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ABSTRACT: The development of efficient catalysts with high activity and selectivity for the direct synthesis of H2O2 from 
H2 and O2 is highly desirable yet challenging. Herein, a series of Pd-Sn bimetallic nanocrystals with hollow structure have 
been successfully created as highly active and selective catalysts for direct H2O2 synthesis. We found that the introduction 
of Sn played an important role on the morphology evolution and composition control of the hollow Pd-Sn nanocrystals. 
Significantly, after rapid thermal treatment, the obtained hollow Pd-Sn/TiO2 catalysts can deliver complete inhibition of 
H2O2 decomposition/hydrogenation, resulting in a large activity enhancement for the H2O2 production. The H2 selectivity 
could be further improved by using water as the reaction solvent. Further investigation showed that the large activity 
enhancement of hollow Pd-Sn/TiO2 catalysts for the direct H2O2 synthesis can be attributed to the presence of PdO, the 
ensemble effect between the Pd and Sn as well as the interface effect of Pd/SnOx and PdO/SnOx. 
KEYWORDS: H2O2 production, hollow structure, activity, selectivity, interface effect 

INTRODUCTION 

Hydrogen peroxide (H2O2) is an important chemical 
oxidizing reagent and disinfectant, which is widely used 
in medicine, military and industry.1-7 Currently, the main 
synthetic methods of H2O2 include electrolysis, 
anthraquinone process, direct hydrogenation of oxygen 
(O2), isopropanol oxidation method and so on. While the 
anthraquinone process is widely used in industrial 
production,6, 8-9 it requires abundant poisonous organic 
compounds.10 Recently, due to the simple process, low 
energy consumption as well as limited environment 
pollution, the direct hydrogenation of O2 to H2O2 with 
hydrogen (H2) has received increasing research 
interests.11-13 While palladium (Pd) is considered to be a 
superior catalyst for the H2O2 production by direct 
hydrogenation approach, it is also very active towards the 
H2O2 decomposition/hydrogenation and the H2 
combustion due to the low reaction selectivity, which 
largely reduces the utilization of H2 and the efficiency of 
the catalysts.14-15 To this end, a great deal of attentions 
have been directed to improve the activity and H2 
selectivity of Pd-based catalysts for the H2O2 production. 
Several conventional strategies, including controlling the 
Pd oxidation state, adding H+ and/or halogen ions to the 
reaction medium, and forming Pd-based bimetallic 
catalysts, have been developed to boost the direct H2O2 
synthesis catalysis.16-17 Nevertheless, these approaches are 
still not very efficient, since they can also lead to new 
problems, such as low catalytic stability, difficult product 

purification, as well as high costs (i.e., Pd-Au bimetallic 
catalyst). Thus, it is still a challenge to achieve effecient 
Pd-based catalysts for the direct H2O2 production. 

Recently, Hutchings and co-workers have synthesized a 
series of Pd-Sn catalysts by the impregnation-reduction 
method with enhanced activity and H2 selectivity for the 
direct H2O2 production, promising to replace the 
expensive Pd-Au catalysts.18 However, their thermal 
treatment process are multi-step and time-consuming, 
and the activity remains to be further improved. Here, we 
reported the successful creation of hollow Pd-Sn 
bimetallic alloy nanocrystals supported on TiO2 with 
more efficient direct H2O2 synthesis. Through a simple 
rapid thermal treatment process, the degradation of H2O2 
could be completely inhibited. When water was used as 
the reaction medium, high H2 selectivity (80.1%) and 
excellent activity (120.1 mol kgcat

–1 h–1) could be achieved 
simultaneously. 

