

Tetrahedron Letters 39 (1998) 8077-8080

TETRAHEDRON LETTERS

## Study of Butyrolactones Related to Sub-type 3 Annonaceous Acetogenins. Structure Revision of Itrabin, Jetein, Laherradurin and Otivarin.

## Erwin Warmerdam, Isabelle Tranoy, Brigitte Renoux and Jean-Pierre Gesson\*

Laboratoire de Chimie 12, Université de Poitiers et CNRS, 40, Avenue du Recteur Pineau, F-86022 Poitiers (France)

Received 17 August 1998; accepted 24 August 1998

Abstract: Starting from 5(S)-hydroxymethyl-y-butyrolactone 1, lactones related to title acetogenins have been prepared in few steps. This study leads to a structure revision of the lactone configurations of these acetogenins. © 1998 Elsevier Science Ltd. All rights reserved.

Annonaceous acetogenins represent a large class (c.a. 300) of natural products which display potent cytotoxic, immunosuppressive, pesticidal and insecticidal properties.<sup>1</sup> The main structural features of these fatty acid derived compounds are the presence of one to three tetrahydrofuran rings (or in one case a tetrahydropyran) and a terminal lactone moiety. Four different lactones are usually found; sub-types 1a and 1b are 2.4-disubstituted butenolides (1b bears an extra hydroxyl group at C-4),<sup>2</sup> sub-type 2, an alleged artifact which has been shown to result from base-catalysed rearrangement of sub-type 1b (a 2/1 cis-trans ratio is usually obtained after extraction and purification)<sup>2</sup> and the more scarce sub-type 3, only present in otivarin, laherradurin,<sup>3</sup> itrabin and jetein.<sup>4</sup> Indeed, several other naturally ocurring 2-alkyl-3-hydroxy (or acyloxy)-4methyl butyrolactones are known, such as grandinolide,<sup>5</sup> blastmycinone,<sup>6</sup> antimycinone,<sup>7</sup> NFX-2, NFX-4<sup>8</sup> and some other lipid metabolites.9





sub-type 2 (cis + trans)

sub-type 3

Several strategies have been already developped to prepare lactone synthons related to sub-types lab<sup>1</sup> and 2.10 Indeed, we became interested in preparing lactones A which should be in equilibrium with lactones B related to sub-type 3 wih hydroxyl group at C-2'. The effect of relative configurations on this equilibrium and,



0040-4039/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)01786-9

later, conversion of B to sub-type 1b lactones and analogs will be studied.

Preliminary results are now reported starting from the commercially available 5(S)-hydroxymethyl- $\gamma$ butyrolactone 1 (ee 98%) as a model of the 5(R)-alkyl butyrolactone moiety of annonaceous acetogenins. After protection as a TPS ether (91%), alkylation of the lithium enolate of 2 with 1.5 eq of allyl iodide (LDA 1.05 eq., -78 to -40°C, THF) gave the *trans* lactone **3a** (81%) together with the *cis* isomer **3b** (9.5%) in agreement with previous reports.<sup>11</sup> Upon heating in EtOH-H<sub>2</sub>O in presence of cat. (PPh<sub>3</sub>)<sub>3</sub>RhCl for 5 h, **3a** afforded in 70-80% yield a 8/1 mixture of *E* and Z lactones **4a** and **4b** (together with 7-10% of unchanged starting material). The *trans* configuration of lactones **4a** and **4b** was secured by hydrogenation over Pd/C to **5** which turned out to be identical to the compound obtained from **3a** by similar reduction. Since separation of these lactones was difficult using flash-chromatography over silica (**4a** and **4b** were isolated respectively in only 39% and 5% isolated yields), asymmetric dihydroxylation was carried on the 8/1 mixture obtained above for higher efficiency.



