Asymmetric Organocatalytic Intramolecular Aza-Michael Addition of Enone Carbamates: Catalytic Enantioselective Access to Functionalized 2-Substituted Piperidines

Jian-Dong Liu,^a Ying-Chun Chen,^{b,*} Guo-Biao Zhang,^a Zhi-Qiang Li,^a Peng Chen,^a Ji-Yuan Du,^a Yong-Qiang Tu,^a and Chun-An Fan^{a,*}

^b Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China Fax: (+86)-28-85502609; phone: (+86)-28-85502609; e-mail: ycchenhuaxi@yahoo.com.cn

Received: April 14, 2011; Revised: May 24, 2011; Published online: October 10, 2011

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adcs.201100282.

Abstract: The synthetically useful functionalized 2substituted piperidines containing a lateral ketone group have been strategically accessed *via* an organocatalytic enantioselective intramolecular aza-Michael addition of enone carbamates, in which a novel internal substrate combination of the enone moiety as Michael acceptor and the carbamate moiety as Michael donor was revealed in asymmetric bifunctional organocatalysis. This heteroatom conjugate addition, which was realized by using a catalytic chiral *Cinchona*-based primary-tertiary diamine and an achiral Brønsted acid, mostly proceeded in high yield

Introduction

The functionalized 2-substituted piperidine moiety with the crucial chiral stereogenic nitrogen-containing carbon center is ubiquitous in many biologically active natural products (Figure 1),^[1,2] and its enantiocontrolled access is of great interest in modern organic synthesis of bioactive alkaloids and pharmaceuticals.^[3] Strategically, as shown in Figure 1, the issue how to asymmetrically construct the chiral building blocks A definitely constitutes the key topic for the development of alternative synthetic routes to the various 2-substituted piperidine alkaloids mentioned in Figure 1. Encompassing the stereoselective construction of a nitrogen-containing stereogenic center in a functionalized 2-substituted piperidine ring system, many synthetically interesting one-step protocols have been designed and developed, for example, on the basis of polar additions, radical additions, polar and good to excellent stereocontrol (up to 99% *ee*). This reaction provides an alternative catalytic asymmetric method for installing the stereogenic nitrogen-containing carbon center in functionalized 2-substituted piperidines, leading to the development of a straightforward and expeditious synthesis of some naturally occurring bioactive 2-substituted piperidine alkaloids.

Keywords: alkaloids; aza-Michael addition; iminium catalysis; organocatalysis; piperidines

substitutions, cycloadditions, electrocyclizations, rearrangements, carbene insertions as well as hydrogenations.^[3] Among them, however, the asymmetric synthesis of these substituted piperidines was mostly developed by using stoichiometric chiral substrates^[4] and chiral reagents^[5] in a diastereoselective manner. Although advances were increasingly made in this area,^[3-5] there is still a high demand for *direct catalytic* asymmetric synthesis of such chiral functionalized piperidines. To the best of our knowledge, only a few one-pot synthetic protocols operating in catalytic enantioselective fashion were revealed for the expeditious synthesis of these chiral piperidine derivatives with the key nitrogen-containing stereogenic center, which mainly included: (i) secondary amine-catalyzed aza-Michael addition^[6a,b] and tandem Mannich-type/ cyclization;^[6c] (ii) titanocene-catalyzed hydrosilylation;^[7] (iii) boron-, copper- and zirconium-catalyzed aza-Diels-Alder reaction;^[8] (iv) rhodium-catalyzed

WILEY CONLINE LIBRARY

2721

 ^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, People's Republic of China Fax: (+86)-931-8915516; phone: (+86)-931-8915516; e-mail: fanchunan@lzu.edu.cn

Figure 1. Representative 2-substituted piperidine alkaloids.

carbene insertion;^[9] and (v) Brønsted acid-catalyzed tandem aza-ene/cyclization.^[10]

Of these catalytic asymmetric synthetic methods reported in the literature, especially attractive from a synthetic point of view was the prospect of the synthesis of 2-substituted piperidines *via* enantioselective intramolecular aza-Michael addition, which is one of the most fundamental organic reactions for the formation of carbon-nitrogen bonds in modern organic chemistry. In this aspect, chiral 2-substituted nitrogen heterocycles bearing the side chain primary hydroxy group (**B**, Scheme 1) were accessed through the iminium catalysis of a chiral secondary amine,^[6a,b] followed by the subsequent reduction, wherein α , β -unsaturated

Scheme 1. Substrate combinations of donor and acceptor in organocatalytic asymmetric aza-Michael addition.

aldehydes containing carbamate as a nitrogen nucleophile, enal carbamates, have been considered as properly designed substrates for the intramolecular aza-Michael reaction catalyzed by the Jørgensen catalyst. Notably, in addition to the intramolecular heteroatom conjugate addition mentioned above, recently the organocatalytic asymmetric intermolecular aza-Michael addition was also developed for forging the nitrogencontaining asymmetric carbon center (**C**. Scheme 1).^[11-13] Despite these elegant explorations of asymmetric installation of the stereogenic nitrogencontaining carbon center,^[11–14] particularly in function-alized nitrogen heterocycles,^[15] the straightforward catalytic enantioselective access to 2-substituted piperidines having a β -amino ketone moiety, the key synthons A in Figure 1, which will strategically provide an alternative effective route to many alkaloids containing 2-substituted piperidine nucleus, has not been presented to date by using organocatalytic conjugate addition strategy.

As was known, generally the carbonyl function of enones is less electrophilic than that of enals, thereof leading to the lesser efficiency of LUMO-lowering iminium activation for the enone carbonyl as Michael acceptor, particularly in chiral secondary amine catalvsis.^[16] Compared with the vast emergence of asymmetric protocols involving enals,^[16] the enones remain to some extent challenging to asymmetric catalysis using chiral amine-catalyzed aza-Michael additions.^[17,18] Of various nitrogen-centered nucleophiles, N-alkoxy carbamates ($\mathbf{R''O}$ -NH-CO₂R'), in which the N-O functionality could enhance nucleophilicity at the nitrogen center via the α -effect,^[19] were appealing as a nucleophilically enhanced Michael donor and preferentially used in most cases of catalytic asymmetric intermolecular aza-Michael reaction, especially in organocatalysis.^[11-14] Synthetically, however, the carbamates (**R''O**-NH-CO₂R') without an α -effect would be one of the most desirable selections as Michael donors, due to the mild conditions for N-deprotection and the high potential for amine derivatization.

To address the synthesis of building blocks **A** in Figure 1 as well as explore the new substrate combination of donor and acceptor in conjugate addition, an asymmetric intramolecular aza-Michael reaction of *enone carbamates* can be rationally conceived as shown in Scheme 1, wherein an α,β -unsaturated ketone moiety and the carbamate motif would act as Michael acceptor and Michael donor, respectively. With the interest in the catalytic enantioselective access to functionalized 2-substuituted piperidines, recently we developed an asymmetric organocatalytic intramolecular aza-Michael reaction of enone carbamates **1** on the basis of bifunctional chiral primarytertiary diamine/Brønsted acid catalysis (Scheme 2). Herein, we present our results on this topic.