RESULTS AND DISCUSSION 

Hollow Pd-Sn nanocrystals were obtained through a 
facile solvent-thermal method. Their composition and 
morphology were readily controlled by tuning the 
amount of SnCl2 supplied and the reaction temperature. 
Specifically, hollow Pd2Sn, Pd4Sn, and Pd5Sn nanocrystals 
were synthesized at 140 °C by using different amounts of 
SnCl2. As a contrast, the solid Pd6Sn nanocrystals were 
obtained under the same synthetic condition of hollow 
Pd2Sn except for a lower reaction temperature of 120 °C. 
The ratio of Pd to Sn was determined by the scanning 
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electron microscope energy-dispersive X-ray spectroscopy 
(SEM-EDX) and inductively coupled plasma atomic 
emission spectroscopy (ICP-AES) (Figure S1 and Table S1). 
The typical transmission electron microscopy (TEM) 
images of four Pd-Sn nanocrystals show their particle 
sizes are about 10~15 nm (Figure 1A-D). It reveals that the 
Pd2Sn, Pd4Sn, and Pd5Sn nanocrystals have bright center 
and dark edge, suggesting the presence of hollow 
structure (yield > 60%), while the Pd6Sn nanocrystals are 
solid. The powder X-ray diffraction (PXRD) patterns 
exhibit that the Pd4Sn, Pd5Sn, and Pd6Sn nanocrystals 
have four distinct diffraction peaks, which can be readily 
indexed to the (111), (200), (220), and (311) reflections of 
face-centered cubic (fcc) crystal (Figure 1E). Compared 
with standard fcc Pd diffraction data (JCPDS: 87-0643), 
these diffraction peaks shift towards the lower angle, 
which can be attributed to the insertion of Sn with the 
larger atomic radius into the Pd lattice. The lattice 
expansion indicates the successful formation of Pd-Sn 
alloy. Meanwhile, the shift of diffraction peaks increases 
with increasing Sn content, which is evident at the high 
angle. Moreover, the hollow Pd2Sn nanocrystals with 
intermetallic phase (JCPDS: 89-2057) has been obtained, 
as revealed by the PXRD pattern (Figure 1E).  

 

Figure 1. TEM images of (A) Pd2Sn, (B) Pd4Sn, (C) Pd5Sn, 
and (D) Pd6Sn nanocrystals. (E) PXRD patterns of these 
four Pd-Sn nanocrystals. HRTEM images of the typical (F) 
hollow and (G) solid Pd2Sn nanocrystals. (H) 
HAADF-STEM image and EDX elemental mappings of 
Pd2Sn nanocrystals. Pd: green, Sn: red. (I) EDX line 
scannings of Pd2Sn nanocrystals. 

The in-depth characterizations and discussions were 
implemented on hollow Pd2Sn nanocrystals as a 
representative sample. High resolution transmission 
electron microscopy (HRTEM) image shows the hollow 

nanocrystals have a lattice spacing of 0.229 nm, which 
corresponds to (013) lattice spacing of intermetallic Pd2Sn 
crystal (JCPDS: 89-2057, Figure 1F). In addition, solid 
products have a lattice spacing of 0.236 nm that matches 
(210) lattice spacing of intermetallic Pd2Sn crystal (JCPDS: 
89-2057, Figure 1G). High-angle annular dark-field 
scanning TEM (HAADF-STEM) image and EDX elemental 
mapping patterns, in consistenting with the PXRD result, 
demonstrate that the Pd element and the Sn element 
have even distributions (Figure 1H), which confirms the 
formation of Pd2Sn intermetallic nanomaterials. The EDX 
line scanning of the hollow Pd2Sn nanocrystals displays 
the characteristics of the hollow structure (Figure 1I), 
which can improve the utilization of Pd.19-23 

To explore the formation process of hollow Pd2Sn 
intermetallic compound, the intermediate products 
obtained at different reaction times were investigated. 
The time-dependent TEM images and PXRD patterns 
were collected and analyzed (Figure 2A and B). Based on 
these TEM images, it reveals that hollow nanocrystals 
appear in the reaction time between 40 and 80 min, and 
the proportion of these hollow nanocrystals increases 
during the subsequent reaction. The phase 
transformation was decoded by the PXRD patterns. In the 
initial stage of the reaction (20 min), the Pd(II) precursor 
is reduced to Pd nanocrystals. Then, the Sn(II) precursor 
is reduced and Pd nanocrystals begin to transform into 
Pd-Sn nanocrystals at 40 min, which can be evidenced by 
a significant shift of diffraction peak. In the subsequent 
reaction time (from 80 to 240 min), Pd-Sn nanocrystals 
gradually evolve into intermetallic Pd2Sn nanocrystals. 
Therefore, it can be found that 40 min is an important 
reaction time node. 

