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The first step of our synthesis (Scheme 11) consisted in the 
reaction of butadiene in the presence of 1 .O equiv of SnC14 in 
dry CH3CN6a with 5-methylcyclohexenone, 1.' Addition took 
place exclusively from the side opposite to  the methyl sub- 
stituent to give a 3:2 mixture of the cis-octalone, 2, together 
with its trans-isomer 3.8-10 Oximation of this mixture (26 
mmol) with hydroxylamine hydrochloride (3 1 mmol) in 
aqueous ethanol, followed by chromatography on silica gel 
furnished the cis-oxime 49 (mp 143-145 "C; 40%). It was no- 
ticed that the cis-octalone 2 reacted faster with hydroxylamine 
than its trans isomer 3. Consequently the reaction of the mix- 
ture of 2 and 3 with a stoichiometric amount (relative to 2) of 
hydroxylamine hydrochloride and N a O A c  in methanol en- 
abled the pure cis-oxime 4 to be separated from unchanged 
trans-ketone 311 by simple crystallization from isopropyl al- 
cohol. ReductionI2 of the oxime 4 with 2 equiv of NaBH3CN 
in methanoFb afforded exclusively the hydroxylamine 59 (mp 
133-135 "C; 100%). Heating of 5 with 5 equiv of parafor- 
maldehyde in the presence of molecular sieve in toluene6c gave 
the bridged isoxazolidine 79 as  a n  oil (70%). This transfor- 
mation presumably involves a transient nitrone, 6,  which 
undergoes a highly regioselective intramolecular addition to 
a nonpolarized olefinic bond. Not  even a trace of the corre- 
sponding positional isomer (isomer D in Scheme I) was found 
in the reaction mixture. Methylation of the adduct 7 with 1.5 
equiv of methyl fluorosulfonate in ether,6d followed by re- 
duction of the resulting salt with LiA1H46e gave the alcohol 
S1O,I3 (mp 75-77 "C; 97%). Oxidation of 8 with Jones' reagent 
furnished the hydrochloride of the racemic alkaloid 9 (mp 
238-240 "C, sealed capillary, reported mp 171-172 0C;5 98%). 
The  free base 9 was identified by comparison of its ir, 'H  
N M R ,  and mass spectra as  well as  its TLC and G C  behavior 
with those of natural d- and synthetic d,l-luciduline. 

A key feature of our approach is that during the conversion 
of 1 to 9 the original chiral center largely controls the devel- 
oping configurations of the four other chiral centers. It may 

be further pointed out that this synthesis nicely illustrates the 
utility of intramolecular additions of N-alkenylnitrones as an 
equivalent of the Mannich reaction. The scope of the thermal 
reaction of N-alkenylhydroxylamines with aldehydes is pres- 
ently being explored by using a variety of model com- 
pounds. 
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A Total Synthesis of Gliotoxin 

Sir: 
Gliotoxin 1,' an antibiotic produced by various species of 

Gladiocladium, Trichoderma, Aspergillus, and Penicillium, 
presents a formidable challenge to synthetic chemists. Dif- 
ficulties in controlling stereochemistry as well as functionality 
are  accumulated in this small molecule. Four asymmetric 
centers in addition to two delicate ring systems-hydrated 
benzene and epidithiapiperazinedione-are present. We would 
like to report the first total synthesis of gliotoxin, using a novel 
solvent-dependent Michael reaction as a key step. 