Scheme 2. Catalytic asymmetric aza-Michael addition catalyzed by primary-tertiary diamine/Brønsted acid.

Results and Discussion

According to the acid-base activation mode for Michael acceptor (the enone unit) and Michael donor (the carbamate unit), a chiral catalyst salt in situ formed from quinine-derived primary-tertiary diamine 3a and Brønsted acid TsOH·H₂O was firstly employed in the initial evaluation of the reaction conditions using **1a** as model substrate (Table 1). Among the solvents examined (entries 1-4), the aprotic THF as reaction medium showed the more promising enantioselectivity (57% ee) in the controlled experiments. Surprisingly, the reversed enantioselectivity in this model reaction was observed by means of chiral HPLC analysis of 2a when using CH₃CN (entry 3) or *i*-PrOH (entry 4) as solvent, despite the unknown exact role of these solvents in the present asymmetric catalysis. To further improve the stereocontrol of this aza-Michael addition, several acid additives were investigated (entries 5–10). Structurally comparable with 4-methylbenzenesulfonic acid as acid additive in THF (entry 2), 2,4,6-trimethylbenzenesulfonic acid (MesSO₃H) was found ineffective in this reaction (entry 5), indicating that the steric bulkiness of the acid component had a negative impact on reactivity. In addition to arylsulfonic acids (entries 2 and 5), two alkylsulfonic acids (D-camphor-10-sulfonic acid and CF₃SO₃H) were also subjected to this model reaction. Interestingly, it was found that D-camphor-10-sulfonic acid (D-CSA, entry 6) could promote this conjugate addition to give the aza-Michael adduct in 91% yield with 85% ee, despite a longer reaction time of 72 h. When the more acidic CF₃SO₃H was used in this case (entry 7), the reaction proceeded readily, but without any asymmetric induction, demonstrating that the acidic property of Brønsted acid, to some extent, also had an obvious influence on the enantioselectivity in this aza-Michael addition. Based on this fact, three carboxylic acids were further examined (entries 8–10). Among them, gratifyingly, CF₃CO₂H as acid additive was found to be effective in this asymmetric aza-Michael reaction, readily affording 2a in 95% yield with excellent enantioselectivity of 98% ee (entry 10), wherein its R absolute configuration was assigned by a comparison of the optical rotation of 2a with the literature value.^[21a] For examining the enantioselective

 Table 1. Optimization of reaction conditions.^[a]

- ^[a] To a solution of the acid (0.04 mmol) in solvent (0.6 mL) was sequentially added the catalyst 3 (0.02 mmol) and the enone carbamate 1a (0.1 mmol) at 25 °C. The reaction was monitored by TLC inspection (unless otherwise noted).
- ^[b] Yield of isolated product.
- ^[c] Determined by chiral HPLC.
- ^[d] The absolute configuration of the major enantiomer is presented in parentheses, and was assigned by the chiral HPLC analysis and a comparison of the optical rotation of **2a** in entry 10 with the literature value (see ref.^[21a]).
- ^[e] The starting material was mainly recovered.
- [f] Abbreviations: D-CSA=D-camphor-10-sulfonic acid; MesSO₃H=2,4,6-trimethylbenzenesulfonic acid; p-NBA=4-nitrobenzoic acid; NBLP=N-Boc-L-phenylglycine; ND=not determined.

influence of the hydrogen-bonding interaction from the phenolic hydroxy group in the catalyst, the cupreine-derived primary-tertiary diamine **3b** was employed using THF as solvent in the presence of CF_3CO_2H as acid additive (entry 11). In this case, the aza-Michael addition proceeded smoothly in 95% yield, but the decreased enantioselectivity of 78% *ee* implied an absence of synergistic hydrogen bonding interactions, to some extent, demonstrating the incompatibility of the existence of a phenolic hydrogenbonding site in the catalyst with the current stereocontrol. Notably to investigate the tunable stereochemistry in products, the primary-tertiary diamine **3c**, which was prepared from cinchonine (a pseudoenantiomer of quinine), was subjected to this catalytic asymmetric aza-Michael addition (entry 12), expectedly affording **2a** with the reversed absolute configuration, albeit in a lower *ee* of 80%. From the abovementioned investigation of reaction conditions, the optimal combination involving **3a** as catalyst, CF_3CO_2H as acid and THF as solvent (entry 10) was eventually identified for this enantioselective intramolecular aza-Michael addition of enone carbamates, whereby the opposite stereocontrol could be accessed by using **3c** instead of **3a**.

To demonstrate the generality of this asymmetric intramolecular aza-Michael addition, as shown in Table 2, a series of enone carbamates 1 was examined under the above-optimized organocatalysis, vielding various functionalized piperidines with up to 99% ee. Structurally compared with the model substrate 1a (entry 1 of Table 2), the enone carbamate 1b containing the Michael donor moiety of the bulky N-Boc instead of N-Cbz was used in this case (entry 2), and a similar reactivity was observed, but following a decreased enantiocontrol of 90% ee. When the intramolecular aza-Michael addition of gem-dimethyl substituted enone carbamate 1c was conducted, the positive gem-dimethyl effect^[20] was observed and the product 2c was readily obtained in 97% yield with 99% ee (entry 3). Notably, the reactivity of this intramolecular conjugate addition of carbamates to enones, to a large extent, depends upon the steric bulk and electrophilicity of enone carbonyl group as Michael acceptor center. For example, various substrates 1d-1j with alkyl- and aryl-substituted enone moieties were further investigated (entries 4-10), and a prolonged reaction time was required to complete the corresponding addition transformation, especially for the cases using aryl-substituted enone carbamates 1g, 1h and 1j (entries 7, 8 and 10). Despite the lower reactivity mentioned above, 2-substituted functionalized piperidine products 2d-2h and 2j were formed in good to excellent yield with high enantioselectivity in most of cases (entries 4-8 and 10). The employment of para-methoxyphenyl-substituted enone carbamate **1i** (entry 9) only resulted in the formation of trace amounts of product after 5 days, showing the ineffective LUMOlowering iminium activation for the highly electronenriched aryl enone motif under the current catalysis.

