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C(4)-alkyl substituted furanyl cyclobutenediones as potent,
orally bioavailable CXCR2 and CXCR1 receptor antagonists
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Abstract—A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and
CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki = 1 nM,
IC50 = 1.3 nM; CXCR1 Ki = 3 nM, IC50 = 7.3 nM), and demonstrates potent inhibition against both Gro-a and IL-8 induced
hPMN migration (chemotaxis: CXCR2 IC50 = 0.5 nM, CXCR1 IC50 = 37 nM). In addition, 16 has shown good oral pharmacoki-
netic profiles in rat, mouse, monkey, and dog.
� 2007 Elsevier Ltd. All rights reserved.
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The recruitment of neutrophil polymorphonuclear
(PMN) leukocytes, the most numerous white blood
cells, to sites of inflammation is principally mediated
by neutrophilic CXC chemokines: IL-8 (Interleukin-8,
CXCL8) and related ELR+ CXC chemokines Gro-a
(CXCL1), Gro-b (CXCL-2), and Gro-c (CXCL3),
ENA78 (CXCL5), GCP-2 (CXCL6), and NAP-2
(CXCL7).1 These CXC chemokines exert their effects
through interaction with two G-protein coupled recep-
tors CXCR2 and CXCR1,2 which are expressed on a
number of inflammatory cells including neutrophils,
monocytes, and microvascular endothelial cells. Massive
infiltration of neutrophils to the lung and increased level
of IL-8 are observed with ARDS (Adult Respiratory
Distress Syndrome) patients3 and detected in the sputum
of COPD (Chronic Obstructive Pulmonary Disease)
patients4; increased expression levels of the receptors
and IL-8 are also detected in psoriatic tissue5 and in in-
flamed gut tissue (inflammatory bowel disease).6 The
existing evidence suggests that effectively blocking the
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interaction between the neutrophilic chemokines and
CXCR2/CXCR1 receptors could conceivably provide
new treatments for a number of inflammatory disorders.

Since the mid 1990’s, a number of companies have pur-
sued the strategy of CXCR2 and CXCR1 receptor
blockade using small molecules.7 Monoclonal antibod-
ies8 were explored as an alternative approach. An anti-
IL-8 neutralizing antibody has shown positive effects
in a Phase III clinical trial in psoriasis,8b though no
small molecule was currently known to be advanced be-
yond Phase II clinical studies. Repertaxin (1, Fig. 1), a
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Figure 1. Known CXCR2 and CXCR1 antagonists in clinical trials.
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Table 1. Inhibitory activities of substituted thienyl analogs (8–10) and

furanyl analogs (4, 11–12)12
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CXCR2
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(vs IL-8, nM)
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(vs IL-8, nM)

8 S 5 146

9 S 5 24

10 S 10 123

4 O 5 18

11 O 4 9

12 O 25 379

a Values are means of at least two experiments.
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CXCR1 allosteric inhibitor by Dompe, is reported to be
in Phase II trials for prevention of DGF (delayed graft
function) in kidney transplant.9 N,N 0-Diarylureas 2
and 3, two CXCR2-selective antagonists from Glaxo-
SmithKline, are being progressed in Phase I as a poten-
tial treatment of COPD.10 Lastly, diamino-
cyclobutenedione 4, a CXCR2 antagonist developed
through our own efforts, has been in clinical studies.11,7a

Whether selective inhibition of CXCR2 receptor or
CXCR1 receptor would be sufficient for complete inhi-
bition of PMN infiltration in humans is still an unan-
swered question, due partly to the lack of detailed
clinical information so far. In addition, the roles of
CXCR2 and CXCR1 receptors in various inflammatory
diseases are still being investigated. Would a CXCR2
and CXCR1 dual antagonist be ultimately required to
achieve the desired therapeutic effects? We were inter-
ested in this question and embarked on the exploration
of potential dual antagonists.

