46(2 \mathrm{H}, \mathrm{s}), 3.01(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}$, $\mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.1,134.2,130.4$, 128.6, 128.4, 127.9, 126.9, 96.3, 85.1, 57.8, 51.2, 20.0, 16.2.
4.65. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)-3-methyl-N-methylthioazetidin-2-one (37d)

Yellow oil in 40% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.39-7.38(1 \mathrm{H}, \mathrm{m}), 7.26(3 \mathrm{H}, \mathrm{s}), 5.15(1 \mathrm{H}, \mathrm{s}), 2.49(3 \mathrm{H}$, s), $1.85(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(63 \mathrm{MHz}$, CDCl_{3}): $\delta 171.1,168.1,134.3,131.2,129.5,129.4$, $128.9,126.3,88.1,68.9,21.3,20.1,19.5$.
4.66. $(\pm)-(3 R, 4 S)$-3-Acetoxy-4-(2-chlorophenyl)- N-meth-ylthio-3-(2-propenyl)azetidin-2-one (37e)

Yellow oil, 33% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.40-7.37 (1H, m), $7.26(3 \mathrm{H}, \mathrm{br}$ s), $5.93-5.27(2 \mathrm{H}, \mathrm{m})$, $5.30(1 \mathrm{H}, \mathrm{s}), 3.03-2-.96(2 \mathrm{H}, \mathrm{m}), 2.48(3 \mathrm{H}, \mathrm{s}), 1.58$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,168.1$, $134.3,131.2,129.5,129.1126 .3,121.5,89.9,65.3,37.2$, 21.8, 20.1 .
4.67. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)-N-methyl-thio-3-propylazetidin-2-one (37f)

Yellow oil, 33% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.38(1 \mathrm{H}, \mathrm{m}), 7.27(3 \mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s})$, 2.33-2.10 $(2 \mathrm{H}, \mathrm{m}), 1.72-1.46(2 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s})$, $0.99(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,168.3,134.3,131.2,129.5,91.0,67.0,35.6$, $21.5,20.1,16.7,14.1$.
4.68. (\pm)-(3R,4S)-3-Acetoxy-4-(2-chlorophenyl)-N-methyl-thio-3-phenylazetidin-2-one (37g)

Yellow oil, 40% yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.73(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.44-7.32(7 \mathrm{H}, \mathrm{m}), 5.87(1 \mathrm{H}$, s), $2.51(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz ,
$\left.\mathrm{CDCl}_{3}\right): ~ \delta 169.3,167.6,135.3,134.1,131.2,128.9$, $129.7,129.1,129.0,128.6,126.8,126.3,91.8,67.2$, 21.8, 20.3.
4.69. (\pm)-(3R,4S)-4-(3-Chlorophenyl)-3-methoxyazetidin-2-one (43a)

White solid; mp $110-111^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.30-7.20(4 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}$, brs $), 4.76(1 \mathrm{H}$, $\mathrm{d}, ~ J=4.5 \mathrm{~Hz}), 4.69-4.67(1 \mathrm{H}, \mathrm{m}), 3.13(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,137.9,129.6,128.5$, 127.7, 125.8, 86.7, 58.3, 57.6.
4.70. (\pm)-(3R,4S)-4-(4-Chlorophenyl)-3-methoxy-N-methyl-thioazetidin-2-one (43b)

White crystals; mp $62-66^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.33(2 \mathrm{H}, \mathrm{d}, \quad J=8.5 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 4.73(2 \mathrm{H}, \mathrm{s}), 3.13(3 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,134.9,130.2,128.6$, 86.5, 65.5, 58.4, 22.1.
4.71. (\pm)-(3R,4S)-4-(2-Iodophenyl)-3-methoxy- N-methyl-thioazetidin-2-one (43f)