To clarify the formation mechanism, the 
crystallographic texture of intermediate products 
obtained at 40 min was further investigated by PXRD 
(Figure 2C). After deconvolving the strongest (111) 
diffraction peak, two small diffraction peaks were 
revealed, indicating two kinds of intermediate Pd-Sn 
products, including Sn-deficient and Sn-riched Pd-Sn 
alloys. Previous literatures demonstrated that Pd could be 
etched by halogen ions and oxygen in reaction system, 
followed by the formation of corrosion site.24-26 
Meanwhile, the reduction of Sn2+ ions occured at the 
corrosion site, which would expand into a hole and 
eventually form a hollow structure.24 In other words, the 
oxidative etching process of Pd and the reduction of Sn2+ 

ions synergistically led to the formation of hollow 
structure. Based on the PXRD results, we can conclude 
that the Sn-deficient Pd-Sn alloy intermediate products 
eventually transformed into hollow Pd2Sn intermetallic 
nanocrystals because of the subsequent reduction of Sn2+ 
ions. In contrast, the Sn-riched Pd-Sn alloy intermediate 
products will evolve into solid nanocrystals owing to the 
lack of Sn2+ reduction process. In addition, a high 
temperature (140 °C) and more SnCl2 feed can provide 
sufficient energy and raw materials for the oxidative 
etching process, respectively.25, 27 Therefore, when the 
lower temperature (120 °C) or less SnCl2 feed is applied, 
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only solid products can be obtained (Figure 1D and Figure 
S2).  

 

Figure 2. Time-dependent morphology and composition 
evolution of Pd2Sn nanocrystals based on (A) TEM images 
and (B) PXRD patterns. (C) Enlarged PXRD pattern 
obtained at 40 min. 

The hollow Pd2Sn nanocrystals supported on TiO2 
nanocrystals (Pd2Sn/TiO2) were chosen as a 
representative sample to investigate the activity and 
selectivity of Pd-Sn nanocrystals for the direct H2O2 
production (Figure S3A). Detailed procedures for the 
direct H2O2 production are shown in the experimental 
section. Herein, a mixed solution of methanol and water 
was used as the reaction medium. By regulating the ratio 
of methanol to water, the highest reactivity is achieved at 
a methanol/water ratio of 8 : 2 (Figure 3A). After that, 
hollow Pd2Sn nanocrystals loaded on different supports 
were also prepared (Figure S4) and invsetiaged for their 
catalytic activities. The expermential results show that 
hollow Pd2Sn/TiO2 catalyst has the best catalytic activity 
(Figure 3B), which can be attributed to the promoting 
effect of TiO2 for the direct H2O2 production,28-32 such as 
the improved charge transport, owing to Ti3+ species and 
Ovacancy defects in bulky TiO2.

33 Under this optimized 
synthesis condition, the performances of a series of 
Pd-Sn/TiO2 catalysts (Figure S3B-D), commercial Pd/C 
and Pd/TiO2 catalysts (Figure S5) were also evaluated, 
where the hollow Pd5Sn/TiO2 exhibits the highest activity 
of 98.4 mol kgcat