From a synthetic point of view, it is noteworthy that our catalytic enantioselective assembly of a stereogenic nitrogen-containing carbon center in the functionalized 2-substituted piperidines potentially provides a straightforward effective synthesis of many biologically interesting 2-substituted piperidine alkaloids described in Figure 1. For one example in Scheme 3, the one-step Cbz-deprotection of product **2a** (98% *ee*, entry 1 of Table 2) *via* the hydrogenation could deliver the anthelmintic alkaloid pelletierine,^[6b] which was firstly isolated by Tanret in 1878 and later structurally

		R^{1} R^{2} R^{2} R^{2} R^{3} R^{2} R^{2} R^{3}		3a (0.2 CF ₃ C (0.4 e THF, 1	$\begin{array}{c} \begin{array}{c} \text{equiv.}) \\ \hline \\ \hline \\ \text{cO}_2 H \\ \text{quiv.}) \\ \text{25 °C} \end{array} \qquad $	$ \begin{array}{c} $		
Entry	Substrate	\mathbf{R}^1	\mathbf{R}^2	R ³	Product	<i>t</i> [h]	Yield [%] ^[b]	Ee [%] ^[c,d]
1	1 a	Me	Н	Cbz	2a	8	95	98 (R)
2	1b	Me	Н	Boc	2b	8.5	94	90
3	1c	Me	Me	Cbz	2c	7	97	99
4	1d	Et	Н	Cbz	2d	10	94	96 (R)
5	1e	<i>i</i> -Bu	Н	Cbz	2e	14	96	99 `
6	1f	<i>n</i> -pentyl	Н	Cbz	2f	12	93	96 (R)
7	1g	Ph	Н	Cbz	2g	24	95	96
8	1ĥ	$4-Me-C_6H_4$	Н	Cbz	2h	120	75	96
9	1i	$4-\text{MeO-C}_6\text{H}_4$	Н	Cbz	2i	120	trace ^[e]	$ND^{[f]}$
10	1j	$4-NO_2-C_6H_4$	Н	Cbz	2j	84	80	85

Table 2. Organocatalytic asymmetric synthesis of functionalized piperidines.^[a]

^[a] To a solution of CF_3CO_2H (0.04 mmol) in THF (0.6 mL) was sequentially added the chiral diamine **3a** (0.02 mmol) and the enone carbamate **1** (0.1 mmol) at 25 °C (For details, see the Supporting Information).

^[b] Yield of isolated product.

^[c] Determined by chiral HPLC.

^[d] The absolute configurations of **2a**, **2d** and **2f** were assigned as "*R*" by comparison of their optical rotations with the literature values (see ref.^[21]), and accordingly the absolute stereochemistries of entries 2–3, 5, 7–8 and 10 were provisionally established as indicated.

^[e] The starting material was mainly recovered.

^[f] ND = not determined.

Scheme 3. Formal synthesis using functionalized 2-substituted piperidine products.

determined through NMR studies in 1961. Commencing with **2f**, another synthetic instance in Scheme 3 was exemplified by the formal synthesis of insecticidal alkaloids, tetraponerine-7 and tetraponerine-8,^[21] which were initially isolated from the venom of New Guinean ant *Tetraponera* sp. in 1987 and structurally determined by X-ray diffraction analysis in the same year. Certainly, the present asymmetric organocatalytic methodology does constitute a direct route to synthetically useful 2-substituted piperidine building blocks **2** *via* intramolecular aza-Michael addition of enone carbamates.

In addition to the aforementioned synthesis of sixmembered piperidine derivatives, two examples concerning an asymmetric access to five-membered heterocycles were also developed. As shown in Scheme 4, the 5-*exo*-trig addition of enone carbamates **1k** and **1l** took place under the catalysis of chiral salts consisting of **3a** and CF₃CO₂H, giving the related functionalized pyrrolidine **2k** (96% yield, 80% *ee* with *R* absolute configuration) and oxazolidine **2l** (91% yield, 78% *ee*).^[22]

Scheme 4. Organocatalytic asymmetric synthesis of fivemembered heterocycles.

According to the assignment of absolute configuration by literature comparisons,^[21,22] a mechanistic rationale, which was exemplified by the conjugate reaction of **1a** catalyzed by **3a**/CF₃CO₂H, was proposed for the observed enantioselectivity in the current organocatalytic asymmetric heteroatom Michael addition. As demonstrated in Figure 2, the energetically favored (*E*)-*s*-trans conformer of α , β -unsaturated imi-

Figure 2. Proposed mechanistic model for the observed enantioselectivity under the catalysis of **3a**.

nium ion was preferentially formed *in situ*, simultaneously followed by the hydrogen-bonding interaction between the protonated tertiary amine and the carbamate carbonyl oxygen, giving the proposed acid-base bifunctional catalysis mode. Owing to the existence of unfavorable steric hindrance in transitional state **TS1'**, the carbamate nitrogen-centered nucleophilic attack onto the *Re* face of unsaturated iminium moiety proceeded predominantly *via* the favored **TS1**, delivering the aza-Michael adduct **2a** with *R* absolute configuration.

Conclusions

In conclusion, a novel intramolecular aza-Michael addition of enone carbamates was developed on the basis of acid-base bifunctional organocatalysis, in which the less electrophilic enone acceptor and the less nucleophilic carbamate donor constitute the novel substrate combination for the heteroatom Michael reaction. Importantly, a series of synthetically useful 2-substituted six- and five-membered heterocycles (up to 99% ee), which resulted from the current aza-Michael addition protocol using the catalytic combination of chiral primary-tertiary diamine and simple achiral Brønsted acid, were accessed in catalytic enantioselective fashion. This methodology does provide an alternative enantioselective pathway for establishing the stereogenic nitrogen-containing carbon center in the functionalized 2-substituted piperidines, which could facilitate the development of a straightforward expeditious synthesis of many naturally occurring bioactive 2-substituted piperidine alkaloids.

Experimental Section

NMR spectra were recorded with TMS as an internal standard in $CDCl_3$ or CD_3COCD_3 by means of a Mercury-plus 300BB spectrometer (300 MHz for ¹H NMR and 75 MHz for ¹³C NMR spectra) and a Bruker AM-400 spectrometer

(400 MHz for ¹H NMR and 100 MHz for ¹³C NMR spectra). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), brs (broad singlet). The mass spectra were recorded on an HP5988 A or a TRACE DSQ mass spectrometer by means of the EI technique, and the high-resolution mass spectra were recorded on a Bruker APEX II spectrometer by means of the ESI technique. Optical rotations were measured at 589 nm at 20°C by Perkin-Elmer 341. TLC was performed on glass-backed silica plates. Enantiomeric excess was determined by HPLC analysis on Daicel Chiralcel AD, OD, OD-H columns by Agilent-1100 series. Silica gel (200-300 mesh) for flash column chromatography and GF₂₅₄ for TLC were produced by Qingdao Marine Chemical Company (China). Solvents for reaction were distilled prior to use: THF and Et₂O from Na and benzophenone, MeOH from Mg and I2, CH2Cl2, Et3N, CH3CN and DMF from CaH₂, and toluene from LiAlH₄. All air- or moisture-sensitive reactions were conducted under an argon atmosphere.

