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Calix[4]arene-Modified Oligosiloxane as a Quasi-Immobilized Neutral
Carrier for Silicone-Rubber-Membrane Sodium Ion-Selective Electrodes
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An oligo(dimethylsiloxane) carrying ionophorous calix[4]arene moieties at the side chain was synthesized as a Na*
neutral carrier for highly durable silicone-rubber membranes of ion-selective electrodes by reacting calix[4]arene tetraallyl
ester with an oligo(methylsiloxane). This medium-molecular-weight calix[4]arene ionophore alleviated the drawback
of chemically-modified calixarene-based silicone-rubber membranes, such as a high membrane impedance and a slow

electrode response.

Although solvent-polymeric membranes, such as plasti-
cized poly(vinyl chloride) (PVC), are good membrane ma-
terials for neutral-carrier-type ion-selective electrodes, they
still have some drawbacks concerning their practical use,
i.e., comparatively easy extrusion of a plasticizer and neu-
tral carrier, and therefore a poor durability of ion-sensing
membranes. One of the best ways to solve this problem
is the immobilization of neutral carriers onto the membrane
support by covalent bonding'— and a simultaneous employ-
ment of elastic polymers without any special plasticizer.*—"
Therefore, we had already attempted a chemical modifica-
tion of crosslinked poly(dimethylsiloxane) (silicone rubber)
with a neutral carrier to obtain highly durable ion-sensing
membranes.® The immobilization of a neutral carrier by
chemical bonding may, however, cause a high membrane
impedance and slow response for the resulting membrane
electrodes due to the low mobility of the neutral carrier de-
rived from the chemical modification. Neutral-carrier-mod-
ified silicone-rubber membranes often exhibit an anomalous
electrode response, unless a lipophilic salt is not included in
them to overcome their high membrane impedance. It oc-
curred to us that the design of an oligomeric neutral carrier
having medium molecular weight and its blending with a
silicone rubber might alleviate the demerits of the silicone-
rubber membranes modified chemically by a neutral carrier.
The medium-molecular-weight neutral carrier is expected
to improve the poor mobility of the covalently-immobilized
neutral carriers and to be hard to outflow from the mem-
brane, due to its relatively high molecular weight. This paper
is concerned with the design of an oligo(dimethylsiloxane)
derivative incorporating calix[4]arene ionophore and its ap-
plication to Na*-selective electrodes.

Experimental

Synthesis. 5,11,17,23-Tetra-t-butyl-25,26,27 28-tetrakis(allyl-
oxycarbonylmethoxy)calix[4]arene (calix[4]arene tetraallyl ester)

was synthesized by the following method. Allyl 1-bromoacetate
was prepared by azeotropic condensation of bromoacetic acid (0.36
mol) and allyl alcohol (0.36 mol) benzene (100 cm?®) in the presence
of H,SO4 (0.7 g) (reflux, 6 h). Under an argon atmosphere, to
t-butylcalix[4]arene (4.62 mmol), was added a mixture of allyl
1-bromoacetate and K>COs3 (110 mmol), together with dry ace-
tone (100 cm’). The mixture was refluxed while stirring for 15
h. After the reaction, iced water (100 cm’® ) and chloroform (100
cm?®) were added to the mixture. The mixture was neutralized by
hydrochloric acid while cooling, and then stirred vigorously. The
organic phase was separated, washed with water (50 cm® x3), and
then dried over MgSOy. Evaporation of the chloroform afforded a
crude product of calix[4]arene tetraallyl ester, which was purified
by recrystallization with ethanol-water. Yield (56%); 'HNMR
(270 MHz, CDCl3) du=1.07 (36H, s, +-Bu), 3.19 (4H, d, /=129
Hz, ArCH,), 4.6—4.7 (8H, m, CO,CH,CH), 4.86 (4H, J=12.8 Hz,
ArCH,), 5.2—5.4 (8H, m, C=CH>), 5.8—6.0 (4H, m, CH=CH,),
6.78 (8H, s, ArH); MS m/z (% rel intensity) 1040 (M*; 12), 57
(100).

The modification of an oligosiloxane with calix[4]arene tetraallyl
ester, that is, the synthesis of calix[4]arene-modified oligosiloxane
1 was performed in the following way. A benzene solution (30 cm®)
of calix[4]arene tetraallyl ester (0.4 g, 3.8x 10™! mmol) and oligo-
(methylsiloxane) [(poly(methylhydrosiloxane), M, =2270, average
polymerization degree of ca. 30, Aldrich] (0.1 g, 4.4x 10~ mmol)
was refluxed in the presence of HyPtClg-6H,0 (2.5 mgx5) for 60 h.
The reaction mixture was filtered by a membrane filter [poly(tetra-
fluoroethylene) film with a pore size of 0.5 mm]. Evaporation of
the benzene afforded calix[4]arene-modified oligosiloxane 1. The
calixarene content of the calixarene-modified oligosiloxane was
determined by '"HNMR.

