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Arenes and heteroarene-fused rings are commonly found in 
structures of drugs, natural products and other bioactive 
compounds (Fig. 1a)1–4. Among many possible synthetic 

approaches, the direct intramolecular C–H alkylation of the aromatic 
core from a linear precursor, namely C–H alkylative annulation, 
provides a straightforward approach to access these fused scaf-
folds, as prefunctionalization of arenes could be avoided (Fig. 1b)5–8.  
However, a long-standing challenge of this strategy arises from 
limited choices of reactive moieties at the alkyl terminus, regard-
less of whether this is through either a polar- or radical-addition 
pathway9–20. The typical alkylative annulation relies on the use of 
special or very reactive coupling partners, such as alkyl halides9–13, 
xanthates14,15, phenyl selenides16, allyl sulfones17, redox-active 
esters18,19 and so on; it is generally not a trivial task to introduce 
these high-energy functional groups (FGs) with tolerating FGs that 
exist in the molecule21,22. In addition, carrying out multi-step opera-
tions with these sensitive FGs could also be difficult, which hin-
ders implementation of convergent synthetic approaches. Hence, 
from the viewpoint of synthetic efficiency, it would be attractive 
to employ common, stable, native FGs as a handle for C–H alkyla-
tive annulation, as this should minimize FG manipulations or the 
usage of protecting groups. Recently, successes on mild radical 
annulations have been achieved with unactivated olefins through 
metal-hydride hydrogen atom transfer23,24 or with carboxylic acids 
through oxidative decarboxylation25–29. Tolerance of FGs that are 
sensitive to atom-transfer processes or oxidants in complex settings 
can be a concern. Additionally, primary radicals are hard to gener-
ate via the metal-hydride hydrogen atom transfer pathway30,31.

Complementary to the prior arts in the C–H alkylative annula-
tion, a deacylation-aided C–H annulation could serve as a promis-
ing alternative strategy for preparing aromatic-fused rings. Ketone 
is among one of the most versatile FGs in organic synthesis: they 
can be readily prepared from various other FGs and are derivable 
at the α or β positions32,33. If site-selective C–C cleavage of alkyl 
ketones can be realized to generate an active alkyl terminus33–42, 
such as a carbon-centred radical43–46, for cyclization, a two-phase 
annulation strategy could be imagined from simple arene and alkyl 

substrates (Fig. 1c). Herein, we report a deacylation-aided C–H 
alkylative annulation of a wide array of arenes and heteroarenes, in 
which better step-economy and FG compatibility are realized using 
unstrained ketones as robust and native radical precursors under 
reductant/oxidant-free and near pH-neutral conditions.

Results
Initial considerations. Homolytic cleavage of ketone α-C–C bonds 
has been achieved through the Norrish–Young reaction under 
ultraviolet light irradiation47; alternatively, it can be elegantly real-
ized by converting ketones into the corresponding oxime esters48–54/
activated ethers55–58 or tertiary alcohols followed by β-scission59–61. 
In our ongoing efforts to develop new C–C activation methods, we 
recently reported an iridium-catalysed cleavage of the α-C–C bonds 
of unstrained common ketones using aromatization as the driving 
force (Fig. 2)62. The reaction involves the formation of a pre-aromatic 
intermediate (A) between the ketone substrate and two activat-
ing reagents (hydrazine and 1,3-diene), which then undergoes the 
Ir(III)-mediated C–C cleavage driven by pyrazole formation to gen-
erate a carbon-centred radical and an odd-electron metal-hydride 
species (B). The radical–metal recombination can be facile, as shown 
previously, leading to the deacylation products via C–H reductive 
elimination. However, we hypothesize that, in the presence of an 
adjacent arene or heteroarene, the transient carbon-centred radical 
could be trapped intramolecularly; the resulting delocalized radical 
intermediate (C) could then lose a hydrogen and restore aromaticity 
to afford the fused bicyclic product.

Reaction discovery and optimization. To test this hypothesis, 
5-(anthracenyl)pentan-2-one (1), prepared in one step from the 
corresponding aryl bromide and homoallyl alcohol, was selected 
as a model substrate. 4-Methyl-2-pyridylhydrazine (D1) and 
1,3-butadiene were employed as the activating reagents to allow 
in situ formation of the pre-aromatic intermediate. On optimization, 
we were delighted to observe the formation of the desired annula-
tion product (2) in 62% yield using [Ir(cod)2]BArF (where cod is 
1,5-cyclooctadiene and BArF is tetrakis[3,5-bis(trifluoromethyl)
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phenyl]borate) and L1 as an effective catalyst–ligand combination 
in 1,4-dioxane (Table 1, entry 1). A very small amount of TsOH 
(0.66 mol%, where Ts is p-toluenesulfonyl) was used together with 
molecular sieves to ensure complete condensation between the 
hydrazine and the ketone substrate (entry 4). The counter anion 
of the Ir catalysts appears to play a pivotal role in determining the 
reactivity (entries 2 and 3). While the site selectivity of the C–C 
cleavage was high (>15:1), major side-products came from other 
competing deacylative transformations, such as hydrogen termi-
nation and crotylation, which are expected to be influenced by the 
solvent and choice of ligands. For example, much lower cyclization 
selectivity was achieved in 2-methyl tetrahydrofuran (2-MeTHF) 
or 1,2-dimethoxyethane (DME) despite a comparable total yield 
(entries 5 and 6). A study of the ligand effect further suggested 
that large bite-angle bisphosphines (L5) or monophosphines (L6) 
were not effective, whereas bidentate ligands with small bite angles  
(L1–L3, L7–L10, ref. 63) generally worked better, with L1 giving 
both the optimal yield and selectivity (entry 7).