General Procedure for Organocatalytic Asymmetric Intramolecular Aza-Michael Addition of Enone Carbamates

To a solution of CF_3CO_2H (0.04 mmol) in THF (0.6 mL) was sequentially added the chiral diamine **3a** (0.02 mmol) and enone carbamates **1** (0.1 mmol) at 25 °C. The reaction was monitored by TLC inspection (unless otherwise noted) and proceeded for the indicated time. After removal of the solvent, the residue was purified by flash column chromatography on silica gel (petroleum ether:AcOEt=4:1), affording the aza-Michael adducts **2**.

(*R*)-*N*-Benzyloxycarbonyl-2-(2-oxopropyl)piperidine (2a): Following the General Procedure mentioned above, the reaction gave the product 2a; yield: 26.1 mg (0.095 mmol, 95%); $R_{\rm f} = 0.6$ (petroleum ether/EtOAc=2:1); $[\alpha]_{\rm D}^{20}$: +9 (c 1.0 in CHCl₃). The enantiomeric excess of 98% was measured by HPLC (chiralcel OD-H, n-hexane/i-PrOH=95/5; flow rate 0.5 mLmin⁻¹; $\lambda = 220$ nm): t (minor) = 28.4 min, t (major) = 30.4 min. The absolute configuration of 2a was assigned as "R" by a comparison of its optical rotation with the literature value $\{ [\alpha]_{D}^{25}: +10.18 \ (c \ 2.5 \ in \ CHCl_{3}) \}.^{[21a]}$ ¹H NMR (300 MHz, CDCl₃): $\delta = 7.36-7.30$ (m, 5H), 5.14, 5.11 (ABq, J=12.8 Hz, 2H), 4.81 (d, J=4 Hz, 1H), 4.10-4.00 (m, 1H), 2.89-2.83 (m, 1H), 2.74-2.68 (m, 2H), 2.14 (s, 3H), 1.68–1.40 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 206.8, 155.2, 136.7, 128.4, 127.9, 127.8, 67.1, 47.5, 44.3, 39.8, 30.0, 28.2, 25.2, 18.8; MS (70 eV, EI): m/z (%)=275 (<1) $[M]^+$, 218 (1), 184 (12), 174 (19), 140 (61), 91 (100), 65 (8), 43 (8); HR-MS (ESI): m/z = 276.1596, calcd. for $C_{16}H_{22}NO_3$ [M+H]⁺: 276.1594.

(R)-N-tert-Butoxycarbonyl-2-(2-oxopropyl)piperidine

(2b): Following the General Procedure mentioned above, the reaction gave the product 2b; yield: 22.6 mg (0.094 mmol, 94%); $R_f = 0.6$ (petroleum ether/EtOAc=2:1); $[\alpha]_D^{20}$: +12 (c 1.0 in CHCl₃). The enantiomeric excess of 90% was measured by HPLC (chiralcel AD, *n*-hexane/*i*-PrOH= 99/1; flow rate 1.0 mLmin⁻¹; $\lambda = 220$ nm): t (major) = 13.8 min, t (minor) = 15.5 min. The *R* absolute configuration of 2b was provisionally assigned according to the stereochemical determination of 2a. ¹H NMR (400 MHz, CDCl₃): $\delta = 4.73$ (brs, 1H), 3.96 (brs, 1H), 2.78 (t, *J*=12.8 Hz, 1H),

Advanced > Synthesis & Catalysis

2.66–2.64 (m, 2H), 2.19 (s, 3H), 1.67–1.37 (m, 6H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ =206.2, 153.7, 78.6, 46.3, 43.3, 38.4, 29.1, 27.4, 24.3, 17.9; MS (70 eV, EI): *m*/*z* (%)=241 (4) [M]⁺, 184 (12), 168 (18), 84 (57), 71 (53), 57 (100), 43 (71); HR-MS (ESI): *m*/*z*=242.1757, calcd. for C₁₃H₂₄NO₃ [M+H]⁺: 242.1751.

(R)-N-Benzyloxycarbonyl-5,5-dimethyl-2-(2-oxopropyl) piperidine (2c): Following the General Procedure mentioned above, the reaction gave the product 2c; yield: 29.4 mg (0.097 mmol, 97% yield); $R_f = 0.5$ (petroleum ether/ EtOAc=2:1); $[\alpha]_{D}^{20}$: -9 (c 1.0 in CHCl₃). The enantiomeric excess of 99% was measured by HPLC (chiralcel OD-H, nhexane/*i*-PrOH=95/5; flow rate 0.5 mLmin⁻¹; λ =220 nm): t (minor) = 19.7 min, t (major) = 21.1 min. The *R* absolute configuration of 2c was provisionally assigned according to the stereochemical determination of 2a. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.31$ (m, 5H), 5.17–5.08 (m, 2H), 4.83 (brs, 1H), 3.64 (brs, 1H), 2.65 (brs, 3H), 2.24-2.02 (brs, 3H), 1.96-1.86 (m, 1H), 1.44-1.39 (m, 2H), 1.32-1.26 (m, 1H), 0.92 (s, 3H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 206.8, 155.6, 136.8, 128.4, 127.9, 127.8, 67.1, 50.2, 46.9, 44.2, 32.5, 30.9, 30.5, 28.8, 24.4, 23.0; MS (70 eV, EI): m/z (%) = 304 (1) [M+H]⁺, 246 (2), 212 (7) , 202 (12), 168 (42), 91 (100), 65 (20), 43 (87); HR-MS (ESI): m/z = 304.1914, calcd. for $C_{18}H_{26}NO_3 [M+H]^+$: 304.1907.

(*R*)-*N*-Benzyloxycarbonyl-2-(2-oxobutyl)piperidine (2d): Following the General Procedure mentioned above, the reaction gave the product 2d; yield: 27.2 mg (0.094 mmol, 94%); $R_{\rm f} = 0.6$ (petroleum ether/EtOAc=2:1); $[\alpha]_{\rm D}^{20}$: +8 (c 1.0 in CHCl₃). The enantiomeric excess of 96% was measured by HPLC analysis (chiralcel OD-H, n-hexane/i-PrOH = 95/5; flow rate 0.5 mLmin⁻¹; $\lambda = 220$ nm): t (minor)=20.8 min, t (major)=22.8 min. The absolute configuration of 2d was assigned as "R" by a comparison of its optical rotation with the literature value $\{[\alpha]_{D}^{20}: +9.5 \ (c \ 0.64)\}$ in CHCl₃).^[21b] ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.30$ (m, 5H), 5.12 (s, 2H), 4.79 (d, J = 5.6 Hz, 2H), 4.04 (brs, 1H), 2.87-2.84 (m, 1H), 2.72-2.64 (m, 2H), 2.42 (brs, 2H), 1.64–1.39 (m, 6H), 1.00 (t, J=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 209.3$, 155.2, 136.7, 128.4, 127.8, 127.7, 67.0, 47.6, 42.8, 39.7, 36.0, 28.2, 25.2, 18.8, 7.6; MS $(70 \text{ eV, EI}): m/z \ (\%) = 289 \ (<1) \ [M]^+, 218 \ (1), 198 \ (3), 174$ (7), 154 (36), 98 (9), 91 (100), 65 (11); HR-MS (ESI): m/z =290.1758, calcd. for $C_{17}H_{24}NO_3 [M+H]^+$: 290.1751.