–1 h–1 (Figure 3C). Compared with Pd/TiO2 

catalyst, the enhanced activity of Pd-Sn/TiO2 indicates 
that the introduction of Sn improves the activity of Pd for 
the the direct H2O2 production. The rate of H2O2 
degradation (i.e., the decomposition and hydrogenation 
of H2O2) on various catalysts was further investigated, 
which showed that all catalysts exhibited high activity for 
the conversion of H2O2 to H2O (Figure 3C), which is 
detrimental to the H2 selectivity. In order to inhibit the 

conversion of H2O2 to H2O, a thermal treatment process 
was applied to these catalysts, and hollow Pd5Sn/TiO2 
catalyst was selected as the candidate due to its highest 
activity. Since the long time thermal treatment leads to 
the particle aggregation (Figure S6), the treatment 
process was carried out at high temperature (350 °C) for a 
short time so as to largely maintain the morphology and 
composition of these nanocrystals (Figure S7). With the 
increase of treatment time, the reaction of H2O2 to H2O is 
effectively inhibited, while the rate of H2O2 production 
increases gradually (Figure 3D). When the treatment time 
is 6 min, the degradation rate of H2O2 is decreased to 0 
mol kgcat

–1 h–1, and the activity of H2O2 production reaches 
to 160.2 mol kgcat

–1 h–1.  

 

Figure 3. (A) H2O2 productivity of Pd2Sn/TiO2 in different 
reaction media. (B) H2O2 productivity of Pd2Sn supported 
on different carriers. (C) H2O2 productivity and 
degradation of different catalysts under optimized 
conditions. (D) H2O2 productivity and degradation of 
Pd5Sn/TiO2 under different processing times. 

Although all Pd-Sn/TiO2 catalysts can also exhibit 
similar activity change (i.e., the H2O2 production 
enhancement and H2O2 degradation inhibition) after the 
rapid thermal treatment (Figure 4A), all Pd-Sn/TiO2 
catalysts show low H2 selectivity of about 15% (Figure S8). 
Considering the complete inhibition of H2O2 degradation 
on these catalysts, the low H2 selectivity must be 
attributed to the combustion of H2. To improve the H2 

selectivity, the ratio of water to methanol was 
reconsidered. The results show that the H2 selectivity can 
reach to 80.1% in pure water medium with the H2O2 
production of 120.1 mol kgcat

–1 h–1 at hollow Pd5Sn/TiO2 
catalyst (Figure 4B), which is superior to most of the 
reported values (Table S2).12, 18, 34-36 Compared with the 
mixed medium, the pure water solvent improves the 
reaction selectivity, but the catalytic activity is also 
reduced. Previous reports showed that the solubility of H2 
and O2 in water is far less than that in methanol.37 As a 
result, the reduced reactant concentration loses some 
catalytic activity but also changes reactive mode of H2 and 
O2 with active sites, resuluting in the selectivity 
ehancement. Moreover, hollow Pd5Sn/TiO2 catalyst can 
exhibit promising stability in both the methanol/water 
mixture and pure water (Figure 4C). After 5 reaction 
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rounds, the catalytic activity remains more than 80% of 
the initial activity. Since TEM image and EDX analysis 
show no obvious changes in the morphology and 
composition of Pd5Sn nanocrystals (Figure S9), the 
deactivation may originate from the mass loss of catalysts 
due to the multiple centrifugation. 

 

Figure 4. (A) H2O2 productivity and degradation of 
different catalysts after rapid thermal treatment at 350°C 
for 6 min. (B) H2 selectivity and H2O2 productivity of 
Pd5Sn/TiO2 in different reaction media. (C) Recycling 
performance of Pd5Sn/TiO2 in the methanol/water 
mixture and pure water. 