White crystals; mp $62-65^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.80(1 \mathrm{H}, \mathrm{d}, \quad J=7.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{t}, \quad J=8.0 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, \quad J=5.0 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.7,139.9,136.2,130.6,129.3$, 128.6, 99.8, 87.1, 70.4, 59.6, 22.2.
4.72. (\pm)-(3R,4S)-4-(3-Iodophenyl)-3-methoxy-N-methyl-thioazetidin-2-one (43g)

White crystals; mp $97-99^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.65(2 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.08$ $(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.73-4.67(2 \mathrm{H}, \mathrm{AB} \mathrm{m}), 3.13(3 \mathrm{H}$, s), $2.32(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6$, $138.4,138.2,136.4,130.5,128.5,94.5,87.0,65.8,58.3$, 22.6.
4.73. (\pm)-(3R,4S)-4-(4-Iodophenyl)-3-methoxy- N-methyl-thioazetidin-2-one (43h)

White solid; mp $102-105{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.65(2 \mathrm{H}, \mathrm{d}, \quad J=8.3 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{t}$, $J=8.3 \mathrm{~Hz}), 4.70(2 \mathrm{H}$, app s), $3.10(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}$, $\mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.1,137.5,133.2$, 130.7, 94.9, 86.4, 65.6, 58.4, 22.1.
4.74. (\pm)-(3R,4S)-4-(2,4-Dichlorophenyl)-3-methoxy- N -methylthioazetidin-2-one (43i)

Yellow crystals; mp $102-105{ }^{\circ} \mathrm{C} ; \quad{ }^{1} \mathrm{H} \quad$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), \quad 7.16(1 \mathrm{H}, \mathrm{t}, \quad J=8.2 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}$, $J=4.6 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 3.19(3 \mathrm{H}, \mathrm{s})$, $2.40(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5$, 135.3, 134.9, 130.6, 130.3, 129.9, 127.7, 87.1, 62.6, 59.4, 22.2.
4.75. (\pm)-(3R,4S)-4-(2,6-Dichlorophenyl)-3-methoxy- N -methylthioazetidin-2-one (43j)

Pale yellow solid; mp $77-80{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.23(1 \mathrm{H}, \mathrm{t}, \quad J=8.1 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{d}$, $J=5.3 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 3.30(3 \mathrm{H}, \mathrm{s}), 2.44$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,131.1$, 130.1, 128.8, 88.0, 62.9, 59.2, 21.6.
4.76. (\pm)-(3R,4S)-3-Methoxy-4-(2-methoxyphenyl)azeti-din-2-one (43I)

White solid; mp $120-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.27-07.24(1 \mathrm{H}$, app m), 7.190-7.15 ($1 \mathrm{H}, \mathrm{m}$), $6.95(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 5.27$ $(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 3.80(3 \mathrm{H}$, s), $3.12(3 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 170.9,157.7,129.5,128.5,121.5,120.4$, $110.3,86.5,60.2,58.5,55.4,21.8$.

4.77. (土)-(3R,4S)-3-Methoxy-N-methylthio-4-(2-nitro-phenyl)-azetidin-2-one (43n)

Yellow solid; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(1 \mathrm{H}$, $\mathrm{d}, J=8.2 \mathrm{~Hz}), 7.66-7.63(1 \mathrm{H}, \mathrm{m}), 7.50-7.41(2 \mathrm{H}, \mathrm{m})$, $5.49(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 3.23$ $(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s})$.
4.78. (\pm)-(3R,4S)-3-Methoxy- N-methylthio-4-(4-prope-nyl-oxyphenyl)azetidin-2-one (43q)
White solid; $\mathrm{mp} 87-88{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.50$ $(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{dd}, J=17.1,10.3 \mathrm{~Hz})$, $5.92(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz})$, $4.69(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 3.05(3 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,164.2,150.9,132.9$, 131.1, 129.9, 127.7, 121.4, 86.5, 65.5, 58.3, 22.0.
4.79. (\pm)-(3R,4S)-4-(4-Hydroxyphenyl)-3-methoxy- N -methylthioazetidin-2-one (43r)