(R)-N-Benzyloxycarbonyl-2-(4-methyl-2-oxopentyl)-piperidine (2e): Following the General Procedure mentioned above, the reaction gave the product 2e; yield: 30.4 mg $(0.096 \text{ mmol}, 96\%); R_f = 0.6 \text{ (petroleum ether/EtOAc} = 2:1);$ $[\alpha]_{D}^{20}$: +4 (c 1.0 in CHCl₃). The enantiomeric excess of 99% was measured by HPLC (chiralcel OD-H, n-hexane/i-PrOH = 97/3; flow rate 0.5 mLmin⁻¹; $\lambda = 220$ nm): t (minor) = 19.4 min, t (major) = 22.4 min. The *R* absolute configuration of 2e was provisionally assigned according to the stereochemical determinations of 2a, 2d and 2f. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28 - 7.22$ (m, 5H), 5.06, 5.03 (ABq, J = 12.4 Hz, 2H), 4.75–4.68 (m, 1H), 3.98 (d, J =12 Hz, 1 H), 2.77 (t, J=12.8 Hz, 1 H), 2.65–2.59 (m, 1 H), 2.53-2.48 (m, 1H), 2.20-2.18 (m, 2H), 2.05-1.98 (m, 1H), 1.62–1.11 (m, 6H), 0.80 (d, J=6.4 Hz, 6H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta = 208.7, 155.2, 136.8, 128.4, 127.9,$ 127.8, 67.0, 51.9, 47.5, 43.6, 39.8, 28.1, 25.2, 24.5, 22.49, 22.46, 18.8; MS (70 eV, EI): m/z = (%) = 260 (<1), 226 (1), 218 (1), 196 (15) , 182 (18), 174 (10), 98 (12), 91 (100), 65 (17), 57 (13); HR-MS (ESI): m/z = 318.2067, calcd. for C₁₉H₂₈NO₃ [M+H]⁺: 318.2064.

(R)-N-Benzyloxycarbonyl-2-(2-oxoheptyl)-piperidine (2f): Following the General Procedure mentioned above, the reaction gave the product 2f; yield: 30.8 mg (0.093 mmol, 93%); $R_{\rm f} = 0.6$ (petroleum ether/EtOAc=2:1); $[\alpha]_{\rm D}^{20}$: +5 (c 1.0 in CHCl₃). The enantiomeric excess of 96% was measured by HPLC (chiralcel OD-H, n-hexane/i-PrOH=95/5; flow rate 0.5 mLmin⁻¹; $\lambda = 220$ nm): t (minor) = 16.7 min, t (major) = 18.8 min. The absolute configuration of 2f was assigned as "R" by a comparison of its optical rotation with the literature value $\{ [\alpha]_{D}^{20}: +4.4 \ (c \ 1.54 \ in \ CHCl_{3}) \}^{[21b]}$ ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.30$ (m, 5H), 5.12 (s, 2H), 4.82–4.76 (m, 1H), 4.06 (d, J=12.8 Hz, 1H), 2.87 (t, J=12.8 Hz, 1 H), 2.73-2.59 (m, 2 H), 2.40 (brs, 2 H), 1.68-1.41 (m, 8H), 1.33–1.26 (m, 4H), 0.88 (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 209.0$, 155.3, 136.8, 128.4, 127.9, 127.8, 67.0, 47.6, 43.2, 39.8, 31.3, 28.2, 25.2, 23.4, 22.4, 18.8, 13.9; MS (70 eV, EI): m/z (%)=332 (<1) [M+H]⁺, 277 (<1), 240 (3), 196 (46), 174 (13), 98 (11), 91 (100), 43 (21); HR-MS (ESI): m/z = 332.2216, calcd. for $C_{20}H_{30}NO_3$ [M+H]⁺: 332.2220.

(R)-N-Benzyloxycarbonyl-2-(2-oxo-2-phenylethyl)-piperidine (2g): Following the General Procedure mentioned above, the reaction gave the product 2g; yield: 32.0 mg $(0.095 \text{ mmol}, 95\%); R_f = 0.5 \text{ (petroleum ether/EtOAc} = 2:1);$ $[\alpha]_{D}^{20}$: -13 (c 1.0 in CHCl₃). The enantiomeric excess of 98% was measured by HPLC (chiralcel OD-H, n-hexane/i-PrOH=95/5; flow rate 0.5 mLmin⁻¹; λ =230 nm): t (minor)=26.8 min, t (major)=28.3 min. The *R* absolute configuration of 2g was provisionally assigned according to the stereochemical determinations of 2a, 2d and 2f, as well as by a comparison of its optical rotation with that of the Boc-protected analogue in the literature {[α]_D²⁰: -9.7 (*c* 1.0 in CHCl₃).^[23] ¹H NMR (400 MHz, CDCl₃): $\delta = 7.86$ (brs, 2H), 7.48-7.44 (m, 1H), 7.32-7.23 (m, 7H), 5.01 (brs, 2H), 4.84 (brs, 1H), 4.03 (brs, 1H), 3.22–3.12 (m, 2H), 2.88 (t, J= 12.4 Hz, 1H), 1.57–1.36 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.2, 155.3, 136.63, 135.56, 133.1, 128.6, 128.4,$ 128.2, 127.86, 127.81, 67.0, 48.2, 39.9, 39.2, 27.8, 25.1, 18.7; MS (70 eV, EI): m/z (%)=338 (<1) [M+H]⁺, 246 (2), 218 (3), 202 (45), 174 (10), 105 (34), 91 (100), 77 (26); HR-MS (ESI): m/z = 338.1756, calcd. for $C_{21}H_{24}NO_3$ [M+H]⁺: 338.1751.