Substrate scope. With the optimal conditions in hand, the scope of the 
substrates was next explored (Table 2). A wide variety of single- and  
multi-arenes, including benzene, naphthalene (26), phenanthrene 
(27), anthracene (28) and even pyrene (30), can effectively undergo 
the desired alkylative annulation. Both electron-rich and deficient 
aromatic substrates are competent during the cyclization process. 
In all cases, the formation of six-membered rings was strongly 
favoured9,14–18, and the possible five-membered ring side-product 
(for example, in the case of 14) was essentially negligible. When 
the formation of six-membered rings was not realizable, five- and 
seven-membered rings (24, 25 and 35) can still be constructed, 

albeit in lower efficiency due to competing hydrogen termination 
and crotylation. Moreover, a double annulation (16) proved to be 
feasible, directly affording a symmetrical tetracycle from a simple 
biaryl precursor. On the other hand, various FGs, such as Weinreb 
amides (10), esters (6), nitriles (11) and aryl halides (17, 21 and 
22), can all be tolerated in this transformation. It is worth noting 
that the carbon skeletons of many substrates were forged through 
either 1,4-additions with methyl vinyl ketone or migrative oxidative 
Heck reactions with enols; the resulting ketones were directly sub-
jected to the annulation process, further highlighting the efficiency 
of the two-phase approach. Further, heteroarenes such as indoles 
(31), quinolines (41), dibenzofurans (37), benzothiophenes (38),  
imidazoles (39) and quinazolinones (35 and 36) can also be incorpo-
rated, providing pharmaceutically interesting fused-ring skeletons 
that are non-trivial to prepare otherwise64. Interestingly, when the 
cyclization took place on thiophenes or isoquinolinones, a dearo-
mative annulation pathway competed with the re-aromatization 
process, showing the potential to access partially saturated hetero-
cycles (42′–44′)65,66.

Mechanistic considerations. While the detailed mechanism of the 
deacylative annulation reaction remains to be uncovered, a pro-
posed reaction pathway is depicted in Fig. 3a. Based on our pre-
vious experimental and computational mechanistic studies of the 
deacylative functionalization62, this reaction may be initiated from 
hydrazone formation between the ketone and hydrazine D1, fol-
lowed by an Ir-catalysed [3 + 2] cycloaddition with 1,3-diene and 
alkene migration to form the pre-aromatic intermediate (Int 2). 
Subsequently, a directed N–H oxidative addition with the Ir(I) cata-
lyst could take place to give an Ir(III)-hydride intermediate (Int 3), 

Table 1 | Optimal condition and control experiments
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O
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3 [Ir(cod)2]Cl instead of [Ir(cod)2]BArF trace N/A

4

L2-L10 instead of L1 See right

5 2-MeTHF instead of 1,4-dioxane 57 2.1:1

6 DME instead of 1,4-dioxane 36 2.3:1
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The reactions were conducted with 1 (0.05 mmol), 4-methyl-2-pyridylhydrazine (0.052 mmol) and 1,3-butadiene (0.54 mmol). The total yield and selectivity were determined by 1H NMR analysis of the 
crude products using 1,1,2,2-tetrachloroethane as an internal standard. aThe reaction was conducted using different ligands (L2–L10) instead of L1 and a preformed hydrazone as the substrate. For detailed 
experimental procedures, see Supplementary Methods. Et, ethyl; Py’, 4-methyl-2-pyridyl.
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Table 2 | Scope of the substrates
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bKetone condensation with D1 at 60 °C for 18 h. For detailed experimental procedures, see Supplementary Methods.
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which then undergoes aromatization-driven homolytic C–C cleav-
age to form a pyrazole-coordinated Ir(II) hydride (Int 4) and an 
alkyl radical (Int 5). While facile radical–metal recombination was 
observed in the previous study, the alkyl radical is intercepted by 
a tethered arene in the current system. In line with the proposed 
pathway, the site selectivity of the cyclization appears to be less sen-
sitive to the steric environment on the arene (for example, in 45 
and 46), which argues against a metal-mediated C–H activation 
pathway (Fig. 3b). In addition, no intramolecular kinetic isotope 
effect was observed in substrate 47, which is also consistent with 
a radical-cyclization mechanism. While it is not completely clear 
how the re-aromatization occurs from Int 6 at this stage, a plau-
sible pathway may involve H-atom abstraction or radical trapping 
by the Ir(II) hydride intermediate. The resulting Ir(III) dihydride 
could eventually regenerate the Ir(I) catalyst, for example using a 
sacrificial 1,3-diene as the H2 acceptor. For instance, when a heavier 
1.3-diene, myrcene, was used in place of 1,3-butadiene, partially 
reduced myrcene with a molecular mass increased by 2 Da was 
observed. On the other hand, the oxidation of Int 6 into a carboca-
tion intermediate by the Ir(II), followed by deprotonation, cannot  