Upon treatment with  $K_2OsO_2(OH)_4$  (0.002 eq.), hydroquinidine 1,4-phthalazinediyl diether (0.01 eq.),  $K_3Fe(CN)_6$  (3 eq.) and  $K_2CO_3$  (3 eq.) [AD-mix- $\beta$ ],<sup>12</sup> **4a,b** (*E/Z*: 8/1) gave mainly lactones 6 (16%) and **7a** (54%) together with minor amounts of **8a** (4%) and **9a** (3%). The rearranged structure of **7a** was deduced from <sup>1</sup>H-<sup>1</sup>H COSY experiments. At this stage examination of *J* between H-3 and H-4 was not possible due to signal overlap and this was done after acetylation to **7b**. <sup>1</sup>H NMR data of **7a** and **7b** were identical,

respectively, to those reported by Node<sup>13</sup> for (-)-3-*epi*-blastmycinol **10a** and (-)-3-*epi*-blastmycinone **10b**. Furthermore, the observed <sup>3</sup>J between H-2, H-3 and H-4 were found to be similar to those of the 2,4-dimethyl-3-hydroxy- $\gamma$ -butyrolactone possessing the same relative configurations and clearly different from data of the three other diastereoisomers.<sup>14</sup> This result is in agreement with the expected formation of the *R*,*R* diol with AD-mix- $\beta$ . Then, the structure of **6** could be easily deduced since upon exposure to cat. PTSA in CH<sub>2</sub>Cl<sub>2</sub> (rt, overnight), a 3.5/1 thermodynamic mixture of **7a** and **6** was obtained starting either from **6** or **7a**.

| Compound               | 7a   | 10a <sup>13</sup> | 7b   | 10b <sup>13</sup> | 8a   | <b>11a</b> <sup>13</sup> | 8b   | 11b <sup>13</sup> | 9a   | 12a <sup>15</sup> | 9b   | <b>12b</b> <sup>13</sup> |
|------------------------|------|-------------------|------|-------------------|------|--------------------------|------|-------------------|------|-------------------|------|--------------------------|
| δ H-3                  | 4.45 | 4.32              | 5.49 | 5.62              | 3.73 | 3.84                     | 5.06 | 4.94              | 4.28 | 4.20              | 5.32 | 5.17                     |
| δ H-4                  | 4.45 | 4.45              | 4.51 | 4.57              | 4.25 | 4.21                     | 4.38 | 4.37              | 4.74 | 4.64              | 4.75 | 4.76                     |
| $J_{\mathrm{H-2,H-3}}$ | 4.7  | 4.7               | 5.3  | 5.3               | а    | 8.6                      | 6.0  | 5.6               | 8.5  | 3.2               | 3.3  | 2.7                      |
| $J_{\mathrm{H-3,H-4}}$ | а    | 3.0               | 3.6  | 3.4               | 6.0  | 7.3                      | 4.8  | 4.6               | 7.0  | 4.8               | 5.1  | 4.8                      |

| Table 1 | <ol> <li>Selected</li> </ol> | δ (ppm | ) and J | values | (in Hz | ) for | lactones | 7-1 | 2 |
|---------|------------------------------|--------|---------|--------|--------|-------|----------|-----|---|
|---------|------------------------------|--------|---------|--------|--------|-------|----------|-----|---|

a: not observed.



Similarly, the structures of the minor isomers 8a and 9a (and their acetates 8b, 9b) were determined by comparison to the known lactones NFX-2 11a, antimycinone 11b and 12a,b (see Table 1). 8a arising from dihydroxylation of the minor Z isomer 4b is a 2,4-disubsituted *cis* lactone (as 7a). The *trans* lactone 9a proved to be rather instable and gave a 1/1 mixture with 13a on standing (*vide infra*). Although a good agreement of NMR data was found between acetates 9b and 12b, the observed <sup>3</sup>J between H-2, H-3 and H-4 (Table 1) for alcohol 9a were larger than those of 12a. This may be explained by a conformational bias between these lactones. MM2 calculations and J analysis carried out by Jaime *et al.*<sup>14</sup> have shown that the corresponding dimethyl lactone exists as a 26/74 mixture of degenerate envelope conformations A and B (R= Me). The calculated  $J_{H-2,H-3}$  and  $J_{H-3,H-4}$  being respectively 8.9 and 7.1 Hz for conformer A and 0.5 and 3.8 Hz for conformer B, it may be assumed that lactone 9a exists mainly as conformer A.