White solid; mp $119-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.18(2 \mathrm{H}, \quad \mathrm{d}, \quad J=9.0 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 5.73(1 \mathrm{H}$, br s), $4.69(2 \mathrm{H}$, app s), 3.11 $(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $170.9,168.5,130.4,124.9,115.4,65.9,58.3,22.1$.
4.80. $(\pm)-(3 R, 4 S)-4$-Biphenyl-3-methoxy- N-methylthioaz-
etidin-2-one (43s)

Light yellow solid; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ $(4 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.43-7.34(5 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{d}$, $J=4.3 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.12(3 \mathrm{H}, \mathrm{s}), 2.33$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,142.3$, 141.6, 135.8, 129.1, 128.2, 127.5, 127.4, 87.5, 59.1, 58.3.
4.81. (\pm)-(3R,4S)-4-Fluorenyl-3-methoxy- N-methylthioaz-etidin-2-one (43t)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(2 \mathrm{H}$, $\mathrm{d}, J=7.5 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.34-7.24(3 \mathrm{H}$,
$\mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz})$, $3.88(2 \mathrm{H}, \mathrm{s}), 3.14(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s})$.

4.82. Testing of antimicrobial susceptibilities (Kirby-Bauer well diffusion)

Staphylococcus aureus (ATCC 25923) and MRSA (ATCC 43300 and 33591) were purchased from ATCC sources. Eight additional strains of MRSA were obtained from Lakeland Regional Medical Center (Lakeland, FL).

4.83. Culture preparation

From a freezer stock in tryptic soy broth (Difco Laboratories, Detroit, MI) and 20% glycerol, a culture of each microorganism was transferred with a sterile Dacron swab to Trypticase ${ }^{\circledR}$ Soy Agar (TSA) plates (BectonDickinson Laboratories, Cockeysville, MD), streaked for isolation, and incubated at $37^{\circ} \mathrm{C}$ for 24 h . A 10^{8} standardized cell count suspension was then made in sterile phosphate-buffered saline (pH 7.2) and swabbed across fresh TSA plates.

4.84. Antimicrobiological testing

Prior to swabbing with the culture solution, $20 \mu \mathrm{~L}$ of a $1 \mathrm{mg} / \mathrm{mL}$ stock solution of the test lactam compound in dimethylsulfoxide (DMSO) was added to a $6-\mathrm{mm}$ diameter well bored into the agar. The plates were swabbed uniformly with the test microbe compound above and then incubated for 24 h at $37^{\circ} \mathrm{C}$. The antimicrobial susceptibilities were determined by measuring the zones of growth inhibition around each well.

4.85. Determination of minimum inhibitory concentrations

The minimum inhibitory concentration (MIC) values of the lactams were determined for S. aureus and MRSA by serial dilution, according to NCCLS protocols. ${ }^{19}$ The test medium was prepared in 24 -well plates (Costar 3524, Cambridge, MA) by adding the test drug in DMSO to Mueller-Hinton II agar (Becton-Dickinson Laboratories, Cockeysville, MD) to bring the total volume in each well to 1.0 mL . Starting with an initial well concentration of $256 \mu \mathrm{~g}$ of drug $/ \mathrm{mL}$, each sequential dilution contained half the concentration of the drug. The medium was allowed to solidify at room temperature for 24 h before inoculation with the bacteria. Using a sterilized inoculating loop, a small amount of each standardized Staphylococcus strain cultured on TSA plates for 24 h was transferred into sterile test tubes containing 5 mL TSA broth and incubated at $37^{\circ} \mathrm{C}$ for 24 h . One microliter of each culture was then applied to the appropriate well of Mueller-Hinton agar and incubated at $37^{\circ} \mathrm{C}$ overnight. After 24 h , the MICs were determined as the lowest concentration of the drug where bacterial growth was visibly inhibited.