(R)-N-Benzyloxycarbonyl-2-(2-oxo-2-para-tolylethyl)-piperidine (2h): Following the General Procedure mentioned above, the reaction gave the product 2h; yield: 26.3 mg $(0.075 \text{ mmol}, 75\%); R_f = 0.6 \text{ (petroleum ether/EtOAc} = 2:1);$ $[\alpha]_{\rm D}^{20}$: -46 (c 1.0 in CHCl₃). The enantiomeric excess of 96% was measured by HPLC (chiralcel OD-H, n-hexane/i-PrOH = 95/5; flow rate 0.5 mLmin⁻¹; $\lambda = 254$ nm): t (minor) = 24.0 min, t (major) = 26.6 min). The R absolute configuration of 2h was provisionally assigned according to the stereochemical determinations of 2a, 2d and 2f. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.77$ (brs, 2H), 7.28–7.21 (m, 5H), 7.12 (brs, 2H), 5.02 (brs, 2H), 4.86-4.78 (m, 1H), 4.06-4.02 (m, 1H), 3.19-3.04 (m, 2H), 2.88 (t, J=12.4 Hz, 1H), 2.32 (s, 3H), 1.65–1.47 (m, 5H), 1.44–1.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.9$, 155.3, 143.9, 136.7, 134.2, 129.3, 128.43, 128.37, 127.86, 127.85, 67.1, 48.4, 39.9, 39.1, 27.8, 25.2, 21.6, 18.7; MS (70 eV, EI): m/z (%)=351 (<

Adv. Synth. Catal. 2011, 353, 2721-2730

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1) $[M]^+$, 217 (<1), 173 (8), 149 (14), 108 (34), 91 (100), 57 (27), 43 (27); HR-MS (ESI): m/z = 352.1901, calcd. for $C_{22}H_{26}NO_3 [M+H]^+$: 352.1907.

(R)-N-Benzyloxycarbonyl-2-(2-para-nitrophenyl-2-oxo-

ethyl)-piperidine (2j): Following the General Procedure mentioned above, the reaction gave the product 2j; yield: 30.6 mg (0.08 mmol, 80% yield); $R_{\rm f} = 0.4$ (petroleum ether/ EtOAc=2:1); $[\alpha]_D^{20}$: -22 (c 0.5 in CHCl₃). The enantiomeric excess of 85% was measured by HPLC (chiralcel OD-H, nhexane/*i*-PrOH = 95/5; flow rate 0.5 mLmin⁻¹; λ = 254 nm): t (minor) = 42.0 min, t (major) = 56.9 min. The *R* absolute configuration of 2j was provisionally assigned according to the stereochemical determinations of 2a, 2d and 2f. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35-7.90$ (m, 4H), 7.37-7.27 (m, 5H), 5.06 (brs, 2H), 4.89-4.83 (m, 1H), 4.12 (brs, 1 H), 3.25 (d, J=7.6 Hz, 2 H), 2.98 (t, J=12.4 Hz, 1 H), 1.76-1.41 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.8$, 155.3, 150.2, 140.8, 136.4, 129.2, 128.5, 128.1, 127.9, 123.8, 67.3, 48.2, 39.9, 27.9, 25.0, 18.7; MS (70 eV, EI): *m*/*z* (%) = 382 (< 1) [M]⁺, 291 (1), 247 (23) , 174 (8), 150 (7), 104 (7), 91 (100), 65 (13); HR-MS (ESI): m/z = 383.1607, calcd. for $C_{21}H_{23}N_2O_5 [M+H]^+: 383.1601.$

(R)-N-Benzyloxycarbonyl-2-(2-oxopropyl)-pyrrolidine

(2k): Following the General Procedure mentioned above, the reaction gave the product 2k; yield: 25.1 mg $(0.096 \text{ mmol}, 96\%); R_f = 0.6 \text{ (petroleum ether/EtOAc} = 2:1);$ $[\alpha]_{D}^{20}$: +37 (c 1.0 in CHCl₃), consisting of two rotamers A and **B** at room temperature ($A/B \approx 3:2$). The enantiomeric excess of 80% was measured by HPLC (chiralcel OD-H, nhexane/*i*-PrOH = 95/5; flow rate 0.5 mLmin⁻¹; λ = 220 nm): t (minor) = 33.2 min, t (major) = 41.0 min. The absolute configuration of 2k was assigned as "R" by a comparison of its optical rotation with the literature value of the S-enantiomer { $[\alpha]_D^{20}$: -37.5 (c 0.72 in CHCl₃)}.^[22] ¹H NMR (400 MHz, CDCl₃ two rotamers **A** and **B**): $\delta = 7.38 - 7.29$ (m, 5H; A+ B), 5.12 (brs, 2H; A+B), 4.26–4.18 (m, 1H; A+B), 3.46– 3.39 (m, 2H; A+B), 3.18 (d, J = 15.2 Hz, 0.6×1 H; A), 2.89 (d, J=16 Hz, 0.4×1 H; B), 2.46–2.40 (m, 1 H; A+B), 2.19– 2.01 (m, 4H; A+B), 1.89–1.79 (m, 2H; A+B), 1.73–1.60 (m, 1H; A+B); ¹³C NMR (100 MHz, CDCl₃, two rotamers **A** and **B**): $\delta = 207.2$ (A), 206.9 (B), 154.6 (2×1C; A+B), 136.9 (A), 136.7 (B), 128.4 (2×2C; A+B), 128.0–127.8 (2× 1C + 2×2C; A+B), 66.8 (B), 66.6 (A), 54.0 (A), 53.2 (B), 48.5 (B), 47.6 (A), 46.6 (B), 46.3 (A), 31.6 (B), 30.9 (A), 30.3 (A), 29.6 (B), 23.6 (A), 22.8 (B); MS (70 eV, EI): m/z $(\%) = 262 (<1) [M+H]^+, 204 (1), 170 (10), 126 (48), 91$ (100), 84 (22), 65 (21), 43 (57); HR-MS (ESI): m/z =262.1433, calcd. for $C_{15}H_{20}NO_3 [M+H]^+$: 262.1438.

(S)-N-Benzyloxycarbonyl-4-(2-oxopropyl)oxazolidine (2I): Following the *General Procedure* mentioned above, the reaction gave the product 2I; yield: 23.9 mg (0.091 mmol, 91%); R_f =0.5 (petroleum ether/EtOAc=2:1); $[\alpha]_D^{20}$: +87 (*c* 1.0 in CHCl₃), consisting of two rotamers **A** and **B** at room temperature (**A**/**B** \approx 5:3). The enantiomeric excess of 78% was measured by HPLC (chiralcel OD, *n*-hexane/*i*-PrOH= 90/10; flow rate 1.0 mLmin⁻¹; λ =220 nm): t (minor)= 11.7 min, t (major)=14.6 min. The *S* absolute configuration of **2I** was provisionally assigned according to the stereochemical determination of **2k**. ¹H NMR (400 MHz, CDCl₃, two rotamers **A** and **B**): δ =7.30–7.22 (m, 5H; A+B), 5.10– 5.00 (m, 2H; A+B), 4.89–4.78 (m, 1H; A+B), 4.74–4.71 (m, 1H; A+B), 4.18–4.09 (m, 2H; A+B), 3.68–3.65 (m, 1H; A+B), 3.17 (d, J=16 Hz, 0.62×1 H; A), 2.88 (brs, 0.38×1 H; B), 2.56–2.50 (m, 1H; A+B), 2.06 (s, 3H; A+B); ¹³C NMR (100 MHz, CDCl₃, major rotamer): $\delta = 206.7$, 152.9, 136.1, 128.5, 128.2, 128.0, 78.4, 72.4, 67.0, 51.6, 45.6, 30.1; MS (70 eV, EI): m/z (%) = 263 (<1) [M]⁺, 232 (1), 188 (1), 172 (6), 128 (36), 91 (100), 83 (19), 43 (11); HR-MS (ESI): m/z = 286.1056, calcd. for C₁₄H₁₇NO₄Na [M+Na]⁺: 286.1050.