Other Chemicals. Sodium {4-[3-(triethoxysilyl)propyl-
oxy]phenyl Hriphenylborate for the chemical modification of the
oligosiloxane with an anion excluder was obtained according to our
previously-reported method.” The silicone-rubber precursor em-
ployed was an alcohol-evolving-type (Shin-Etsu Silicone KE47T).
Alkali and alkaline-earth metal chlorides and ammonium chloride
were of the best analytical grade. Control blood sera (Wako, Con-
trol Sera I) was purchased. The ion concentrations for the serum
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were 143 mmoldm™> Na* and 4.1 mmol dm ™ K*.

Fabrication of Membranes and Electrodes. The general
procedure for casting ion-sensing membranes is as follows: A sil-
icone-rubber precursor (90 mg) and a neutral carrier (10 mg) were
dissolved in chloroform (0.6 cm?). In some cases of the calixarene-
bound silicone-rubber membranes employed for a comparison, the
solution also contained a small quantity (25 mol% to the neutral
carrier employed) of sodium {4-[3-(triethoxysilyl)propyloxy]phen-
yl}triphenylborate as an anionic site. The whole solution was
poured into a Teflon®-made Petri dish having an inner diameter
of 17 mm. Gradual evaporation of the chloroform and hardening
at ambient temperature for 2 d afforded an elastic, semitransparent
membrane with a thickness of 0.1—0.2 mm. A 7-mm diameter disk
was cut from the membrane with a cork borer and then incorporated
into an electrode body (Philips 1S-561 type). The internal filling
solution was 1x107% moldm™ NaCl aqueous solution. Condi-
tioning of the electrodes was made by soaking in a NaCl solution
overnight.

Measurements.  Potential measurements were made at room
temperature using a pH/mV meter (Toko, TP-1000). The external
reference electrode was the double-junction-type Ag/AgCl elec-
trode with a 3 moldm™—> KCl internal solution and a 1 moldm™>
CH3;CO;Li external solution. The electrochemical cell was Ag-
AgCl/1x107* mol dm™* NaCl//silicone-rubber membrane//sample
solution/1 moldm ™ CHsCO,Li/3 moldm * KCI/AgCl-Ag. The
measuring metal-ion activities were changed by injection of high-
concentration solutions to the testing solutions, while stirring with
a magnetic stir bar. The emf readings were made after the po-
tential reached a constant value. The selectivity coefficients for
Na® with respect to other cations were determined by a mixed-
solution method (FIM). The background metal-ion concentrations
were 1x10™! mol dm for K* and H*, 5% 10~" mol dm ™3 for Li*,
Ca®, and Mg?, and 1 moldm™> for NH,*. The response time
(tos) was determined on changing the Na* activity of the sample
solution from 1x 107> to 3x10™% moldm™>. A sodium assay in

K,CO4
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serum samples was carried out five times for each sample by Gran’s
plot method. For the standard addition method, the volumes for the
sample and adding solution (1 mol dm ™3 Na") were 5 (for serum)
or 10 (for urine) and 0.1 cm?, respectively.

Results and Discussion

Design of Calixarene-Modified Oligosiloxane. A
calix[4]arene tetraester, which is a highly Na*-selective
ionophore, was chosen as the neutral carrier.'~'» For ob-
taining a medium-molecular-weight calixarene neutral car-
rier, we decided to incorporate calix[4]arene tetraallyl es-
ter into oligo(methylsiloxane) by a hydrosilylation reaction
(Scheme 1). The oligo(dimethylsiloxane) backbone is ex-
pected to enhance the solubility or dispersibility of the re-
sulting calixarene neutral carrier in silicone-rubber mem-
branes, which also contain dimethylsiloxane repeating units.
Each molecule of the resulting calixarene oligomer, 1, was
found to carry two or three calixarene units and to possess a
molecular weight ranging from 4000 and 5000.