be ruled out. Nevertheless, the potential involvement of the Ir(II) 
hydride species could be supported by the formation of these 
partially aromatic products (42′–44′) from thiophenes or iso-
quinolinones. For example, due to the relatively weak aromaticity 
in thiophene, the radical-cyclization intermediate (Int 7) suffers 
from a slow re-aromatization process; an alternative pathway that 
involves coupling with the Ir(II) hydride intermediate to form a 
C–H bond can compete or even dominate (Fig. 3c). In contrast, no 
partial aromatic products were observed for arenes or heteroarenes 
with high aromaticity. Note that, at this stage, an Ir-triggered radical 
chain mechanism cannot be fully excluded.

Synthetic utility. Further study was carried out to show the util-
ity of the deacylative annulation strategy in streamlined two-phase 
syntheses of aromatic-fused rings (Fig. 4). For example, the bicy-
clic dicarboxylate 49, the key intermediate towards synthesis of 
anticonvulsant-active 50, was readily prepared in two steps through 
1,4-addition (phase I) followed by deacylative annulation (phase 
II); for comparison, the conventional synthesis required a five-step 
sequence (Fig. 4a)67. In another study, xanthine analogue 54  
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was previously made through a three-step sequence, while our 
approach only needs a two-step operation with doubled overall 
yield (Fig. 4b)68. Encouraged by these results, the two-phase annu-
lation strategy was further applied to the late-stage construction  
of complex N-heteroarene-based polycyclic compounds (Fig. 4c)19.  
This process requires consecutive and orthogonal N–H and C–H 
alkylations in the presence of multiple FGs including olefins, 
nitriles, electron-rich arenes and reactive carbonyls, which is dif-
ficult to achieve under strongly Lewis acidic, oxidative or reductive 
conditions. Here, using δ-halo ketones as the linchpin, hetero-
cycles, for example, indoles, imidazoles and quinazolinones, could  
all undergo the desired annulation to afford various fused-ring 

structures despite the complexity of the substrates. Given the ubiq-
uity of N-heterocycle moieties in pharmaceuticals, this approach 
may find use in medicinal chemistry.

Conclusions. In summary, we have disclosed a distinct C–H 
alkylative annulation strategy for preparing diverse arene- and 
heteroarene-fused scaffolds. This strategy capitalized on the use 
of simple unstrained ketones as an unusual but native annulation 
reagent; through the Ir-catalysed aromatization-driven C–C cleav-
age, a deacylation process generates a reactive alkyl radical that 
undergoes subsequent C–H annulation with the tethered arene  
in good efficiency. Owing to the wide availability of the ketone  
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moiety and reductant/oxidant/strong acid-free reaction conditions, 
this deacylative annulation approach exhibits high FG tolerance and 
provides streamlined access to complex fused-ring systems. The 
general approach of generating alkyl radicals from ketones could 
have broad implications and further applications beyond this work.

Methods
General procedure for the deacylation-aided C–H alkylative annulation. For 
a 0.05-mmol scale reaction, a 1,4-dioxane (1 ml) solution of the ketone substrate 
(0.05 mmol, 1.0 equiv.), D1 (6.4 mg, 0.052 mmol, 1.04 equiv.) and p-TsOH·H2O 
(stock solution in 1,4-dioxane; 0.05 M, 6.6 μl, 0.0066 equiv.) was heated at 90 °C  
for 5 h under N2 atmosphere in an 8-ml vial. After cooling to room temperature,  
the vial was charged with [Ir(cod)2]BArF (6.4 mg, 0.005 mmol, 0.1 equiv.) and  
L1 (2.0 mg, 0.005 mmol, 0.1 equiv.) under air atmosphere, transferred into a 
glove box and further charged with a 3-Å molecular sieve (predried, 100 mg) and 
1,3-butadiene (20 wt% in toluene, 180 μl, about 10.8 equiv.). The vial was sealed 
and heated at 160 °C while stirring for 72 h. After cooling to room temperature, 
the reaction mixture was filtered through a short plug of Celite, concentrated and 
purified by flash column chromatography over silica to provide the product.

Data availability
Details about materials and methods, experimental procedures and 
characterization data are available in the Supplementary Information. Additional 
data are available from the corresponding authors upon request.
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