Acknowledgements

We are grateful for financial support from NSFC (Nos. 20802030, 21072082), the Major International (Regional) joint Research Project of NSFC (No. 20921120404), MOST (973 Program, No. 2010CB833200), the Key Project of Chinese Ministry of Education (No. 109154), the Fok Ying Tung Education Foundation (No. 121015), NCET (NCET-08-0254), the Fundamental Research Funds for the Central Universities (lzujbky-2010-k09) and Lanzhou University.

References

- Dictionary of Alkaloids, 2nd edn., (Eds.: J. Buckingham, K. H. Baggaley, A. D. Roberts, L. F. Szabó), CRC Press, Boca Raton, 2010.
- [2] a) T. H. Jones, M. S. Blum, Alkaloids: Chemical and Biological Perspectives, (Ed.: S. W. Pelletier), Wiley, New York, 1983, Vol. 1, Chapter 2, pp 33-84; b) G. B. Fodor, B. Colasanti, Alkaloids: Chemical and Biological Perspectives, (Ed.: S. W. Pelletier), Wiley, New York, 1985, Vol. 3, Chapter 1, pp 1-90; c) G. M. Strunz, J. A. Findlay, The Alkaloids, (Ed.: A. Brossi), Academic Press, London, 1985, Vol. 26, Chapter 3, pp 89-183; d) A. Numata, I. Ibuka, The Alkaloids, (Ed.: A. Brossi), Academic Press, New York, 1987, Vol. 31, pp 193-315; e) R. S. Angle, J. G. Breitenbucher, Studies in Natural Products Chemistry. Stereoselective Synthesis, (Part J), (Ed.: Atta-ur-Rahman), Elsevier, Amsterdam, 1995, Vol. 16, pp 453-502; f) M. J. Schneider, Alkaloids: Chemical and Biological Perspectives, (Ed.: S. W. Pelletier), Wiley, New York, 1996, Vol. 10, Chapter 3, pp 155-315.
- [3] For excellent reviews on the stereoselective synthesis of piperidines, see: a) P. D. Bailey, P. A. Millwood, P. D. Smith, *Chem. Commun.* 1998, 633; b) S. Laschat, T. Dickner, *Synthesis* 2000, 1781; c) R. W. Bates, K. Sa-Ei, *Tetrahedron* 2002, 58, 5957; d) F.-X. Felpin, J. Lebreton, *Eur. J. Org. Chem.* 2003, 3693; e) P. M. Weintraub, J. S. Sabol, J. M. Kane, D. R. Borcherding, *Tetrahedron* 2003, 59, 2953; f) M. G. P. Buffat, *Tetrahedron* 2004, 60, 1701.
- [4] For one-step asymmetric synthesis of substituted piperidines by using stoichiometric chiral substrates, see: a) L. Guerrier, J. Royer, D. S. Grierson, H.-P. Husson, J. Am. Chem. Soc. 1983, 105, 7754; b) M. Mehmandoust, C. Marazano, B. C. Das, J. Chem. Soc. Chem. Commun. 1989, 1185; c) P. D. Bailey, D. J. Londesbrough, T. C. Hancox, J. D. Heffernan, A. B. Holmes, J. Chem. Soc. Chem. Commun. 1994, 2543; d) J. Åhman,

```
Advanced >
Synthesis &
Catalysis
```

P. Somfai, Tetrahedron 1995, 51, 9747; e) M. J. Munchhof, A. I. Mevers, J. Am. Chem. Soc. 1995, 117, 5399: f) J. Cossy, C. Dumas, D. G. Pardo, Synlett 1997, 905; g) A. I. Meyers, G. P. Brengel, Chem. Commun. 1997, 1; h) Y.-S. Wong, C. Marazano, D. Gnecco, Y. Génisson, A. Chiaroni, B. C. Das, J. Org. Chem. 1997, 62, 729; i) D. L. Comins, J. Heterocycl. Chem. 1999, 36, 1491; j) H.-P. Husson, J. Royer, Chem. Soc. Rev. 1999, 28, 383; k) B. Guilloteau-Bertin, D. Compère, L. Gil, C. Marazano, B. C. Das, Eur. J. Org. Chem. 2000, 1391; 1) J. F. Hayes, M. Shipman, H. Twin, Chem. Commun. 2001, 1784; m) S. J. Hedley, W. J. Moran, A. H. G. P. Prenzel, D. A. Price, J. P. A. Harrity, Synlett 2001, 1596; n) K. Tanaka, S. Katsumura, J. Am. Chem. Soc. 2002, 124, 9660; o) S. J. Hedley, W. J. Moran, D. A. Price, J. P. A. Harrity, J. Org. Chem. 2003, 68, 4286; p) F. A. Davis, A. Rao, P. J. Carroll, Org. Lett. 2003, 5, 3855; q) H. Huang, T. F. Spande, J. S. Panek, J. Am. Chem. Soc. 2003, 125, 626; r) B. B. Touré, D. G. Hall, J. Org. Chem. 2004, 69, 8429; s) A. Cochi, B. Burger, C. Navarro, D. G. Pardo, J. Cossy, Y. Zhao, T. Cohen, Synlett 2009, 2157; t) Y. Chen, C. Zhong, J. L. Petersen, N. G. Akhmedov, X. Shi, Org. Lett. 2009, 11, 2333.