The thioacetal 2*x3 (mp 250-252 "C) was synthesized from 
glycine sarcosine anhydride in six steps4 in 30% overall yield 
by the method previously r e p ~ r t e d . ~  Michael reaction of 4- 
carbo-tert-butoxybenzene oxide 36 (excess) with 2 in meth- 
ylene chloride containing Triton B a t  room temperature for 
a short period afforded the alcohol 43 (mp 217-218 "C dec) 
as the major product (45% yield) and the epimeric alcohol 53 
(mp 255-257 "C dec) as  the minor product (15% yield). The 
ratio of alcohols 4 and 5 produced in this Michael reaction was 
found to be dependent on the solvent and the time of reaction. 
A 3:l ratio (88% yield) favoring the alcohol 5, the minor 
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product in CHzC12-Triton B, was finally realized in dimethyl 
sulfoxide containing Triton B at  room temperature for a short 
period. Retro-Michael reaction was observed with alcohols 4 
and 5 in CH2C12 or Me2SO in the presence of Triton B. Thus, 
an approximate 1:l mixture of the alcohols 4 and 5 resulted 
from either 4, or 5, or 2 on Triton B treatment in CH2Clz or 
Me2SO in the presence of 3 (excess) overnight. 

Since overall trans-opening of the epoxide ring is expected 
for 3,7 alcohols 4 and 5 must be the epimers regarding the 
relative configuration of the thioacetal bridge and the alcoholic 
group. Two probable orientations A and B-note d,l-thioacetal 
2 and d,l-benzene oxide 3* are  used-are considered for the 
transition state of the Michael reaction, when 2 and 3 approach 
in such a way as to cause the least steric hindrance. Inter- 
estingly, the favorable dipole interaction involved in A should 
make it preferred to B in nonpolar solvents such as methylene 
chloride. Thus, the desired stereochemistry was tentatively 
assigned to the alcohol 5 and the undesired stereochemistry 
to the alcohol 4.9 The importance of such a dipole interaction 
in the transition state determining the stereochemistry of the 
Robinson annelation is known in several cases.1° 
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The alcohol 5 was converted to the acetate 63 (mp 195-1 96 
"C, Ac*O/Py/room temperature; 90% yield) and then to the 
hydroxymethyl derivative 73 (mp 181-182 "C) in three steps 
( 1, TFA/room temperature; 2, C I C O ~ E ~ / E ~ ~ N - C H ~ C ~ Z /  
room temperature; 3, NaBH4/CH30H-CH2C12/0 "C) in 70% 
overall yield. Mesylation of 7 (MsCl/Et3N-CH*C12/room 
temperature), followed by lithium chloride treatment in 
DMFI and then hydrolysis (NaOCH3/CH30H-CH2C12/ 
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room temperature), gave the chloride 83 (mp 200-201 "C) in 
95% overall yield. 

Phenyllithium, slowly added to a mixture of 8 and chloro- 
methyl benzyl ether (excess) in THF a t  -78 "C with moni- 
toring by TLC, gave the benzylgliotoxin anisaldehyde adduct 
93 (mp 210-212 "C), which was isolated in 45% yield.I2 Boron 
trichloride treatment of 9 in CHzCl2 at  0 " C  furnished the 
gliotoxin anisaldehyde adduct lo3 (mp 241-242 "C) in 50% 
yield.I3 m-Chloroperbenzoic acid oxidation of 10, followed by 
perchloric acid treatment in methylene chloride a t  room 
t e m p e r a t ~ r e , ~  yielded d,l-gliotoxin l3 (mp 165-166 "C) in 65% 
yield. Synthetic substance was identical with natural gliotox- 
inI4 by spectroscopic ( N M R ,  ir, uv, MS)  and T L C  compari- 
son. 

Further efforts to the synthesis of an optically active form 
of gliotoxin and a biogenetic-type approach toward the toxin 
are  in progress in our laboratories.15 
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3, KSAC/CH2CI2; 4, HCI/CH30H; 5, pCH30C6H4CHO/BF~.Et2O/CH&l2; 

with the authentic sample. I -  

CHzCi2). 

Organocobalt Cluster Complexes. 20. Novel Chemistry 
of Acyl- and Aroylmethylidynetricobalt Nonacarbonyl 
Complexes. Unusual Thermal Ketone 
Decarbonyiation Reactions' 

Sir: 
Acyl- and aroylmethylidynetricobalt nonacarbonyl com- 

plexes, I, are readily available by reaction of the appropriate 
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