Potential Response of Silicone-Rubber Membrane.
The oligomeric calix[4]arene neutral carrier, 1, was blended
with a silicone-rubber precursor in 10 wt%, which corre-
sponds to 4—6 wt% for the calix[4]arene unit. The thus-ob-
tained membranes were applied to Na*-selective electrodes.
A typical potential response is shown in Fig. 1, together with
that for the electrodes based on silicone-rubber membranes
modified chemically with a similar calixarene neutral car-
rier. The Na*-selective electrodes based on silicone-rubber
membranes containing the oligomeric calixarene neutral car-
rier 1 exhibited a Nernstian response to ten-time Na* activity
changes over a wide activity range, while the electrode based
on the calixarene-bound silicone-rubber membranes showed
such curious potential response as demonstrated in the fig-

BrCH,CO,CH,CH=CH,

CH

y

A

Acetone

OR 4

R=CH2002CH2CH=CH2

SiMes Me Me

L
v

Me |
MessiO{Si-O
CH ; ! '
H Me,Si {o-saHo-Si} OSiMe,
OR 4 | x h y
HoP1Clg6H,0, @ _

R:CH2C020H20H=CH2

(CH,)3CO.CH>
CH;

1 4

Scheme 1. Synthesis of oligomeric calix[4]arene neutral carrier 1.
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Fig. 1. Potential response to Na* activity changes for sili-

cone-rubber-membranes Na*-selective electrodes based on
calix[4]arene neutral carrier.

(@) silicone-rubber membrane encapsulating oligomeric
calixarene neutral carrier 1, (A) silicone-rubber membrane
modified chemically with calix[4]arene tetraester.”

ure. The poor response for the latter electrodes was probably
due to a high membrane impedance, since the incorporation
of an anionic site, such as tetraphenylborate salts, to the cal-
ixarene-bound silicone-rubber membranes, can alleviate the
anomalous response behavior, as reported previously.® This
means that the calixarene moiety itself is more mobile and
easier to exchange Na* in the silicone-rubber membranes of
oligomeric calixarene neutral carrier 1 than in those modified
chemically with a calixarene moiety. Another significant dif-
ference between the membranes containing oligomeric cal-
ixarene neutral carrier 1 and incorporating a calixarene moi-
ety by chemical bonding was also found in the response time.
The response time (fys) is no shorter than 3 min in the sys-
tem of the calixarene-chemically-bound membranes without
any anionic site. The incorporation of the tetraphenylborate
anion to the membrane deceased the response time to about
1 min, as demonstrated in Fig. 2b. In the present membrane
system containing an oligomeric calixarene neutral carrier
1, on the other hand, the response time was already be-
low 1 min without an addition of any anionic site (Fig. 2a).
Thus, the employment of silicone-rubber membranes con-
taining an oligomeric calixarene neutral carrier 1 instead of
the calixarene-chemically-bound membranes has improved
the electrode potential response and the response time, thanks
to the enhanced mobility of the calixarene moiety in system
1. Furthermore, the oligomeric calixarene neutral carrier 1
is much more insoluble in water than monomeric calix[4]-
arene neutral carriers, such as calix[4]arene tetraethyl ester,
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Fig. 2. Time-course changes of potential response for sili-
cone-rubber membranes Na*-selective electrodes based on
calix[4]arene neutral carrier on changing Na* concentra-
tions from 1x107> to 3x10~* mol dm™>.
(a) silicone-rubber membrane encapsulating oligomeric cal-
ixarene neutral carrier 1, (b) silicone-rubber membrane
modified chemically with calix[4]arene tetraester and tetra-
phenylborate anion.”

and is therefore still hard to outflow from the membrane to
aqueous phases. The electrode property for the Na*-selective
electrodes based on a silicone-rubber membrane containing
1 has lasted for at least 5 months. Of course, the durability
is much better than that of a PVC-membrane Na* sensor
based on monomeric calix[4]arene ionophore, such as calix-
[4]arene tetraethyl ester (about 1 month).>

Ion Selectivity and Serum Sodium Assay. The ion
selectivities for Na*-selective electrodes based on silicone-
rubber membranes encapsulating an oligomeric calixarene
neutral carrier 1 are as shown in Fig. 3. The Na* selectivity
with respect to K* is almost comparable to an ion-selec-
tive electrode based on conventional calix[4]arene neutral
carriers.!V In order to check the applicability of Na*-selec-
tive electrodes based on 1, an attempt was made to assay Na*
in a control serum sample with an actual Na* concentration
of 135.0 mmoldm~3. The assay by using the present Na*
electrodes afforded a Na* concentration of 135.4 mmol dm 3
with a relative standard deviation of 0.72. This suggests that
the Na‘*-selective electrodes are reliable in a serum sodium
assay.
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Fig. 3. Ion selectivities for Na*-selective electrodes based
on silicone-rubber membrane encapsulating oligomeric cal-
ixarene neutral carrier 1.
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