- [5] For one-step asymmetric synthesis of substituted piperidines by using stoichiometric chiral reagents, see: a) A. I. Meyers, D. A. Dickman, T. R. Bailey, J. Am. Chem. Soc. 1985, 107, 7974; b) R. Déziel, E. Malenfant, J. Org. Chem. 1995, 60, 4660; c) C. Serino, N. Stehle, Y. S. Park, S. Florio, P. Beak, J. Org. Chem. 1999, 64, 1160.
- [6] a) S. Fustero, D. Jiménez, J. Moscardó, S. Catalán, C. del Pozo, Org. Lett. 2007, 9, 5283; b) E. C. Carlson, L. K. Rathbone, H. Yang, N. D. Collett, R. G. Carter, J. Org. Chem. 2008, 73, 5155; c) R.-G. Han, Y. Wang, Y.-Y. Li, P.-F. Xu, Adv. Synth. Catal. 2008, 350, 1474.
- [7] M. T. Reding, S. L. Buchwald, J. Org. Chem. 1998, 63, 6344.
- [8] E. Jnoff, L. Ghosez, J. Am. Chem. Soc. 1999, 121, 2617.
- [9] H. M. L. Davies, T. Hansen, D. W. Hopper, S. A. Panaro, J. Am. Chem. Soc. 1999, 121, 6509.
- [10] M. Terada, K. Machioka, K. Sorimachi, J. Am. Chem. Soc. 2007, 129, 10336.
- [11] For recent examples of organocatalytic asymmetric intermolecular aza-Michael addition to enones, see: a) D. Perdicchia, K. A. Jørgensen, J. Org. Chem. 2007, 72, 3565; b) D. Pettersen, F. Piana, L. Bernardi, F. Fini, M. Fochi, V. Sgarzani, A. Ricci, Tetrahedron Lett. 2007, 48, 7805; c) X. Lu, L. Deng, Angew. Chem. 2008, 120, 7824; Angew. Chem. Int. Ed. 2008, 47, 7710; d) A. Scettri, A. Massa, L. Palombi, R. Villano, M. R. Acocella, Tetrahedron: Asymmetry 2008, 19, 2149; e) F. Pesciaioli, F. De Vincentiis, P. Galzerano, G. Bencivenni, G. Bartoli, A. Mazzanti, P. Melchiorre, Angew. Chem. 2008, 120, 8831; Angew. Chem. Int. Ed. 2008, 47, 8703; f) S. Gogoi, C.-G. Zhao, D. Ding, Org. Lett. 2009, 11, 2249.
- [12] For recent examples of organocatalytic asymmetric intermolecular aza-Michael addition to enals, see:
 a) Y. K. Chen, M. Yoshida, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 9328; b) P. Dinér, M. Nielsen, M. Marigo, K. A. Jørgensen, Angew. Chem. 2007, 119, 2029; Angew. Chem. Int. Ed. 2007, 46, 1983; c) I. Ibrahem, R. Rios, J. Vesely, G.-L. Zhao, A. Córdova,

Chem. Commun. 2007, 849; d) U. Uria, J. L. Vicario, D. Badía, L. Carrillo, Chem. Commun. 2007, 2509; e) H. Li, L. Zu, H. Xie, J. Wang, W. Wang, Chem. Commun. 2008, 5636; f) H. Sundén, R. Rios, I. Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Adv. Synth. Catal. 2007, 349, 827; g) J. Vesely, I. Ibrahem, G.-L. Zhao, R. Rios, A. Córdova, Angew. Chem. 2007, 119, 792; Angew. Chem. Int. Ed. 2007, 46, 778; h) J. Vesely, I. Ibrahem, R. Rios, G.-L. Zhao, Y. Xu, A. Córdova, Tetrahedron Lett. 2007, 48, 2193; i) H. Li, J. Wang, H. Xie, L. Zu, W. Jiang, E. N. Duesler, W. Wang, Org. Lett. 2007, 9, 965; j) G.-L. Zhao, R. Rios, J. Vesely, L. Eriksson, A. Córdova, Angew. Chem. 2008, 120, 8596; Angew. Chem. Int. Ed. 2008, 47, 8468.

- [13] For recent examples of organocatalytic asymmetric intermolecular aza-Michael addition to enecarboxylic acid derivatives, see: a) T. E. Horstmann, D. J. Guerin, S. J. Miller, Angew. Chem. 2000, 112, 3781; Angew. Chem. Int. Ed. 2000, 39, 3635; b) D. J. Guerin, S. J. Miller, J. Am. Chem. Soc. 2002, 124, 2134; c) M. P. Sibi, K. Itoh, J. Am. Chem. Soc. 2007, 129, 8064.
- [14] For recent reviews on asymmetric aza-Michael addition, see: a) M. Liu, M. P. Sibi, *Tetrahedron* 2002, 58, 7991; b) L.-W. Xu, C.-G. Xia, *Eur. J. Org. Chem.* 2005, 633; c) J. L. Vicario, D. Badía, L. Carrillo, J. Etxebarria, E. Reyes, N. Ruiz, *Org. Prep. Proced. Int.* 2005, 37, 513; d) J. L. Vicario, D. Badía, L. Carrillo, *Synthesis* 2007, 2065; e) P. R. Krishna, A. Sreeshailam, R. Srinivas, *Tetrahedron* 2009, 65, 9657; f) D. Enders, C. Wang, J. X. Liebich, *Chem. Eur. J.* 2009, 15, 11058.
- [15] For the synthesis of piperidines using organocatalytic asymmetric intramolecular aza-Michael addition, see refs.^[6a,6b] For the synthesis of other N-heterocycles by the same strategy, see: a) S. Fustero, J. Moscardó, D. Jiménez, M. D. Pérez-Carrión, M. Sánchez-Roselló, C. del Pozo, *Chem. Eur. J.* 2008, *14*, 9868; b) M. Bandini, A. Eichholzer, M. Tragni, A. Umani-Ronchi, *Angew. Chem.* 2008, *120*, 3282; *Angew. Chem. Int. Ed.* 2008, *47*, 3238.
- [16] For recent reviews of iminium catalysis, see: a) G. Lelais, D. W. C. MacMillan, *Aldrichimica Acta* 2006, *39*, 79; b) A. Erkkilä, I. Majander, P. M. Pihko, *Chem. Rev.* 2007, *107*, 5416.
- [17] For recent review on the chiral primary amine catalysis, see: Y.-C. Chen, *Synlett* 2008, 1919, and references cited therein.
- [18] For the leading examples of chiral primary amine-catalyzed aza-Michael addition of enones with nucleophilically enhanced nitrogen donors (α-effect), see refs.^[11c, 116]
- [19] a) M. M. Heaton, J. Am. Chem. Soc. 1978, 100, 2004;
 b) C. H. DePuy, E. W. Della, J. Filley, J. J. Grabowski,
 V. M. Bierbaum, J. Am. Chem. Soc. 1983, 105, 2481;
 c) E. Buncel, I.-H. Um, J. Chem. Soc. Chem. Commun. 1986, 595, and references cited therein.
- [20] S. M. Bachrach, J. Org. Chem. 2008, 73, 2466, and references cited therein.
- [21] a) H. Takahata, M. Kubota, S. Takahashi, T. Momose, *Tetrahedron: Asymmetry* **1996**, *7*, 3047; b) P. Macours, J. C. Braekman, D. Daloze, *Tetrahedron* **1995**, *51*, 1415.
- [22] The absolute configuration of $2\mathbf{k}$ was assigned as "R" by comparison of its optical rotation with the literature

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Adv. Synth. Catal. 2011, 353, 2721-2730

value. For reference, see: M. S. Majik, S. G. Tilve, *Tetrahedron Lett.* **2010**, *51*, 2900. Accordingly, the absolute stereochemistry of **2l** was provisionally established as indicated in Scheme 4.

[23] S. Krishnan, J. T. Bagdanoff, D. C. Ebner, Y. K. Ramtohul, U. K. Tambar, B. M. Stoltz, *J. Am. Chem. Soc.* 2008, 130, 13745.