Acknowledgments

Funding for this research was generously provided by the National Institutes of Health (R01 AI51351). We
are grateful to Dr. Josefa Anaya and Professor Manuel Grande, Departamento de Quimica Organica, Universidad de Salamanca, Spain, for providing us with a sample of compound 12.

References and notes

1. Turos, E.; Konaklieva, M. I.; Ren, R. X. F.; Shi, H.; Gonzalez, J.; Dickey, S.; Lim, D. Tetrahedron 2000, 56, 5571.
2. (a) Ren, X.-F.; Konaklieva, M. I.; Shi, H.; Dickey, S.; Lim, D. V.; Gonzalez, J.; Turos, E. J. Org. Chem. 1998, 63, 8898; (b) Ren, X.-F.; Konaklieva, M. I.; Turos, E. J. Org. Chem. 1995, 60, 4980.
3. Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic Press: New York, 1982; Vols. 1-3.
4. (a) Long, T. E.; Turos, E.; Konaklieva, M. I.; Blum, A. L.; Amry, A.; Baker, E. A.; Suwandi, L. S.; McCain, M. D.; Rahman, M. F.; Sonja Dickey, S.; Lim, D. V. Bioorg. Med. Chem. 2003, 11, 1859; (b) Kazi, A.; Hill, R.; Long, T. E.; Kuhn, D. J.; Turos, E.; Dou, Q. P. Biochem. Pharmacol. 2004, 67, 365.
5. Turos, E.; Long, T. E.; Konaklieva, M. I.; Coates, C.; Shim, J.-Y.; Dickey, S.; Lim, D. V.; Cannons, A. Bioorg. Med. Chem. Lett. 2002, 12, 2229.
6. Coates, C.; Long, T. E.; Turos, E.; Dickey, S.; Lim, D. V. Bioorg. Med. Chem. 2003, 11, 193-196.
7. Konaklieva, M. I., Ph.. Dissertation, SUNY at Buffalo, 1997.
8. Coates, C.; Ph.D. Dissertation, University of South Florida, 2004.
9. Mickel, S. Aldrichim. Acta 1985, 18, 2259.
10. Woulfe, S. R.; Iwagami, H.; Miller, M. J. Tetrahedron Lett. 1985, 26, 3891.
11. Kraus, G. A.; Neuenschwander, K. J. Chem. Soc. Chem. Comтип. 1982, 134.
12. Bose, A. K.; Anjaneyulu, B.; Bhattacharya, S. K.; Manhas, M. S. Tetrahedron 1967, 23, 4769.
13. Ren, X. F.; Turos, E. J. Org. Chem. 1994, 59, 5858.
14. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849.
15. Long, T. E., Ph.D. Dissertation, University of South Florida, 2003.
16. Buynak, Y. D.; Borate, H. B.; Lamb, G. W.; Khasnis, D. D.; Hustig, C.; Jsum, H.; Siriwardone, U. A. J. Org. Chem 1993, 58, 1325.
17. These compounds were prepared by N -lithiation and N thiolation of the N-protio lactam precursor 45 (Alonso, E., Ph.D. Dissertation, Universidad de Oviedo, Spain, 2002).

18. Carr, J. A.; Al-Azemi, T. F.; Long, T. E.; Shim, J.-Y.; Coates, C. M.; Turos, E.; Bisht, K. S. Tetrahedron 2003, 59, 9147.
19. NCCLS (National Committee for Clinical Laboratory Standards) Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. NCCLS Document M7-A4, Vol. 17, No. 2, 1997.

[^0]: Keywords: N-Thiolated β-lactams; MRSA; SAR; Antibiotics.

 * Corresponding author. Tel.: +1 813974 1733; fax: +1 813974 173; e-mail: eturos@shell.cas.usf.edu
 ${ }^{\dagger}$ Undergraduate research participant.