Among the structurally diverse small molecule CXCR2
or CXCR1 antagonists disclosed, only researchers at
GSK recently reported some cyanoguanidines as dual
CXCR2 and CXCR1 inhibitors,7b including the most
potent ones 5 and 6 (Fig. 2). In our SAR studies that
led to the discovery of 4, we have observed that C(4)-al-
kyl substitution could improve significantly CXCR1
inhibition while maintaining potent CXCR2 inhibition.
Herein we report the SAR development and synthesis
of a potent class of dual CXCR2 and CXCR1 antago-
nists bearing a distinct C(4)-alkyl substitution on the
furan moiety (7).

While studying the impact of regio-substitutions of the
thiophene system on the inhibition of CXCR2 and
CXCR1 receptors, it was first realized C(4) substitution
could enhance CXCR1 activity. The structures and
inhibitory activities of C(5)-methyl (8), C(4)-methyl
(9), and C(3)-methyl (10) substituted thienyl analogs
are described in Table 1. It is interesting to see that these
three methyl substituted analogs had similar inhibitory
activities against CXCR2 receptor, however, the C(4)-
analog 9 showed a 6-fold more potent CXCR1 inhibi-
tion than its regio-analogs 8 and 10. The same trend
was observed with furan system. C(4)-methyl substi-
tuted furanyl analog 11 has exhibited an improved
CXCR1 activity over its C(5)-methyl (4) and C(3)-ethyl
(12) analogs, while having a similar CXCR2 activity as
these analogs (Table 1). In addition, furanyl analogs
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Figure 2. CXCR2–CXCR1 dual inhibitors.
seem to be more potent CXCR1 inhibitors than their
respective thienyl analogs. These early results suggest
that the C(4)-position of the thienyl or furanyl systems
is advantageous for further CXCR1 activity optimiza-
tion, thereby leading to potent dual antagonists.

Aiming at further improvement of CXCR1 inhibition,
an investigation of C(4)-alkylation of the furan moiety
was launched. Straight chain, branched, and/or cyclic al-
kyl substitutions were introduced, results are summa-
rized in Table 2. All analogs have demonstrated potent
CXCR2 inhibition (Ki12 < 10 nM). Medium sized
branched alkyl substituted analogs, 2-butyl (17) and 3-
pentyl (18), displayed the best CXCR2 activities, with
Kis of 0.6 and 0.8 nM, respectively. In terms of CXCR1
inhibition, these analogs have a wider range of activities,
Ki varying from 3 to 283 nM. Smaller sized groups were
preferred, and slightly larger cyclic groups led to the
reduction of CXCR1 activity (20, 21). The isopropyl
substitution appeared to be the best for CXCR1 inhibi-
tion, rendering analog 16 with a Ki of 3 nM
(IC50 = 7.3 nM) on CXCR1 receptor. Analog 16 also
displayed a potent inhibition against CXCR2 receptor
with Ki being 1 nM (IC50 = 1.3 nM). A brief rat phar-
macokinetic evaluation of the C(4)-alkyl analogs (11,



Table 3. Inhibitory activities of C(4)-isopropyl substituted furan

analogs12
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Compound R2 CXCR2

Kia (vs IL-8, nM)

CXCR1

Kia (vs IL-8, nM)

22 Me 2 50

16 Et 1 3

23 iPr 4 11

24 cPr 3 10

25 tBu 4 14

26 CF3 6 16

a Values are means of at least two experiments.

Table 2. Inhibitory activities of C4-alkyl substituted furanyl analogs12
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Compound R1 CXCR2 Kia (vs IL-8, nM) CXCR1 Kia (vs IL-8, nM) Rat AUCb (lM h)

11 4 9 32.6

13 1 7 17.4

14 2 34 NT

15 O
N

9 14 0

16c 1 3 5.4

17 0.6 7.6 NT

18 0.8 30 NT

19 4 10 NT

20 3 53 NT

21 4 283 NT

a Values are means of at least two experiments.
b AUC: area under curve; data were generated based on a 6-h study, po dosing (10 mg/kg), n = 2. NT, not tested.
c 16: CXCR2 IC50 = 1.3 nM, CXCR1 IC50 = 7.3 nM.
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13, 15, and 16) has revealed that these compounds in
general have good oral pharmacokinetic profile, except
15; and less branched alkyl group R1 is better.