Treatment of 4a,b with AD-mix- $\alpha^{12}$  was more complex, giving 9a and 13a which could not be separated by chromatography due to a very fast equilibrium between these lactones. Therefore, the crude mixture was acetylated to give 9b and 13b, respectively in 36 and 6% from 4a,b. If acetylation is carried out after exposure of diols to cat. PTSA or silica, then a 1/1 ratio of 9b/13b is obtained in similar overall yield. In conclusion, this study has shown that lactones related to sub-type 3 acetogenins may be prepared in few steps from 5-alkyl butyrolactones and it may be assumed that this methodology can be extended to the preparation of all diastereomers starting from both enantiomers. Conversion to sub-type 1b lactones should be possible after protection as MOM ethers and treatment with DBU,<sup>16</sup> although care should be taken to avoid the easy epimerisation at C-4 recently demonstrated by Figadère for such insaturated lactones.<sup>2</sup> Finally, <sup>1</sup>H NMR data of the all cis isomer 7a, as well as the other lactones 8a and 9a, do not correspond to the reported values for naturally occurring sub-type 3 acetogenins. Indeed, the observed (numbering as above)  $J_{H-2,H-3}$  (5.5 Hz) and  $J_{H-3,H-4}$  (<1Hz) of these acetogenins better agree with those reported for lactone 14<sup>15</sup> (respectively: 5.6 and 1.1 Hz) and we propose that the structures of itrabin, jetein, laherradurin and otivarin should now be revised in their lactone moiety as shown below for itrabin and laherradurin.



## Acknowledgements

We thank ADIR and the Ligue Nationale contre le Cancer, Comité de Charente-Maritime, for financial support. **References and Notes** 

- Cavé, A.; Figadère, B.; Laurens, A.; Cortes, D. Acetogenins from Annonaceae. In Progress in the Chemistry of Organic Natural Products, Vol 70, Herz, W.; Kirby, G.W.; Moore, R.E.; Steglich, W.; Tamm, Ch. Eds.; Springer: Wien, New-York, 1997, pp 81-288. Zeng, L.; Ye, Q.; Oberlies, N.H.; Shi, G.; Gu, Z.-M.; He, K.; McLaughlin, J.L. Nat. Prod. Reports, 1996, 13, 275-306.
- 2. Duret, P.; Figadère, B.; Hocquemiller, R.; Cavé, A. Tetrahedron Lett. 1997, 38, 8849-8852.
- Cortes, D.; Rios, J.L.; Villar, A.; Valverde, S. Tetrahedron Lett. 1984, 25, 3119-3203. Rios, J.L.; Cortes, D.; Valverde, S. Planta Med. 1989, 55, 321-323.
- 4. Cortes, D.; Myint, S.H.; Leboeuf, M.; Cavé, A. Tetrahedron Lett. 1992, 32, 6133-6134.
- 5. Vieira, P.C.; Yoshida, M.; Gottlieb, O.R.; Filho, H.F.P.; Nagem, T.J.; Filho, R.B. *Phytochem.* 1983, 22, 711-713.
- 6. Kinoshita, M.; Aburaki, S.; Umezawa, S. J. Antibiot. 1972, 25, 373-376 and references cited therein.
- 7. Nishida, T.; Nihira, T.; Yamada, Y. Tetrahedron, 1991, 47, 6623-6634.
- 8. Li, W., Nihira, T., Sakuda, S., Nishida, T., Yamada, Y. J. Ferment. Bioeng. 1992, 74, 214-217.
- 9. Ravi, B.N.; Wells, R.J. Aust. J. Chem. 1982, 35, 105-112.
- 10. Bertrand, P; Gesson, J-P. Synlett, 1992, 889-890
- 11. Harmange, J.C.; Figadere, B.; Hocquemiller R.; Tetrahedron Asymmetry. 1991, 5, 347-350.
- 12. Sharpless, K.B.; Amberg, W.; Bennani, Y.L.; Crispino, G.A.; Hartung, J; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768-2771.
- 13. Nishide, K.; Aramata, A.; Kamanaka, T.; Inoue, T.; Node, M. Tetrahedron, 1994, 50, 8337-8346.
- 14. Jaime, C.; Segura, C.; Dinarés, I.; Font, J. J. Org. Chem. 1993, 58, 154-158.
- 15. Sibi, M.; Lu, J.; Talbacka, C.L. J. Org. Chem. 1996, 61, 7848-7855.
- 16. Yao, Z.-J.; Wu, Y.-L. Tetrahedron Lett. 1994, 35, 157-160.