Since the H2O2 generation reaction occurred on the 
surface of catalyst, the surface-sensitive X-ray 
photoelectron spectroscopy (XPS) was used to reveal the 
structure-activity relationship of these Pd-Sn/TiO2 
catalysts.38-43 Considering Pd atoms were the main active 
sites for the the direct H2O2 production, Pd 3d XPS signal 
was analyzed firstly. For Pd5Sn/TiO2, the proportion of 
Pd(0) drastically reduces after the thermal treatment 
(Figure 5A), which has a major contribution for the H2O2 
degradation inhibition.13 The evolution of the Pd chemical 
state is also observed in other Pd-Sn/TiO2 (Figure 5B). 
Since the thermal treatment induces that the bonding of 
both O and Sn atoms on Pd surface, the electronic 
structure of Pd will be changed. Considering that the 
difference between the electronegativity of O (X=3.44) 
and Pd (X=2.20) is much greater than that of Sn (X=1.96) 
and Pd (X=2.20),44 the influence of Sn on the Pd 
electronic structure may be very weak. Combined with 
previous experimental results, it could be found that the 
introduction of Sn further strengthens the inhibition, 
which should be attributed to the ensemble effect of 
Pd-Sn alloy.16 Benefiting from this inhibition, the H2O2 
production rate on all the catalysts is improved after the 
thermal treatment. The XPS data of Sn element show that 
Sn exists mainly in the form of SnOx in the original 
Pd5Sn/TiO2 (Figure 5C). Subsequent thermal treatment 
results in the increased proportion of SnOx. This 
evolution also occurs on other Pd-Sn/TiO2 (Figure S10). 
Compared to Pd/TiO2, the introduction of SnOx 
fundamentally enhances the activity of Pd-based catalysts 
for the H2O2 production. Furthermore, considering that 
SnOx is active in adsorbing O2 but inefficient in O‒O bond 

scission,45-47 a reasonable interface effect is established to 
explain the enhanced performance (Figure 5D). 
Specifically, Pd or PdO can activate both H2 and O2, but 
its high activity often results in O2 splitting, which is not 
beneficial for producing H2O2. The SnOx can achieve weak 
activation of O2 without breaking the O-O bond. 
Therefore, when SnOx adsorbs an O2 and Pd or PdO near 
SnOx activate a H2, H2O2 will rapidly generate at Pd/SnOx 

and PdO/SnOx interfaces. In this work, CTAB is used in 
Pd-Sn nanocrystals synthesis, and Br– has been identified 
to enhance catalytic performance for the H2O2 
production.37 Therefore, XPS analysis was used to detect 
the presence of Br–. The results show that there is no Br 
on the surface of Pd5Sn/TiO2 (Figure S11), which also 
proves once again that Sn plays a key role in improving 
catalytic performance of Pd-Sn/TiO2 catalysts for the 
H2O2 production. 

 

Figure 5. (A) XPS patterns of Pd 3d of Pd5Sn/TiO2 before 
and after a thermal treatment within a short time. (B) The 
proportion of Pd(0) based on XPS results for several 
Pd-Sn/TiO2 before and after a thermal treatment within a 
short time. (C) XPS patterns of Sn 3d of Pd5Sn/TiO2 
before and after a thermal treatment within a short time. 
(D) The illustration of the interface effect in Pd-Sn 
catalysts.  

CONCLUSIONS 

To summarize, we have successfully synthesized a 
series of Pd-Sn bimetallic nanocrystals with hollow or 
solid structure, which closely related to the amount of 
SnCl2 supplied and the reaction temperature. Through a 
facile rapid thermal treatment, the complete inhibition of 
H2O2 degradation has been achieved on these 
Pd-Sn/TiO2; among them, hollow Pd5Sn/TiO2 exhibited 
the highest activity for the direct H2O2 production. By 
controlling the reaction medium, 80.1% H2 selectivity and 
120.1 mol kgcat

–1 h–1 activity could be obtained for the 
hollow Pd5Sn/TiO2. The enhanced activity of hollow 
Pd-Sn/TiO2 can be attributed to the existance of PdO, the 
ensemble effect of hollow Pd-Sn, as well as the interface 
effect of Pd/SnOx and PdO/SnOx interfaces. Our study 
presents a promising Pd-based nanostructure for direct 

Page 4 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

H2O2 synthesis catalysis with excellent activity and 
selectivity. 
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