Having identified the isopropyl group as the best
C4-substitution we further evaluated the combination
effect of this group with a number of pseudo-benzylic
substitutions R2 (Table 3). In both the exploration of
the C(4) position (R1, Table 2) and the pseudo-ben-
zylic site (R2), we have observed a general trend that
the binding pocket of the CXCR1 receptor is much
more restrictive than the CXCR2 receptor’s. All of
these pseudo-benzylic analogs, methyl (22), isopropyl
(23), cyclopropyl (24), tert-butyl (25), trifluoro-methyl
(26), and ethyl (16), have shown similarly potent
CXCR2 inhibition (Ki < 6 nM), however, only ethyl
analog 16 exhibited a potency below 10 nM CXCR1
inhibition. Groups slightly larger than the ethyl re-
duced moderately CXCR1 activity (3- to 5-fold), while
the smaller methyl group (22) resulted in a 17-fold de-
crease of CXCR1 activity. Taken together, the combi-
nation of iPr (R1)/Et (R2) was recognized as being
optimal thus far.
Furanyl analog 16 has emerged as the most potent
CXCR2–CXCR1 dual antagonist to date. It has been
evaluated further in a wide range of in vitro and
in vivo studies. In the chemotaxis assays, it demon-



Table 4. Oral pharmacokinetic parameters of compound 16

Species Dose (po) AUC (lM h) Cmax (lM)

Rat 10 mg/kg, 6 h 5.4 3.8

Mouse 25 mg/kg, 7 h 4.6 4.6

Monkey 3 mg/kg, 48 h 4.2 0.38

Dog 2 mg/kg, 48 h 7.1 5.3
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Scheme 2. Reagents and conditions: (a) (ClC@O)2, DMF(cat),
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strated potent inhibition against both Gro-a and IL-8
induced human neutrophil migration (chemotaxis
IC50 = 0.5 nM, against 30 nM of Gro-a; chemotaxis
IC50 = 37 nM, against 3 nM of IL-8).13 When profiled
in vivo, 16 achieved an ED50 of 0.9 mg/kg in the rat
LPS (lipopolysaccharide) challenged model14 and an
ED50 of 1 mg/kg in the mouse cigarette smoke induced
neutrophilic inflammatory model.15

Evaluated in four different animal species, compound 16
has shown good oral pharmacokinetic profiles in gen-
eral. Results are described in Table 4.

An important aspect of the development of this C(4)-al-
kyl substituted furyl series is the synthesis of key inter-
mediates C(4)-alkyl substituted 2-furaldehydes.
Multiple synthetic approaches (Schemes 1–3) have been
developed to allow access to these not readily available
aldehydes.

Straight chain substituted 2-furaldehydes, 4-methyl (29),
4-ethyl (32),16 4-butyl (36), and 4-morpholino-butyl
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Scheme 1. Reagents and conditions: (a) (MeO)3CH, pTsOH (cat),

MeOH, 60 �C, 80%; (b) nBuLi, THF, �78 �C; MeI, �78 �C to �60 �C,

>95%; (c) acetone, pTsOH (cat), 70 �C, >95%; (d) TsCl, Et2O, NaOH,

�20 �C, 3 h; Me2CuLi, �20 �C16; (e) tBuLi, Et2O, rt; DMF, rt, low

yield, isomeric aldehyde also formed (minor); (f) tBuLi, cPrBr, Et2O,

�78 �C, 10 min, then rt, 1.5 h; addition of 33, �78 �C, 1 h, 92%; (g)

NaI, TMSCl, CH3CN, rt, 5 min, 47%; (h) tBuLi, Et2O, �78 �C,

20 min; rt, 2.5 h, >95%; (i) K2CO3, morpholine, acetone, rt, 2 d, 73%;

(j) tBuLi, Et2O, �78 �C to rt, 4 h; DMF, rt, 4 h, 66% of 38 and its regio

isomer (3-substituted-2-aldehyde) in 1:0.6 ratio.

Scheme 3. Reagents and conditions: (a) KOtBu, 2-nitropropane,

HMPA, rt, 18 h, 86%; (b) nBu3SnH, AIBN (cat), Tol, 90 �C, 4 h,

78%; (c) LiAlH4, THF, 0 �C to rt, 3 h, Q; (d) CH2Cl2, Dess-Martin

periodinane, rt, 3 h, 78%; (e) KOtBu, 49, HMPA, rt, overnight (NaH,

when Ra = Rb = Et); (f) applying conditions used in (b–d).
(38), were prepared using the approaches described in
Scheme 1. Fully branched tert-butyl substituted 2-fural-
dehyde 44 was synthesized via a 5-step sequence starting
from furyl carboxylic acid 39 (Scheme 2). Acid 39 was
first transformed to ester 40, the tert-butyl group was
then installed to the C4 position via the Friedel-Crafts
alkylation,17 providing the necessary intermediate 41.
Upon a further three-step manipulation, 41 was con-
verted to the 4-tert-butyl-2-furaldehyde 44.

A common synthetic route that could be used to intro-
duce various branched C4-alkyl substitutions was devel-
oped (Scheme 3). Utilizing a method by Ono,18 the
commercially available methyl-5-nitro-2-furoate (45) re-
acted with 2-nitro propane under basic conditions to
provide 46 via a regioselective cine-substitution. The ni-
tro group in 46 was removed by radical reduction to af-
ford 47. Subsequent reduction of the ester 47 and
oxidation of the resultant alcohol generated 4-isopro-
pyl-2-furaldehyde 48 in good yield. This sequence has
been successfully applied to the synthesis of several
2-furaldehydes with branched alkyl substitution at C4
position (51), just replacing 2-nitro propane with appro-
priate nitro-alkanes (49) at the start of the route.
Secondary nitro-alkanes 49, cyclic or acyclic, reacted
with nitro-furoate 45 in a manner similar to 2-nitropro-
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pane to produce key intermediates 50, which were con-
verted in three steps to the corresponding 2-furaldehy-
des 51 in good yields.

The conversion of the C4-alkyl-2-furyl aldehydes
(Schemes 1–3), or the commercially available thienyl
aldehydes, to the final targets was straightforward using
a general synthetic process developed in our group.7a As
depicted in Scheme 4, aryl aldehyde 52 was first con-
densed with (R)-valinol, and the resulting alcohol was
silylated to afford imine 53.19 Various organolithium re-
agents were added to 53,20 and the adducts were sub-
jected to oxidative cleavage conditions to reveal chiral
amines 54. Separately a cyclobutenedione intermediate
58 was prepared in three steps from nitro salicylic acid
(55). Under mild conditions, chiral amines 54 condensed
with intermediate 58 to produce the targeted analogs
8–25.

When pseudo-benzylic substitution R2 was a CF3 group,
an alternative approach is utilized to generate the final
target. The sequence was illustrated in Scheme 5 with
the preparation of 26. Aldehyde 48 was converted to a
CF3-alcohol 59 under the conditions of trifluoromethyl
trimethylsilane and a catalytic amount of cesium fluo-
ride. Subsequent oxidation of 59 produced ketone 60,
which was condensed with (R)-methyl benzyl amine to
afford imine 61. A DBU induced hydride migration con-
verted 61 to 62, upon acid hydrolysis, producing the
amine hydrochloride salt 63.21 Treatment of salt 63 with
diethyl squarate 57, followed by coupling with aniline
56, provided the CF3-analog 26.

In summary, we have discovered a novel and potent
class of dual CXCR2 and CXCR1 antagonists exempli-
fied by C4-isopropylfuranyl 16. This compound demon-
strates potent inhibition of IL-8 and Gro-a-stimulated
human neutrophil migration, is orally bioavailable in
mouse, rat, dog, and monkey; and demonstrates potent
inhibition of neutrophil infiltration in rat and mouse
lungs in LPS- or smoke-induced animal models,
respectively.
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